Skip to main content

Full text of "Calculus Complete Solutions Guide"

See other formats


Bruce  H.  Edwards 


Complete  Solutions 

Guide 


Volume 


.  X^iKT''-^'^',* 


Calculus 


Seventh  Edition 


^jl  i-  •'  ■■^"WJ  :.--■?':' 


Larson  •  Hostetler  •  Edwards 

For  use  with 

Calculus  with  Analytic  Geometry,  Seventh  Edition 

Calculus  of  a  Single  Variable,  Seventh  Edition 


Digitized  by  the  Internet  Archive 

in  2011  with  funding  from 
Lakewood  Park  Christian  School 


http://www.archive.org/details/calculuscomplete01edwa 


PART     I 


CHAPTER     P 
Preparation  for  Calculus 


Section  P.l      Graphs  and  Models    2 

Section  P.2      Linear  Models  and  Rates  of  Change    7 

Section  R3      Functions  and  Their  Graphs 14 

Section  P.4      Fitting  Models  to  Data 18 

Review  Exercises     19 

Problem  Solving      23 


CHAPTER     P 
Preparation  for  Calculus 

Section  P.l       Graphs  and  Models 

Solutions  to  Odd- Numbered  Exercises 


1.  >>  =  —jx  +  2 
x-intercept:  (4,  0) 
y-intercept:  (0,  2) 
Matches  graph  (b) 


3.  y  =  4  -  x^ 

x-intercepts:  (2,0),  (-2,0) 
y-intercept:  (0,  4) 
Matches  graph  (a) 


5.  >>  =  5X  +  1 


7.  >-  =  4  -  x2 


X 

-4 

-2 

0 

2 

4 

y 

-5 

-2 

1 

4 

7 

X 

-3 

-2 

0 

2 

3 

y 

-5 

0 

4 

0 

-5 

(3,-5) 


9.  .V  =  U  +  21 


X 

-5 

-4 

-3 

-2 

-1 

0 

1 

y 

3 

2 

1 

0 

1 

2 

3 

11.  y  =  7x  -  4 


X 

0 

1 

4 

9       16 

>" 

-4 

-3 

-2 

-1      0 

Section  P.  I        Graphs  and  Models        3 


13. 


Xmin  =  -3 
Xmax  =  5 
Xscl  =  1 
Ymin  =  -3 
Ymax  =  5 
Yscl  =  1 


Note  that  y  =  A  when  x  =  0. 


15. 


(-4.f«.  3, 

i:.  1.73) 

(a)  (2,.v)  =  (2,  1.73)        (y  =  V5  -  2  =  73  =  1.73) 

(b)  (x,  3)  =  (-4,  3)         (3  =  75  -  (-4)) 


\1.  y  =  x^  +  X-  2 

y-intercept:       y  =  0"^  +  0  —  2 
y=-2;(0, -2) 

0  =  x~  +  X  -  2 


jc-intercepts: 


0  =  (x  +  2){x  -  1) 

X  =  -2,  1;  (-2,0),  (1,0) 


21.  V  = 


3(2  -  V^) 


y-intercept:       None,  x  cannot  equal  0. 


JT-intercepts: 


0  =  2  -  Vx 
.1  =  4:  (4,  0) 


19.  y  =  xV25  -  .t' 


y-intercept:       y  =  0^725  -  0^ 
y  =  0;  (0,  0) 


jc-intercepts: 


;      0  =  .r=v/25^^ 


0  =  .r=7(5  -  .x)(5  +  x) 
x  =  0,  ±5:  (0,0):  (±5,0) 

23.  .r^'  -  x^  +  Ay  =  0 
y-intercept: 

O^Cv)  -  02  -(-  4y  =  0 

y  =  0:  (0.  0) 
-T-intercept: 

x-{Q)  -  X-  +  4(0)  =  0 

x  =  Q;  (0,  0) 


25.  Symmetric  with  respect  to  the  y-axis  since 

y  =  (— x)-  —  2  =  X-  —  2. 


27.  Symmetric  with  respect  to  the  x-axis  since 
(-y)-  =  y^  =  x^  -  4x. 


29.  Symmetric  with  respect  to  the  origin  since 
(-x)(-y)  =  xy  =  4. 


31.  y  =  4  -  7x-l-  3 

No  symmetry  with  respect  to  either  axis  or  the  origin. 


33.  Symmetric  with  respect  to  the  origin  since 
—X 


'       i-xf  +  1 

X 

^    x^  +  r 

37. 

y=-3x  +  2 

Intercepts: 

(i0),(0,2) 

Symmetry:  none 

35.  y  =  |.T^  +  x|  is  symmetric  with  respect  to  the  y-axis 

since  y  =  \(-xy  +  (-.r)|  =  \-(x^  +  x)\  =  \x^  +  x\. 


4        Chapter  P        Preparation  for  Calculus 


39.  y  =  |.v  -  4 

Intercepts: 

(8,0),  (0,-4) 
Symmetry:  none 


45.  )>  =  -x^  +  2 
Intercepts: 

(-3^,0),  (0,2) 
Symmetry:  none 


\ 1 \-^x 


41.  y  =  1  -  x^ 
Intercepts: 

(1,0),  (-1,0),  (0,1) 
Symmetry:  y-axis 


47.  y  =  xjx  +  2 
Intercepts: 

(0,0),  (-2,0) 
Symmetry:  none 
Domain:  x  >  ~2 


43.  y  =  (x  +  3)2 
Intercepts: 

(-3,0),  (0,9) 
Symmetry:  none 


-10  -8    -6    (-3,0) 


49.  ;c  =  / 

Intercepts:  (0,0) 
Symmetry:  origin 


Intercepts:  none 
Symmetry:  origin 


53.  y  =  6  -  |.y| 
Intercepts: 

(0,6),  (-6,0),  (6,0) 
Symmetry:  >'-axis 


55.  y^ 


-  x=9 

y^  =  x  +  9 
y  =  ±Jx  +  9 


Intercepts: 

(0,3),(0, -3),  (-9,0) 
Symmetry:  jr-axis 


57.  X  +  3y2  =  6 

3y2  =  6  -  ;t 


Intercepts: 

(6,  0),  (O,  V2),  (O,  -  V2) 
Symmetry:  A-axis 


Section  p.]        Graphs  and  Models       5 


59.  y  =  (x  +  2){x  -  4){x  -  6)  (other  answers  possible) 


61.  Some  possible  equations: 

y  =  x 

y  =  x^ 

y  =  3x^  —  X 

„  =  3/; 


63.    x+y  =  2=>y  =  2-x 
2x  —  y  =  I  =^  y  =  2x  —  1 

2  -;c  =  2x-  1 
3  =  3;c 
1  =x 
The  corresponding  >>- value  \sy  =  1. 
Point  of  intersection:  (1,1) 


65.      X  +  y  =  1  =^  y  =  1  —  X 

Zx  -  11 

\A-lx='ix-  11 
-5x=  -25 
;c  =  5 
The  corresponding  >>- value  is  >>  =  2. 
Point  of  intersection:  (5,  2) 


61.  x'^+y  =  6^y  =  6-  x'^ 

x  +  y  =  A=!>y  =  A  —  X 

6-  x^  =  A-  X 

0  =  x^  -  x~2 

Q  =  {x-  2)(x  +  1) 

;c  =  2,  -  1 

The  corresponding  y- values  are  y  =  2  (for  x  =  2) 
and  y  =  5  (for  x  =  —  1 ). 

Points  of  intersection:  (2,  2),  (—1,5) 


69.  ;c2  +  y2  =  5  =>  y2  =  5  -  ;c2 
jr  —  y=  \  =>  y  =  X  —  1 
5-  x-  =  {x-  1)2 

5-x^  =  x--2x+\ 

Q  =  2x~  -2x-  A  =  2(x+  \){x  -  2) 

X  =  -  1  or  .r  =  2 
The  corresponding  y- values  are  y  -  -  2  and  y  =  1 . 
Points  of  intersection:  (-  1,  -2),  (2.  1) 


71.  y  =  x3 

y  =  X 
x?  =  X 
:^  -  x  =  Q 

x{x  +  \)(x  -  1)  =  0 
X  =  Q,x  =  —  1,  orx  =  1 

The  corresponding  y- values  are  v  =  0,  y  =  -  1,  and 
y=l. 

Points  of  intersection:  (0,  0),  (-  1,  -  1),  (1,  1) 


73. 


>•  = 

x>  -Ztt  +  x-  \ 

y  =  -jr  +  3.t  -  1 

^  -2x-  +  x-  \  =  -X-  +  3.r  -  1 

.r3  -  .^2  -  It  =  0 

x(x  -  2)(x  +  1)  =  0 

.r=  -1,0.2 

(-1, -5),(0. -1).(2.  1) 

l,^^:dt 

7^ 

^,2.U 

(O.-in 

\ 

- 

'  1 '"^^ 

3 

6       Chapter  P        Preparation  for  Calculus 


75.  5.5v^  +  10,000  =  3.29x 

(5.5^)^  =  (3.29x  -  10,000)2 

30.25;c  =  10.8241JC2  -  65,800x  +  100,000,000 

0  =  10.8241^2  -  65,830.25;c  +  100,000,000        Use  the  Quadratic  Formula. 
X  =  3133  units 

The  other  root,  x  =  2949,  does  not  satisfy  the  equation  R  =  C. 

This  problem  can  also  be  solved  by  using  a  graphing  utility  and  finding  the  intersection  of  the  graphs  of  C  and  R. 


77.  (a)  Using  a  graphing  utility,  you  obtain 

y  =  -0.0153f-  +  4.9971f  +  34.9405 

(c)  For  the  year  2004.  J  =  34  and 
y  =  187.2  CPl. 


(b) 


79.     400 


If  the  diameter  is  doubled,  the  resistance  is  changed  by  approximately  a  factor  of  (1/4).  For  instance,  ^(20)  ~  26.555  and 
.       ^(40)  =  6.36125. 

81.  False;  j:-axis  symmetry  means  that  if  (1,  -2)  is  on  the  graph,  then  (1,  2)  is  also  on  the  graph. 


83.  True;  the  x-intercepts  are 


-b±  JlP-  -  4ac 


2a 


,  0 


85.  Distance  to  the  origin  =  K  x  Distance  to  (2,  0) 

Jx-  +  y^  =  A:V(x  -  2)2  +  f,  K  +  1 
x^  +  y'^  =  K-{x^  -  Ax  +  A  +  y-) 
(1  -  K'^)x^  +  (1  -  K^)y^  +  4Kh  -  4K^  =  0 
Note:  This  is  the  equation  of  a  circle! 


Section  P.2        Linear  Models  and  Rates  of  Change       7 


Section  P.2      Linear  Models  and  Rates  of  Cliange 


\.  m=\ 


3.  m  =  0 


5.  m=  -\2 


7, 


9.  m 


2  -  (-4) 
5-3 


(3,  -4) 


11.  m 


5  -  1 

2-2 


^4 
0 

undefined 


(2,5) 


(2,1) 


13.  m  = 


2/3  -  1/6 
1/2 -(-3/4) 


111 
1/4 


15.  Since  the  slope  is  0,  the  line  is  horizontal  and  its  equation  is  >■  =  1.  Therefore,  three  additional  points  are  (0,  1),  (1,  1), 
and  (3,  1). 


17.  The  equation  of  this  line  is 
y-l  =  -3{x-\) 
y=  -3x  +  10. 
Therefore,  three  additional  points  are  (0, 10),  (2,  4),  and  (3,  1). 


19.  Given  a  line  L,  you  can  use  any  two  distinct  points  to  calculate  its  slope.  Since  a  line  is  straight,  the  ratio  of  the  change  in 
y-values  to  the  change  in  jr-values  will  always  be  the  same.  See  Section  P.2  Exercise  93  for  a  proof. 


8        Chapter  P        Preparation  for  Calculus 


21.  (a) 


E 

=  260- ■ 


I     I     I     I     I     I     I     I     l> 
123456789 

Year  (0<-»  1990) 


(b)  The  slopes  of  the  line  segments  are 
255.0  -  252.1 


2  -  1 

257.7  -  255.0 
3-2 

260.3  -  257.7 
4-3 

262.8  -  260.3 
5-4 

265.2  -  262.8 
6-5 

267.7  -  265.2 
7-6 

270.3  -  267.7 
8-7 


2.9 


2.7 


=  2.6 


=  2.5 


2.4 


2.5 


2.6 


The  population  increased  most  rapidly  from  1991  to  1992. 

(m  =  2.9) 


23.  x  +  5y--20 


Therefore,  the  slope  is  /n  = 
(0,4). 


and  the  y-intercept  is 


25.  ;c  =  4 


The  line  is  vertical.  Therefore,  the  slope  is  undefined  and 
there  is  no  y-intercept. 


27.    y  =  |.r  +  3 
Ay  =  -ix+  12 
0  =  3;c  -  4y  +  12 


31.  y  +  2  =  3(;c  -  3) 

y  +  2  =  3x  -  9 
y  =  3.r  -  11 
y  -  3a:+  11  =  0 


33.  m 


6-0 


=  3 


2-0 

y  -  0  =  3U  -  0) 

y  =  3x 


35.  m 


1  -  (-3) 


37.  m 


8 

-0 

8 

2 

-  5 

3 

y  - 

0 

=  -1- 

-5) 

y 

=  -|- 

40 
3 

3y  +  8jc  -  40  =  0 


Section  P.2        Linear  Models  and  Rates  of  Change        9 


39.  m 


1 


Undefined. 


5-5 
Vertical  line  jr  =  5 


(5.8) 


(5.1) 


41.  m 


1/1  -  3/4       11/4  _  11 


1/2 

-  0 

1/2 

y- 

3  _ 
4 

^U  -  0) 

y  = 

11    ^3 

T^  +  i 

llx'  Ay  +  ?,  =  Q 


43.  .r  =  3 

jc-  3  =  0 


(3,0) 


45.  ^  +  f=l 

2       3 

3;c  +  2j'  -  6  =  0 


47.^  +  ^=1 
a      a 

1  +  ^=1 
a      a 


-  =  1 
a 

a  =  3=»jr  +  y  =  3 
.X  +  V  -  3  =  0 


49.  y  =  -3 

y  +  3  =  0 


12     3     4     5 


51.  y=-lx+\ 


53.  y  -  2  =  fU  -  1) 

y  =  2.t  +  2 
2y  -  3x  -  1  =  0 


55.  2t  -  y  -  3  =  0 

y  =  2x  -  3 


10        Chapter  P        Preparation  for  Calculus 


57. 


The  lines  do  not  appear  perpendicular. 


The  lines  appear  perpendicular. 


The  lines  are  perpendicular  because  their  slopes  1  and  —  1  are  negative  reciprocals  of  each  other. 
You  must  use  a  square  setting  in  order  for  perpendicular  lines  to  appear  perpendicular. 


59.  4a:  -  ly  =  3 

y  =  2x  -  2 
/n  =  2 

(a)  y  -  1  =  2{x  -  2) 
y  -  \  =2x-  4 

2x  -  y  -  3  =  0 

(b)  J  -  1  =  -\{x  -  2) 
2>'  -  2  =  -;c  +  2 

X  +  2y  -  A  =  0 


61,  5;c  -  3y  =  0 

y  =  h 

m  =  l 

(a)       y-l 

=  1(^-1) 

24y  -  21 

=  40;c  -  30 

24y  -  40jc  +  9 

=  0 

(b)       y-l 

=  -f(-  - !) 

40y  -  35 

=  -24a;  +  1 

40y  +  24;c  -  53 

=  0 

63.  (a)  x  =  2  =>  X  -  2  =  0 
0})y  =  5=>y-5  =  0 

65.  The  slope  is  125.  Hence,  V  =  125(f  -  1)  +  2540 

=  125?  +  2415 


67.  The  slope  is  -2000.  Hence,  V 


-2000(f  -  1)  +  20,400 
-2000/  +  22,400 


69. 


You  can  use  the  graphing  utility  to  determine  that  the  points  of  intersection  are  (0,  0)  and  (2,  4).  Analytically, 
x^  =  4x  -  x^ 
2x2  -  4x  =  0 
2x{x  -  2)  =  0 

x  =  0=^y  =  0^>{0,0) 
X  =  2  =>  >-  =  4  ^  (2,  4). 
The  slope  of  the  line  joining  (0,  0)  and  (2,  4)  is  m  =  (4  -  0)/(2  —  0)  =  2.  Hence,  an  equation  of  the  line  is 
>-  -  0  =  2(x  -  0) 
y  =  2x. 


Section  P.2        Linear  Models  and  Rates  of  Change        11 


71.  m,  = 


1  -0 


-2-(-l) 


-2-  0    _  _2 
"^"l-C-D"      3 

The  points  are  not  collinear. 
73.  Equations  of  perpendicular  bisectors: 


c      a  —  b 


c      a  +  b 


a  +  b 


b-  a 


Letting  ;<:  =  0  in  either  equation  gives  the  point  of  inter- 
section: 


0, 


2c  j 


This  point  lies  on  the  third  perpendicular  bisector,  ^  =  0. 


(-a,0) 


75.  Equations  of  altitudes: 
a-  b, 


-ix  +  a) 


x  =  b 


a  +  b.  , 

y  = U  -  a) 


Solving  simultaneously,  the  point  of  intersection  is 
.2_  ^\ 


[-'- 


77.  Find  the  equation  of  the  line  through  the  points  (0,  32)  and  (100,  212). 


180         9 
"^  ~  100   ~  5 


f  -  32  =  f  (C  -  0) 


f  =  f  C  +  32 


5F  -  9C  -  160  =  0 

For  F  =  72°,  C  =  22.2°. 


79.  (a)  W,  =  0.75j:  +  12.50 

W.  =  1.30.t  +  9.20 

(c)  Both  jobs  pay  $17  per  hour  if  6  units  are  produced. 
For  someone  who  can  produce  more  than  6  units  per 
hour,  the  second  offer  would  pay  more.  For  a  worker 
who  produces  less  than  6  units  per  hour,  the  first  oifer 
pays  more. 


(b)       50 


Using  a  graphing  utility,  the  point  of  intersection  is 
approximately  (6.  17).  Analytically, 

0.75.x-  +  12.50  =  1.30.V  +  9.20 

3.3  =  0.55.V  =>  .V  =  6 

y  =  0.75(6)  +  12.50  =  17. 


12        Chapter  P        Preparation  for  Calculus 


81.  (a)  Two  points  are  (50,  580)  and  (47,  625).  The  slope  is 

625-580 
'"=    47-50    =-''■ 

p  -  580  =  -  \5{x  -  50) 

p=  -  \5x  +  750  +  580  =  -  \5x  +  1330 

or  .r  =  15(1330  -  p) 


(b)     =0 


Ifp  =  655,  ;t  =  -^(1330  -  655)  =  45  units, 
(c)  \£p  =  595,  X  =  n(1330  -  595)  =  49  units. 


83.  4r  +  3v  -  \Q  =  Q^>d  = 


_  |4(0)  +  3(0)  -  10|  _  10  _ 


J  A-  +  r- 


i5.  x-y-2  =  Q: 


|l(-2)  +  (-l)(l)-2|  ^^ 

VI-  +  r-  V2 


5./2 


87.  A  point  on  the  line  x  +  y  =  1  is  (0,  1).  The  distance  from  the  point  (0,  1)  to  x  +  y  —  5  =  0  is 

11(0) +  1(1) -51       11-51         4  ,- 


d  = 


JV-  +  1- 


v/2  ./2 


89.  If  A  =  0,  then  fiy  +  C  =  0  is  the  horizontal  line  y  =  —  C/B.  The  distance  to  {x^,  yj  is 

|5y,  +  C\        JAri  +  By,  +  C\ 


d  = 


yi 


-c 

B 


\B\  J  A-  +  B- 

If  B  =  0,  then  Ar  +  C  =  0  is  the  vertical  line  x  =  —  C/A.  The  distance  to  (xj,  yj  is 

|Aci  +  C|       |Aci  +  Byi  +  C| 


d  = 


-(^ 


|A|  ^M2  +  B2 

(Note  that  A  and  B  cannot  both  be  zero.) 

The  slope  of  the  line  Ar  +  By  +  C  =  0  is  —A/B.  The  equation  of  the  line  through  ix^^,  y^  perpendiailar 
to  Ac  +  By  +  C  =  0  is: 

y~yi  =  -^yx  -  x{\ 

Ay  —  Ayi  =  Bx  —  Bxj 

BX[  —  .4y|  =  Bx  —  Ay 
The  point  of  intersection  of  these  two  lines  is: 

Ac  +  By  =  -C  =^     A-X  +  ABy  =  -AC  (1) 

Bx  -  Ay  =  Bx^  -  Ay^  =>     B-x  -  .4By  =  B-x,  -  .4Byi  (2) 

(A'  +  B-)x  =  -AC  +  B-Xi  -  AByj  (By  adding  equations  (1)  and  (2)) 
-AC  +  B-x^  -  AByi 


A-  +  B^ 
Ac  +  By  =-C  =>     ABx  +  B2y=-BC  (3) 

Bx  -  Ay  =  Bx,  -  Avi^  -AB^  +  A-y  =  -ABX)  +  A-y,  (4) 


(A-  +  B-)y  =  -BC  -  ABx^  +  A^y,  (By  adding  equations  (3)  and  (4)) 
-BC  -  ABxi  +  Ahi^ 


y  = 


A-  +  s- 


— CONTINUED— 


Section  P.2        Linear  Models  and  Rates  of  Change        13 


89.  — CO>mNUED— 

(-AC  +  B-x.-  ABv,    -BC  -  ABx.+  A'^.\      .       ^. 

[ ^2  +  gi ' ^2  +  g2 j  point  of  intersection 

The  distance  between  (.r,,  y,)  and  this  point  gives  us  the  distance  between  (x,,  y\)  and  the  line  Ax  +  By  +  C  =  0. 

d=  , 


-AC  +  B-x,  -  ABy^  _ 


A^  +  S^ 


-BC  -  ABxj  +  Ay 


1  _ 


A-  +  B- 


-AC  -  ABy,  -  A-.t, 
A=  +  B- 


-BC  -  ABXj  -  Bh\ 


A~  +  B- 


-A(C  +  flvi  +  AC|) 
A-  +  B' 


(A^  +  B-)[C  +  At,  +  By,Y 

{A-  +  B-y 


-B(C  +  /U)  +  By,) 
/12  +  B- 


^  lAx,  +  gy,  +  C\ 


91.  For  simplicity,  let  the  vertices  of  the  rhombus  be  (0,  0), 
(a,  0),  (b,  c),  and  (o  +  b,  c),  as  shown  in  the  figure.  The 
slopes  of  the  diagonals  are  then 


and  in. 


a  +  b 


b  -  a 


Since  the  sides  of  the  Rhombus  are  equal,  a^  =  ir  +  c^, 
and  we  have 


ib.c)  (a+b.c) 


(0.0)  (a.O) 


c  c  c  c 

iinu  -  — — -  •  7 -  -7 ^  -  ^  =  -  1. 

a  +  b     b  -  a       b —  a-       -  c- 


Therefore,  the  diagonals  are  perpendicular. 


93.  Consider  the  figure  below  in  which  the  four  points  are 
collinear.  Since  the  triangles  are  similar,  the  result  imme- 
diately follows. 

yi  -  yC    yi  -  >'i 


"^  -^1  -^2 


95.  True. 


ax  +  by  =  c,  =>  V  =  -"T-t  "*"  T" 
b         b 


bx  —  a\  =  C-.  =>  V  =  — .r ' 

a         a 


n,,  =  -- 


nu=  — 


1 


14        Chapter  P        Preparation  for  Calculus 


Section  P.3      Functions  and  Their  Graphs 


1.  (a)/(0)  =  2(0)-3  =  -3 
(b)/(-3)  =  2(-3)-3  =  -9 

(c)  fib)  =  2i  -  3 

(d)  f(x  -  1)  =  2(.r  -  1)  -  3  =  It  -  5 


3.  (a)  g(0)  =  3  -  02  =  3 

(b)  g(V3)  =  3  -  (^3)'  =  3-3  =  0 

(c)  g(-2)  =  3-(-2)2  =  3-4=  -1 

(d)  g(r  -  1)  =  3  -  (f  -  1)2  =  -f2  +  2t  +  2 


5.  (a)  /(O)  =  cos(2(0))  =  cos  0  =  1 


(b,/(-f    =c.s2-f     = 


cosi  -yl  =  0 


'"A!) -4(f)) --3 


2£=  _i 

2 


Ai  Ax  Ax  -•(,;. 


9. 


/(x)-/(2)    (i/v^rni-i) 


X  -  2 


X  -  2 


1  -  Vx  -  1        1  +  Vx  -  1 


2  -X 


(x  -  2)Vx  -  1     1  +  Vx-  1       (x  -  2)Vx  -  1(1  +  Vx  -  1)       Vx  -  1(1  +  Vx  -  1) 


X5t2 


11.  h{x)  =  -  Vx  +  3 

Domain:  x  +  3  >  0  =>  [-3,  00) 
Range:  (—00,  0] 


13.  fit)  =  sec 


77t 


Domain:  all  r  t^  4A'  +  2,  ^'  an  integer 
Range:  (— 00,  —  1],  [1,  00) 


15.  fix)  =  - 

X 

Domain:  (— 00,  0).  (0,  00) 
Range:  (-00,  0),  (0,  00) 


17.  fix)  = 


2r  +  l,x  <  0 
2x  +  2,  X  >  0 


(a)  /(-1)  =  2(-1)  +  1  =  -1 

(b)  /(O)  =  2(0)  +  2  =  2 

(c)  /(2)  =  2(2)  +  2  =  6 

(d)  fif-  +  1)  =  2(r2  +  1)  =  2?2  +  4 
(Note:  t2  +  1  >  0  for  all  f) 
Domain:  (—00,  00) 

Range:  (  — do,  1),  [2,  00) 


19.  fix)  = 


\x\  +  l,x  <  1 
-X  +  l,x  >   1 


(a)  /(-3)=  |-3|  +  1=4 

(b)  /(1)=  -1  +  1=0 

(c)  /(3)  =  -3  +  1  =  -2 

(d)  /(fe'+l)=  -(^+  1)+  1 
Domain:  (—00,  00) 

Range:  (-  00,  0]  U  [1,  00) 


-fc2 


Section  P.3        Functions  and  Their  Graphs        15 


21.  fix)  =  4-  X 

Domain:  (-00,00) 
Range:  (-00,  00) 


23.  h(x)  =  TT^n" 
Domain:  [1,  oc) 
Range:  [0,  ocj 


25.  fix)  =  V9  -  x'^ 
Domain:  [—3,  3] 
Range:  [0,3] 


27.  ^(f)  =  2  sin  vt 
Domain:  (  — oo.  oc) 
Range:  [-2,2] 


29.  jc  -  y  2  =  0  =>  y  =  ±  VI 

y  is  not  a  function  of  .t.  Some  vertical  lines  intersect 
the  graph  twice. 


33.  x^  +  / 


•y 


±Va^. 


y  is  not  a  function  of  .r  since  there  are  two  values  of  v  for 
some  X. 


31.  V  is  a  function  of  x.  Vertical  lines  intersect  the  graph 
at  most  once. 


35.  ^^  =  X--  \ 


■y  =  ±v.T- 


y  is  not  a  function  of  x  since  there  are  two  values  of  >■  for 
some  X. 


37.  fix)  =  |x|  +  \x-2\ 

If -T  <  0,  then/(.r)  =  -x  -  U  -  2)  =  -2x  +  2  =  2(1  -  x). 

If  0  <  .t  <  2,  then/(A:)  =  .t  -  (.t  -  2)  =  2. 

If  X  >  2,  then/(x)  =  x  +  (x  -  2)  =  Ir  -  2  =  2fx  -  1). 

Thus, 

[2(1  -  x),      X  <  0 

fix)  =2,  0  <  X  <  2. 

l2(x  -  1),      X  >  2. 


39.  The  function  is  ^x)  =  car.  Since  (1,  —2)  satisfies  the 
equation,  c  =  -  2.  Thus,  gCr)  =  -  2xr. 


41.  The  fimction  is  r{x)  =  c/x.  since  it  must  be  undefined  at 
X  =  0.  Since  (1,  32)  satisfies  the  equation,  c  =  32.  Hius. 
rix)  =  32/x. 


43.  (a)  For  each  time  t.  there  corresponds  a  depth  d. 
(b)  Domain:  0  <  r  <  5 
Range:  Q  <  d  <  30 


12      3      4      5      6 


16       Chapter  P        Preparation  for  Calculus 


47.  (a)  The  graph  is  shifted 
3  units  to  the  left. 


(c)  The  graph  is  shifted 
2  units  upward. 


(e)  The  graph  is  stretched 
vertically  by  a  factor  of  3. 


r-H 1— 
2         4 


(b)  The  graph  is  shifted 
1  unit  to  the  right. 


(d)  The  graph  is  shifted 
4  units  downward. 


(f)  The  graph  is  stretched 
vertically  by  a  factor 
ofi 


49.  (a)  y  =  v^x  +  2 


12  3  4 


Vertical  shift  2  units  upward 


(b)  y  =  -  v^ 


Reflection  about  the  ;c-axis 


(c)  y  =  V7^^ 


Horizontal  shift  2  units  to  the 
right 


51.  (a)  71(4)  =  16°,  7tl5)  -  23° 

(b)  li  H(t)  =  T{t  —  1),  then  the  program  would  turn  on  (and  off)  one  hour  later. 

(c)  If //(f)  =  T{t)  -  1,  then  the  overall  temperature  would  be  reduced  1  degree. 


53.  fix)  =  x\  g{x)  =  v^ 

(/  °  g)U)  =  figix))  =  f{V^)  =  i^f  =  X,    x>0 
Domain:  [0,  oo) 

(g  'f)(x)  =  g{f(x))  =  g(;c2)  =  v<?  =  |;t| 
Domain:  (— oo,  oo) 
No.  Their  domains  are  different.  {f°g)  =  (g  -/)  for  x  >  0. 


55.  fix)  =  -,  gix)  =  ^2  -  1 


if'g)i^=figix))=fix^-\) 


Domain:  all  j:  #  ±  1 

(.^/)(.)^.(/(.))  =  .g)  =  gf-  1=1-1=^ 

Domain:  all  jc  ^^  0 

No,/"g#go/. 


Section  P.3        Functions  and  Their  Graphs        17 


57.  {A  ■>  r)it)  =  A{r{t))  =  A(0.6f)  =  TT(0.6f)2  =  0.367rt2 
{A  '  r}{t)  represents  the  area  of  the  circle  at  time  t. 


59.  f{-x)  =  (-x)H4  -  i-xY)  =  .t2(4  -  x^)  =/(jc) 
Even 


61.  f{-x)  =  (-x)cos(-x)  =  -jfcosjr  =  -/W 
Odd 

63.  (a)  If/ is  even,  then  (f ,  4)  is  on  the  graph. 

65.  f(-x)  =  a^^ti-x)^"^'  +  •  •  •  +  a3{-jc)3  +  a,(-x) 
=  -K  +  i^""^'  +  •  ■  ■  +a,x^  +  a,x] 
=  -fix) 
Odd 

67.  Let  F(;c)  =  f(x)g{x)  where/ and  g  are  even.  Then 

F{-x)  =  /(-.r)5(-.r)  =  /WgW  =  F  (x). 
Thus,  F(x)  is  even.  Let  FU)  =  f{x)g{x)  where/and  g  are  odd.  Then 

F(-x)  =f{-x)g(-x)  =  [-f(x)l-g(x)]  =f(x)g(x)  =  Fix). 
Thus,  F(x)  is  even. 


(b)  If/ is  odd,  then  (j,  —4)  is  on  the  graph. 


69.  fix)  =  jc'  +  1  and  gix)  =  jt^  are  even. 
fix)gix)  =  ix^  +  l)(j^)  =  x«  +  x^  is  even. 


5 


/(x)  =  a:^  —  x  is  odd  and  g{x)  =  x-  is  even. 
/WgW  =  ix^  -  x)(x^)  =x^  -  x^h  odd. 


71.  (a) 


X 

length  and  width 

volume  V 

1 

24  -  2(1) 

484 

2 

24  -  2(2) 

800 

3 

24  -  2(3) 

972 

4 

24  -  2(4) 

1024 

5 

24  -  2(5) 

980 

6 

24  -  2(6) 

864 

(b) 


The  maximum  volume  appears  to  be  1024  cm', 
(c)  V  =  x(24  -  2x)-  =  4.t(12  -  x)- 
Domain:  0  <  a  <  12 


Yes,  V  is  a  function  of  .v. 

(d)       "00 


Maximum  volume  is  V  =  1024  cm'  for  box  having 
dimensions  4  x  16  x  16  cm. 


73.  False;  let/(x)  =  x^. 

Then/(-3)  =/(3)  =  9,  but  -3  9^  3. 


75.  True,  the  function  is  even. 


18        Chapter  P        Preparation  for  Calculus 


Section  P.4      Fitting  Models  to  Data 


1.  Quadratic  function 


3.  Linear  function 


5.  (a),  (b) 


250-- 
200- - 


H i 1 1 h*-' 

3        6        9       12       15 


Yes.  The  cancer  mortality  increases  linearly  with 
increased  exposure  to  the  carcinogenic  substance. 

(c)  If.:i:  =  3,  then>'==  136. 


7.  (a)  d  =  0.066For  F  =  15.  W  +  0.1 

(b)       125 


The  model  fits  well, 
(c)  If  F  =  55,  then  d  »  0.066(55)  =  3.63  cm. 


9.  (a)  Let  x  =  per  capita  energy  usage  (in  millions  of  Btu) 

y  =  per  capita  gross  national  product  (in  thousands) 

y  =  0.0764a;  +  4.9985  =  0.08x  +  5.0 

r  =  0.7052 

(b)     « 


(c)  Denmark,  Japan,  and  Canada 

(d)  Deleting  the  data  for  the  three  countries  above, 
y  =  0.0959X  +  1.0539 

(r  =  0.9202  is  much  closer  to  L) 


11.  (a)  y,  =  0.0343f3  -  0.3451^2  +  0.8837t  +  5.6061 
y2  =  0.1095r  +  2.0667 
y^  =  0.0917?  +  0.7917 

(b)     15 


y'i^y. 

*h 

N\                           _^.r^^^ 

nn  ^ 

^ 

■  ■■'■■ 

For  2002,  t  =  12  and  ^i  +  jj  +  jj  =  3 1.06  cents/mile 


13.  (a)  y^  =  4.0367r  +  28.9644 

^2  =  -0.0099;'  +  0.5488?^  +  0.2399f  +  33.1414 
(b)         ™ 


>!  =4.04r+29.0 

^ 

^ 

W^ 

25 


>,  =  -O.OlOl^  +  0.549l^  +  0.24(  +  33. 1 


(c)  The  cubic  model  is  better. 


(d)  ^3  =  0.4297f2  +  0.5994t  +  32.9745 


(e)  The  slope  represents  the  average  increase  per  year 
in  the  number  of  people  (in  millions)  in  HMOs. 

(f)  For  2000,  r  =  10,  and  yj  =  69.3  million.  Oinear) 
yj  ~  80.5  million  (cubic) 


Review  Exercises  for  Chapter  P        19 


15.  (a)  y  =  -  1.81;c3  +  14.58;t2  +  16.39x  +  10 

(b)      300 


(c)  Ifx  =  4.5,  y  =  214  horsepower. 


17.  (a)  Yes,  >  is  a  function  of  t.  At  each  time  t,  there  is  one 
and  only  one  displacement  y. 

(b)  The  amplitude  is  approximately 

(2.35  -  1.65)/2  =  0.35. 

The  period  is  approximately 

2(0.375  -  0.125)  =  0.5. 

(c)  One  model  is  y  =  0.35  sin(4Trf)  +  2. 
(d) 


19.  Answers  will  vary. 


Review  Exercises  for  Chapter  P 


1.  >-  =  2x  -  3 

;c  =  0  ^>  >■  =  2(0)  -  3  =  -3  =*  (0,  -3)      y-intercept 


y  =  0:^0  =  2x-3=>jt 


(5, 0)      .r-intercept 


3.y  = 


X  -  1 

x-2 


X  =  0: 


y  =   0=4>0  = 


0  -  1  _  ]_ 
0-2      2 

X  -   1 


0,  -jr  I      y-intercept 


V  =  1  =»  ( 1 ,  0)      .T-intercept 


5.  Symmetric  with  respect  to  y-axis  since 
{-xYy  -  (-x)'  +  4y  =  0 
xry  —  X-  +  4y  =  0. 


1  1      _i_  3 

7.  y  =  — 2.V  +  2 


-  vt  +  fi.V  =   1 


JA-  +  y  =  T 


11.  V  =  7  -  dt  -  X- 


y  =  f  .r  + 


Slope: 


y-intercept:  j 


20       Chapter  P        Preparation  for  Calculus 


13.  y  =  75  -;c 

Domain:  (— oo,  5] 


15.  y  =  Ax^-  25 


Xmin  =  -5 
Xmax  =  5 
Xscl  =  1 
Ymin  =  -30 
Ymax  =  10 
YscI  =  5 


17. 

3a:- 

Ay  = 

8 

Ax  + 

Ay  = 

20 

Ix 

= 

28 

X  = 

4 

y  = 

1 

Point 

:  (4,  1) 

19.  You  need  factors  (x  +  2)  and  {x  —  2).  Multiply  by  x  to  obtain  origin  symmetry 

y  =  x(x  +  2)(x  -  2)_ 
=  x^  —  4x. 


21. 


12        3        4        5 


Slope 


(5/2)  -  1  ^  3/2  _  3 
5  -  (3/2)       7/2      7 


23. 


1  -  t 


1  -  5 


1-0       1  -  (-2) 
l-r=-^ 


25.         3,_(_5)  =  i(;,_o) 

y  =  F  ~  5 

2>'  -  3x  +  10  =  0 


27.  y  -  0  =  -f(x  -  (-3)) 

y  =  -3X  -  2 
3y  +  2x  +  6  =  0 


Review  Exercises  for  Chapter  P        21 


29.  (a)        y  -  4  =  ~(x  +  2) 
lo 

16y  -  64  =  7x  +  14 

0  =  7.ir  -  \6y  +  78 
.X  4-0 

y  =  -2x 
2x  +  y  =  Q 


(b)  Slope  of  line  is  — . 


>-  -  4  =  jU  +  2) 

3v  -  12  =  5j:  +  10 

0  =  5;t  -  3 V  +  22 

(d)  x=-l 

x  +  2  =  0 


31.  The  slope  is  -850.  V  =  -850f  +  12,500. 
V(3)  =  -850(3)  +  12,500  =  $9950 


33.  a:  -  r  =  0 

y  =  ±Vx 

Not  a  function  of  j:  since  there  are  two  values  of  >>  for 
some  X. 


35.  y  =  x^-2x 

Function  of  j:  since  there  is  one  value  oiy  for  each  x. 


37.  fix)  =  - 


(a)  /(O)  does  not  exist. 


1 


(b) 


/(I  +  Ax)  -/(I)  ^  1  +  Ax       1  ^  1  -  1  -  A.X: 
Ai-  Ar  (1  +  At)  Ax 


-1 


1  +  Ar 


,  Ax9t  -1,0 


39.  (a)  Domain:  36  -  .v-  >  0  ^.  -6  <  x  <  6     or    [-6,  6] 
Range:  [0,  6] 

(b)  Domain:  all  x  =^  5     or     (-oc.  5).  (5,  ex:) 
Range:  all  >•  ^  0    or    (-  oo.  0),  (0,  oc) 

(c)  Domain:  all  x    or    (-oc,  oc) 
Range:  ally    or     (  — oc,  oo) 


41.  (a)  fix)  =  x^  +  c,c  =  -2,  0,  2 


c  =  0 


(b) /(x)  =  (x  -  c)-\  c  =  -2,0. 


—CONTINUED— 


22        Chapter  P        Preparation  for  Calculus 


41.  —CONTINUED— 

(c)  fix)  =  ix-  2)3  +  c,c 


-2,0,2 


(d)/(;c)  =  cx\c=  -2,0,2 


43.  (a)  Odd  powers:  fix)  =  x,  gix)  =  x^,hix)  =  x^ 


r 

/ 

Even  powers:  fix)  =  x^,  gix)  =  x*,  hix)  =  j:* 

-rA- 


The  graphs  of/,  g,  and  h  all  rise  to  the  right  and  fall  to  The  graphs  of/,  g,  and  h  all  rise  to  the  left  and  to  the 

the  left.  As  the  degree  increases,  the  graph  rises  and  right.  As  the  degree  increases,  the  graph  rises  more 

falls  more  steeply.  All  three  graphs  pass  through  the  steeply.  All  three  graphs  pass  through  the  points  (0,  0), 

points(0,0),  (1,1),  and  (-1,-1).  (1,  1),  and  (- 1,  1). 

(b)  y  =  x''  will  look  like  hix)  =  j^,  but  rise  and  fall  even  more  steeply. 

y  =  x^  will  look  like  hix)  =  x^,  but  rise  even  more  steeply. 


45.  (a) 


(b)  Domain:  0  <  jc  <  12 


2jc  +  2>'  =  24         .      ,  , 

-      )-  =  12  -  X  ,.      .  ; 

A  =  xy  =  x(12  -  x)  =  I2x  -  x^ 

47.  (a)  3  (cubic),  negative  leading  coefficient 

(b)  4  (quartic),  positive  leading  coefficient 

(c)  2  (quadratic),  negative  leading  coefficient 

(d)  5,  positive  leading  coefficient 


(c)  Maximum  area  is  /I  =  36.  In  general,  the  maximum 
area  is  attained  when  the  rectangle  is  a  square.  In  this 
case,  X  =  6. 


49.  (a)  Yes,  y  is  a  function  of  t.  At  each  time  t,  there  is  one 
and  only  one  displacement  y. 


(b)  The  amplitude  is  approximately 

(0.25  -  (-0.25))/2  =  0.25. 

The  period  is  approximately  1.1. 


(c)  One  model  is  y 

(d)  05 


^cos(Yjrj»^cos(5.7f) 


Problem  Solving  for  Chapter  P        23 


Problem  Solving  for  Chapter  P 


1-  (a)  ;,2  _  6;c  +  y2  _  8>'  =  0 

U2  ~  6x  +  9)  +  {y^-8y+  16)  =9  +  \6 

U  -  3)2  +  (y  -  4)2  =  25 

Center:  (3,4)     Radius:  5 

4-0  4 

(c)  Slope  of  line  from  (6,  0)  to  (3,  4)  is 7  =  --. 

3  —  6  3 


Slope  of  tangent  line  is  -.  Hence, 

3  3        9 

>"  —  0  =  —(x  —  6)  =>  y  =  T-T  -  -    Tangent  line 


(b)  Slope  of  line  from  (0,  0)  to  (3,  4)  is  -  Slof>e  of  tangent  line 

is -^  Hence, 

4 


(d) 


y-0 
3 


Hx  -  0) 


y  =  --X    Tangent  line 


':x  =  ':x  —  — 

4        4        2 


3 

7 

3        9 
::x  =  — 

2        2 

X  =  3 
Intersection:  I  3, 


3.  H(x)  = 


1    ;t  >  0 
0   ^  <  0 


I       I       I 1— ^— i 1 1 h- 

"      "  12      3     4 


(a)  H(x)  -  2 


-4  -3  -2  -1 


(b)  H(x  -  2) 


4-- 
3-- 

2 
I- 


-2-- 
-3-- 


(c)  -H{x) 


-2-- 
-3 


-4— I 1      I     II— I 1 1 — 1-»- 

-4-3-2-1  -      -      - 


(d)  H(-x) 


4-  ■ 
3-- 

2-  ■ 


^ — I — I —    6   I — f 

J    _T    _T    _l  II 


-4  -3  -2  -1 


-2 
.3.. 


12     5     4 


(e)  WU) 


(f)  -H(x  -  2)  +  2 


4- 


-4  -3  -2  -1 


I       I      II 1 1 1 >-*-: 


-2- 
-3- 


H 1 — 1 h^ 


-2- 
-3-- 


24        Chapter  P        Preparation  for  Calculus 


5.  (a)  X  +  ly  =  100  =*  y  = 


100 -a: 


/100-x\  x- 

A(x)  =  xy  =  x\ ^ 1  =  -—  +  5Qx 

Domain:  0  <  x  <  100 

(b)    1600 


7.  The  length  of  the  trip  in  the  water  is  V2^  +  x^,  and  the 
length  of  the  trip  over  land  is  Vl  +  (3  -  x)^.  Hence, 
the  total  time  is 


_     VaTI?  ,  VI  +  (3  -  xY , 

T  = r 1 hours. 


Maximum  of  1250  m-  at  j:  =  50  m,  >>  =  25  m. 
(c)  A{x)  =  -|(x2  -  mx) 

=  -|(x2  -  lOOx  +  2500)  +  1250 

=  -|U  -  50)2  +  1250 
A(50)  =  1250  m-  is  the  maximum,  x  =  50  m,  y  =  25  m. 


9-4 
9.  (a)  Slope   = =  5.  Slope  of  tangent  line  is  less  than  5. 

4  -  1 

(b)  Slope  =      _      =  3.  Slope  of  tangent  line  is  greater  than  3. 

4.41  -  4 

(c)  Slope  =  -r-j —  =  4. 1 .  Slope  of  tangent  line  is  less  than  4. 1 . 


(d)  Slope 


2.1  -  2 

/(2  +  ;/)-/(2) 

{2  +  h)  -2 

(2  +  hf-  A 
h 


^  Ah  +  h^ 

"       h  . 

=  A  +  h,hi-0 

(e)  Letting  h  get  closer  and  closer  to  0,  the  slope  approaches  4.  Hence,  the  slope  at  (2,  4)  is  4. 


11.  (a)  At  X  =  1  and  x  =  —  3  the  sounds  are  equal. 
/  2/ 


(h) 


vVT7       Jix  -  3)2  +  y- 
U  -  3)2  +  y2  =  4(^2  +  y2) 

3^2  +  3y2  +  6x  =  9 

^2  +  2x  +  /  =  3 

(X  +    1)2  +  y2  =  4 

Circle  of  radius  2  centered  at  (—  1,  0) 


Problem  Solving  for  Chapter  P        25 


13.  d^d^  = 

[U  +  1)^-  +  ylS.x  -  \Y  +  f]  = 

{x  +  DHx  -  1)2  +  y\{x  +  1)=  +  (jc  -  1)2]  +  /  = 

{x^  -  1)2  +  y^[2x^  +  2]  +  /  = 

x'^  -2x-  +  \  +  2xY  +  2v2  +  /  = 

(x2  +  /)2  =  2(;c2  -  /) 
Let  V  =  0.  Then  x*  =  2x-  =^  x  =  0    or    x-  =  2. 
Thus,  (0,  0),  {V2,  O)  and  (-  V2,  o)  are  on  the  curve. 


(->/2.0) 
\ 


ee 


/ 


(0.0) 


CHAPTER     1 
Limits  and  Their  Properties 


Section  1.1       A  Preview  of  Calculus 27 

Section  1.2      Finding  Limits  Graphically  and  Numerically 27 

Section  1.3      Evaluating  Limits  Analytically     31 

Section  1.4      Continuity  and  One-Sided  Limits 37 

Section  1.5      Infinite  Limits     42 

Review  Exercises     47 

Problem  Solving      49 


CHAPTER     1 
Limits  and  Their  Properties 

Section  1.1       A  Preview  of  Calculus 

Solutions  to  Odd-Numbered  Exercises 


1.  Precalculus;  (20  ft/sec)(  15  seconds)  =  300  feet 


3.  Calculus  required:  slope  of  tangent  line  at.ic  =  2  is  rate  of 
cliange,  and  equals  about  0.16. 


5.  Precalculus:  Area  =  \bh  =  \{5){3)  =  ysq.  units 


7.  Precalculus:  Volume  =  (2)(4)(3)  =  24  cubic  units 


9.  (a) 


(b)  The  graphs  of  yj  are  approximations  to  the  tangent  line  to  Vi  at  j:  =  1. 

(c)  The  slope  is  approximately  2.  For  a  better  approximation  make  the  list  numbers  smaller: 

{0.2,0.1,0.01,0.001} 


11.  (a)  D^  =  V(5  -  1)'  +  (1  -  5)-  =  716  +  16  «  5.66 

(b)D,  =  yrr(f +  7i  +  (f-fr  +  7i  +  (f-!r  +  Vi  +  (i-ir 

«  2.693  +  1.302  +  1.083  +  1.031  =6.11 
(c)  Increase  the  number  of  line  segments. 


Section  1.2       Finding  Limits  Graphically  and  Numerically 


1. 


X 

1.9 

1.99 

1.999 

2.001 

2.01 

2.1 

/w 

0.3448 

0.3344 

0.3334 

0.3332 

0.3322 

0.3226 

Iim3 

x->2  XT  —  X  —  l 


~  0.3333       (Actual  limit  is  |.) 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

0.2911 

0.2889 

0.2887 

0.2887 

0.2884 

0.2863 

lim  ^•^"^^ ^  «  0.2887       (Actual  limit  is  1/(2^1).) 

x-fO  X 


27 


28        Chapter  1        Limits  and  Their  Properties 


X 

2.9 

2.99 

2.999 

3.001 

3.01 

3.1 

fix) 

-0.0641 

-0.0627 

-0.0625 

-0.0625 

-0.0623 

-0.0610 

lim  ^^/('+jy^-(y^)  ^  _o.0625      (Actual  limit  is  -j-,) 


7. 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

0.9983 

0.99998 

1.0000 

1.0000 

0.99998 

0.9983 

lim =  1.0000      (Actual  limit  is  1.)  (Make  sure  you  use  radian  mode.) 

x-»0      X 


9.  lim  (4  -  ;c)  =  1 

x~*3 


11.  lim/W  =  lim  (4  -  jc)  =  2 

jr-»2  x->2 


13.  lim 


\x-  5\ 


does  not  exist.  For  values  of  j:  to  the  left  of  5,  \x  —  5|/(j:  —  5)  equals  -  1, 


5    X  —  5 

whereas  for  values  of  a-  to  the  right  of  5,  \x  —  5\/ix  -  5)  equals  1 . 


15.    lim   tan  x  does  not  exist  since  the  fimction  increases  and  17.  lim  cos(1/j:)  does  not  exist  since  the  function  oscillates 


decreases  without  bound  as  x  approaches  tt/2. 


between  —  1  and  1  as  x  approaches  0. 


19.  C(r)  =  0.75  -  0.50|-(/-  1)1 
(a) 


(b) 

t 

3 

3.3 

3.4 

3.5 

3.6 

3.7 

4 

C 

1.75 

2.25 

2.25 

2.25 

2.25 

2.25 

2.25 

lim  Cit)  = 

r->3.5 

2.25 

(c) 

t 

2 

2.5 

2.9 

3 

3.1 

3.5 

4 

c 

1.25 

1.75 

1.75 

1.75 

2.25 

2.25 

2.25 

lim  Cit)  does  not  exist.  The  values  of  C  jump  from  1.75  to  2.25  at  r  =  3. 
r->3 


21.  You  need  to  find  5  such  that  0  <  |x  -  1 1  <  5  implies 


l/W-i|  = 


--  1 

X 


<  0.1.  That  is, 


-0.1  <  --  1  <  0.1 

X 


1  -  0.1  <       -  <  1  +  0.1 

X 

A       1      ii 

10  ^       ;c  "^  10 
10  10 


So  take  5  =  —-.  Then  0  <  |x  -  1 1  <  5  implies 


1  ,        1 


"Tf  <  -'^  -  1  <  9- 

Using  the  first  series  of  equivalent  inequalities,  you  obtain 
1 


l/W 


<  e  <  0. 


'0       ,  ,        10       , 


1  ,  1 

9>--l>-H- 


Section  1 .2        Finding  Limits  Graphically  and  Numerically 


29 


23.  lim  (3;c  +  2)  =  8  =  Z, 

|(3a  +  2)  -  8|  <  0.01 

\'ix  -  6|  <  0.01 

3|jt  -  2|  <  0.01 

0  <  |.T  -  2|  <  ^  »  0.0033  =  5 


Hence,  if  0  <  |a;  -  2|  <  S 

3|x-  2|  <  0.01 

\3x  -  6|  <  0.01 

|(3.v  +  2)  -  8|  <  0.01 

\f{x)  -  L\<  0.01 


0.01 


you  have 


25.  lim  (jc^  -  3)  =  1  =  L 

x—*2 

|U2  -  3)  -  1|  <  0.01 

\x'^  -  4|  <  O.OI 

|(*  +  2){x  -  2)1  <  0.01 

\x  +  2|  |.r  -  2|  <  0.01 
0.01 


'  '        k  +  2| 

If  we  assume  1  <  x  <  ?>,  then  5  =  0.01/5  =  0.002. 
Hence,  if0<  \x  -  2\  <  S  =  0.002,  you  have 

1^  -  2|  <  0.002  =  y(0.01)  <  ,    I  ^,(0.01) 

|jc  +  2||a:-  2|  <  0.01 

\x"-  -  4|  <  0.01 

\{x^  -  3)  -  1|  <  0.01 

\f{x)  -  L\  <  0.01 


27.  lim  (x  +  3)  =  5 

jc->2 

Given  e  >  0: 

\{x  +  3)  -  5|   <  e 

|.r  -2|  <  e=  6 

Hence,  let  S  =  e. 

Hence,  if  0  <  |.r  -  2 1  <  5  =  e.  you  have 

\x  -  2\    <  € 

\{x  +  3)  -  5|  <  6 
\f(x)  -L\<e 


29.    lim  i^x-  l)  =i(-4)-l  =  -3 

J— »-4 

Given  e  >  0: 

\{\x-  l)-(-3)|  <  e 


k.+ 


2    <   6 


k\x-{-4)\  <  e 
\x  -  (-4)1  <  2e 
Hence,  let  6  =  2e. 

Hence,  if  0  <  |.r  -  (-4)|  <  S  =  2e,  you  have 
|;c-  (-4)1  <  26 
lit  +  2|  <  e 
\{kx  -  l)  +  3|  <  6 
l/W  -L\<e 


31.  lim  3  =  3 

x-^6 

Given  e  >  0: 

|3-3|  <  6 
0  <  e 
Hence,  any  8  >  0  will  work. 
Hence,  for  any  5  >  0,  you  have 

|3-3|<e 
l/W  -L\<e 


33.  Iim4/x  =  0 

.t-.0 

Given  e  >  0:    |.i^  -  o|  <  e 
\Vx\  <e 

\x\  <  e^  =  5 
Hence,  let  6  =  e\ 

Hence  for  0  <  |.v  —  0|  <  6  =  e\  you  have 
|.r|  <  r' 

\^-0\  <€ 
1/U)  -L\<e 


30        Chapter  1        Limits  and  Their  Properties 


35.    lim   \x  -  2|  =  |(-2)  -  2|  =  4 
Given  e  >  0: 

\\x  -  2|  -  4|  <  6 
|-(;c-2)  -4|  <  e     (x  -  2  <  0) 
\-x-2\  =  |;«:  +  2|  =  |;c  -  (-2)|  <  e 
Hence,  8  =  e. 

Hence  forO  <  |jr  -  (-2)|  <  5  =  e,  you  have 

\x  +  2\  <  e 

\-{x  +  2)\  <6 

|-U-2)-4|  <  e 

||x  -  2|  -  4|  <  e    (because  a:  -  20) 

l/W  -  L|  <  e 


37.  lim  (x^  +  1)  =  2 
Given  e  >  0: 

\(x^  +  1)  -  2|  <  e 

\x2-  1|  <  6 

\ix  +  l)(x  -  1)1  <  e 


U  -  1   < 


|x+l| 
If  we  assume  0  <  a:  <  2,  then  8  =  e/3. 


Hence  for  0  <  |jr  -  1 1  <  5  =  -,  you  have 


II       1  1 


1      <    6 


|U=  +  1)  -  2|  <  e 
l/W  -  2|  <  e 


^,  ,   Vx  +  5  -  3 
^(^^-   .-4 

lim/W  =  1 

0 

s 

The  domain  is  [-5,  4)  U  (4,  oo). 

The  graphing  utility  does  not  show  the  hole  at  (4,  g) 


41.  f(x)  = 


x-9 


lim /(a;)  =  6 

JT— ♦Q 


The  domain  is  all  x  >  0  except  x  =  9.  The  graphing 
utility  does  not  show  the  hole  at  (9,  6). 


43.  lim/(jc)  =  25  means  that  the  values  of/ approach  25  as  jc  gets  closer  and  closer  to  8. 


45.  (i)  The  values  of/ approach  different 
numbers  as  x  approaches  c  from 
different  sides  of  c: 


-4  -3  -2  -1 


H — I — I — 1-»- 
12      3     4 


(ii)  The  values  of/ increase  with- 
out bound  as  x  approaches  c: 


(iii)  The  values  of/oscillate 

between  two  fixed  numbers  as 
x  approaches  c: 


4-. 
3-- 


,   47.  fix)  =  (1  +  xY 


/x 


lim(l  +xy''  =  e«  2.71828 


x 

/w 

X 

fix) 

-0.1 

2.867972 

0.1 

2.593742 

-0.01 

2.731999 

0.01 

2.704814 

-0.001 

2.719642 

0.001 

2.716942 

-0.0001 

2.718418 

0.0001 

2.718146 

-0.00001 

2.718295 

0.00001 

2.718268 

-0.000001 

2.718283 

0.000001 

2.718280 

12      3     4     5 


Section  1.3        Evaluating  Limits  Analytically       31 


49.  False; /(x)  =  (sinx)/jcis 
undefined  when  x  =  0. 
From  Exercise  7,  we  have 


hm =  1. 

j:->0      X 


51.  False;  let 

/w  = 

/(4)  =  10 


S3.  Answers  will  vary. 


X-  -  4x,     X  ^  4 
la  X  =  4' 


lim/(x)  =  lim  (x^  -  4x)  =  0  i=  10 


55.  If  lim/(x)  =  L,  and  lim/(x)  =  L^,  then  for  every  e  >  0,  there  exists  S,  >  0  and  8-,  >  0  such  that  Ix  -  cl  <  5, 

.i->c  x->c  ' 

|x  —  c|  <  So  =>   |/(x)  —  LjI  <  6.  Let  S  equal  the  smaller  of  5,  and  Sj.  Then  for  |x  —  c|  <  5,  we  have 

|Li  -  L2I  =  |L,  -/(x)  +/(x)  -  L2I  <  |L,  -/(x)|  +  |/(x)  -  L2I  <  e  +  e. 


H/(xJ-L,|  <  eand 


Therefore,  |Li  -  L2I  <  2e.  Since  e  >  0  is  arbitrary,  it  follows  that  Lj  =  Z^. 


57.  lim  [fix)  -  Z,]  =  0  means  that  for  every  e  >  0  there  exists  S  >  0  such  that  if 


0  <  Ix  -  cl  <  5, 


then 

|(/(x)  -  L)  -  0|  <  6. 

This  means  the  same  as  |/(x)  -  L\  <  e  when 
0  <  |x  -  c|  <  5. 

Thus,  lim/(x)  =  L. 


Section  1.3       Evaluating  Limits  Analytically 


\ 

1 

J 

(a)  lim  h(x)  =  0 

-v— *5 

(b)  lim  li(x)  =  6 

13  .t->-l 


4 


(a)  lim/Cx)  =  0 

x—*0 

(b)  lim  f(x)  -  0.524 

.t— >Tr/3 


(=f) 


h(x)  =  X-  -  5x 
5.    lim.T^  =  I''  =  16 


fix)  =  X  cos  X 


7.  lim  (2x  -  1)  =  2(0)  -  1  =  - 1 

x->0 


9.    lim  (x^  +  3x)  =  (-3)2  +  3(-3)  =  9-9  =  0 


11.    lim  (2x2  +  4x  +  1)  =  2(-3)2  +  4(-3)  +  1  =  18  -  12  +  1  =  7 


13.  lim  -  =  I 

jr-»2X         2 


15.  lim 


X  -  3        1-3 


.v^ix=  +  4       1- +  4        5 


17.  lim 


_5x 5(7)      ^   35   ^  35 

""  ./FT2  ~  77  +  2       79       3 


19.  lim  v'x  +  1  =  V  3  +  1  =  2 

-V-.3 


32       Chapter  1        Limits  and  Their  Properties 


21.    lim  (x  +  3)-  =  (-4  +  3)-  =  1 

x-»-4 


23.  (a)  liin/(x)  =  5-1=4 

(b)  lim  g{x)  =  43  =  64 

(c)  limg(/W)  =  g(/(l))  =  g(4)  =  64 

x->l 


25.  (a)  lim/(x)  =4-1=3 


(b)  lim  g{x)  =  73  +  1  =  2 

(c)  lim  g{f{x))  =  g(3)  =  2 

X->1 


27.    lim   sin  jc  =  sin  —  =  1 

x->7r/2  2 


_„    ,-  "fx  7r2  1 

29.  lim  cos  -r-  =  cos  -^r-  =  —  — 

x^2         3  3  2 


31.  lim  sec  2j:  =  sec  0  =  1 

jr->0 


„-      ,.         .  .    Stt       1 

33.     lim    sm  X  =  sm  -7-  =  — 

JC— *5ir/6  6  2 


35.  lim  tan  — -    =  tan  — — 

x-,3       \  4  4 


=  -1 


37.  (a)  lim[5gW]  =  5  Urn  gix)  =  5(3)  =  15 

(b)  lim  L/U)  +  g{x)]  =  lim/U)  +  lim  gW  =  2  +  3  =  5 

(c)  lim  lf{x)g{x)]  =  riim/(x)]riim  g{x)]  =  (2)(3)  =  6 

x~^c  Ix-^c  ilx—*c  J 

(d)  lim  ^  =  ^^^-7T  =  ^ 
x-.cgU)      hmgU)      3 


39.  (a)  lim  [f{x)f  =  [lim/(x)?  =  (4)^  =  64 

(b)  lim  v{70c)  =    /lim/W  =  v^  =  2 

j:->c  v   x->c 

(c)  lim  [3/W]  =  3  lim/(x)  =  3(4)  =  12 

X— >c  x—*c 

id)  lim[/(x)?^^  =  riim/(x)f  ^  =  (4)V2  =  8 

x—*c  Lj:— >c  J 


—  2x^  +  X 
41.  /(x)  =  -  2jc  +  1  and  g(j:)  = agree  except  at 

jc  =  0.  ^ 

(a)  lLmg(x)  =  lim/(x)  =1 


(b)    lim  g(x)  =    lim  f(x)  =  3 

X— >  — I  X— >-l 


43.  fix)  =  xix  +  1)  and  gix)  =  — — -  agree  except  at  x  =  1. 


(a)  lim  gix)  =  lim/(x)  =  2 
x— >i  x— >i 

(b)  lim  g(jc)  =   lim  fix)  =  0 

X—¥—l  X^*-l 


X-  -  1 
45.  fix)  =  — — —  and  gix)  =  x  -  I  agree  except  at  x 

lim  /(jc)  =   lim  gix)  =  —2 

x-*—l  x-*-l 


x^  -  8 
47.  fix)  = —  and  gix)  =  x-  +  2j:  +  4  agree  except  at 


x  =  2. 


Vim  fix)  =  lim  gix)  =  12 

X— >2  .r— >2 


49.  lim 


X-  5 


lim- 


X-  5 


x.^5  x^  -  25      X-.5  (x  +  5)(x  -  5) 


=  lim 


1 


1 


5X  +  5       10 


CI     r      x^  +  x-6        ,.      ix  +  3)(x  -  2) 
51.    lim  — ,       —  =   Iim  


x^-i     x^-9 


-3  ix  +  3)ix  -  3) 

,.      x-2       -5       5 
=   lim =  —7  =  7 

Jr-»-3  JC  —  3  —6         6 


Section  1.3        Evaluating  Limits  Analytically       33 


.,    ,.      V.r  +  5  -  Vs       ,.      VxTl  -  J5     V^  +  5  +  75 
53.  lim =  hm •     ,  1= 

'^0  X  x->0  X  Jx  +  5  +  vO 


=  lim 


U  +  5)  -  5 


lim 


1 


1  75 


x^Ox{jx  +  5+75)      -r->o  7;c  +  5  +  75       275        10 


,.    ,.      7jc  +  5  -  3       ,.     Jx  +  5  -  3     jm  +  3 
55.  lim =  hm •      ,  

x-^i       X  -  4  x^i       X  -  4  7^  +  5  +  3 

U  +  5)  -  9  ,.  1 


x^4  (x  -  4)(7.r  +  5  +  3)      x^4  Jx  +  5  +  3       79  +  3       6 


1  1 


2  -  (2  +  x) 


._    ,.     2+  x      2       ,.        2(2  +;<:)  ,.  -1  1 

57.  hm =  hm  — ^^ —  =  lim  --; r  =  -- 

x-*o         x  .T-*o  X  x~*o  2(2  +  x)  4 


._     ,.      2{x  +  Ax)  -  2x       ,.      2x  +  2Ax  -  Ix       ,.      ^      , 

59.    hm  -^^ —^ =   hm  1 =   hm  2  =  2 

^x->o  A.V  A.v->o  A.r  \x->o 


^,     ,.      {x  +  Ax)-  -  2{x  +  Ax)  +  1  -  (.t-  -  2;c  +  1)        ,.      x^  +  2xAx  +  (Ax)-  -  2v  -  2Ajc  +  1  -  x=  +  2x  -  1 
61.    hm  : =   lim  : 

Ai->0  Ax  A.x->0  Ax 

=   lim  (2x  +  Ar  -  2)  =  2x  -  2 


„    ,.      7x  +  2  -  72       -,,. 
63.  lim «  0.354 

Jr->0  X 


X 

-0.1 

-0.01 

-0.001 

0 

0.001 

0.01 

0.1 

fix) 

0.358 

0.354 

0.345 

? 

0.354 

0.353 

0.349 

A  ,  •  „   >■  v^^"+^-  72    ,.  7^rr2-  72  v^m+  v/2 

Analytically,  hm =  hm •      ,  - — — 

x^o  X  x^o  X  J7T2  +  72 


,.           X  +  2  -  2  ,. 

=  lim  —, — ,  ^r  =  hm 


1 


./2 


0  x(7x  +  2+72)      --^^o  Vx  +  2  +  v'l      2v'2        4 


=  0.354 


1  1 


65.  lim 

.t->0 


2  +x 


X 

-0.1 

-0.01 

-0.001 

0 

0.001 

0.01 

0.1 

fix) 

-0.263 

-0.251 

-0.250 

7 

-0.250 

-0.249 

-0.238 

^ 


1        1 


Analytically,  lim 


2  +  X      2 


x-*0  X 


2-(2+.r)      1       ,.  -X  1       ,.  -1  1 

hm  — Z7Z ; —  ■  ~  =  hm  —rz r  •  —  =  lim  ttt r  =  — -7- 

X      .«-^o2(2+.v)     X      .t-K)2(2  +  .x)  4 


%    2(2 +.v) 


34        Chapter  1        Limits  and  Their  Properties 


.„    ,.     sin  a;       ,. 
67.  lim  —1 —  =  lim 
.t->o    5jc        j->o 


sinx 

X 


%- 


».|i4 


„    ,.     sin  41  -  cos  a:) 

69.  hm — T — — -  =  lim 


1_     sin  a:     1  -  cos  x\ 

2       X  X        \ 


=  |(1)(0)  =  0 


_,    ,.     sin-x 

71.  lim =  lim 

;t-»0       X  j:-»0 


sin  a:    =  (1)  sin  0  =  0 


„    ,.     (1  -  cosh)^      ,. 
73.  hm  ^ ; =  hm 

h->0  h  h-tO 


1  -  cos  h 


(1  -  cosh)\ 


(0)(0)  =  0 


_.     ,.       cos:r        ,.        .  , 

75.    hm  =    lim   sin  jc  =  1 

j:->7r/2  cot  X         x-^Tt/l 


__   ,.     Sin  3r      ,.     / sin  3f 
77.  hm  —r —  =  hm   -— — 

,_»o     It         1^0  \    3f 


i^-nm-i 


2        2 


79.  m 


sin3f 


t 

-0.1 

-0.01 

-0.001 

0 

0.001 

0.01 

0.1 

m 

2.96 

2.9996 

3 

7 

3 

2.9996 

2.96 

sin  3r      ,.     ,/sin3f\       ,,,, 

Analytically,  hm =  hm  3  — ;—    =  3(1)  =  3. 

■'    t^o     t  1^0    \    3t    J 


■v^jyj    V/Y/~v^ 


The  limit  appear  to  equal  3. 


81.  fix)  = 


X 

-0.1 

-0,01 

-0,001 

0 

0.001 

0.01 

0.1 

fix) 

-0.099998 

-0.01 

-0.001 

? 

0.001 

0.01 

0.099998 

.     ,    •    1,      ,•     smj:'      ,.       /sinr^\       „,,, 
Analytically,  hm =  hm  j:  — j—i  =  0(1)  =  0. 


im^i  \/wvw 


o,    ,.    fix +  h)- fix)      ,.     2ix  + h) +  3  -  i2x  +  3)       ,.     2.x  +  2/2  +  3  -  2;c  -  3       ,.     2h      , 

83.  hm-^-^^ r —        =  lim  "^ ; ^ =  1™ ; =  hm  --  =  2 

A-»o  h  h->o  h  h^o  h  '!->o  h 


„^    ,.    fix +  h)- fix)      ,.     x  +  h      X       ,.     4x-4ix  +  h)       ,.  -4  -4 

85.  hm-"-!^ f — ^-^  =  hm r =  hm      ,       ',.  ,       =  hm  ,    ^  , ,    =  -^ 

h-M  h  h->o         h  /.->o      {x  +  h)xh  /i->o  (x  +  h)x       x^ 


87.  lim  iA-  }?■)  <  Wm  fix)  <  lim  (4  +  x^) 

x->0  x^O-"  x-^0 

4  <  lim/(;c)  <  4 

x~*0 

Therefore,  lim/(j:)  =  4. 

x-tO 


89.  fix)  =  X  cos  X 


lim  ix  cos  jc)  =  0 

x->0 


Section  1.3        Evaluating  Limits  Analytically       35 


91.  fix)  =  \x\  sin  X 


lim  \x\  sinx  =  0 

;r— »0 


93.  f(x}  =  JT  sin  - 


lim  I  ;c  sin  - 1  =  0 

Ar-»0  V  xl 


95.  We  say  that  two  functions /and  g  agree  at  all  but  one 
point  (on  an  open  interval)  if  f(x)  =  g(x)  for  all  jc  in  the 
interval  except  for  x  =  c,  where  c  is  in  the  interval. 


97.  An  indeterminant  form  is  obtained  when  evaluating  a  limit 
using  direct  substitution  produces  a  meaningless  fractional 
expression  such  as  0/0.  That  is, 

Jr-.c  g(x) 

for  which  lim/(jr)  =  lim  g(x)  =  0 


99.  fix)  =  X,  gix)  =  sin  x,  hix)  = 


S              h 

^^ 

'Y 

^ 

When  you  are  "close  to"  0  the  magnitude  of/ is 
approximately  equal  to  the  magnitude  of  g. 
Thus,  |g|/|/|  ~  1  when  x  is  "close  to"  0. 


101.  sit)  =  -16f2  +  1000 

,.     si5)  -  sit)      ,.     600  -  (-16r=  +  1000)      ,.     16(r  +  5)(/ -  5)      ,.        ,^,    ,^, 

hm  ^ —  =  lim —1 '  =  lim  — ^ — ,     '    , — -  =  lim  -  16(r  +  5)  = 

t^5     5  -  t         '->5  5  -  r  ;->5       -(r  -  5)  f->5 

Speed  =  160  ft/sec 

103.  j(f)  =  -4.9r2  +  150 

,.     j(3)  -  sit)      ,.     -4.9(3-)  +  150  -  (-4.9r  +  150)      ,.     -4.9(9  -  r) 

lim — =  lim =  lim 

1^3      3  -  t  /-:3  3  -  r  i->3        3  -  f 

=  lim  ""^-^^^  ~  '^^^  '^  ''  =  lim  -4.9(3  +  r)  =  -29.4  m/sec 

I-»3  3   -   r  Jr->3 


160  ft/sec. 


105.  Let/(.r)  =  l/.v  and  gix)  =  -  l/.t.  lim /(a)  and  lim  ^(.t)  do  not  exist. 

.r-*0  -v— +0 


lim  [fix)  +  gix)]  =  lim 

.r— >0  .v^O 


.V  \      X 


=  lim  [0]  =  0 

.V-.0 


107.  Given  fix)  =  b.  show  that  for  every  e  >  0  there  exists  a  5  >  0  such  that  |/(.v)  -  b\  <  6  whenever  |.v  -  c\  <  5.  Since 
|/(.v)  -  b\  =  \b  -  b\  =  0  <  efor  any  e  >  0.  then  any  value  of  5  >  0  will  work. 


109.  If  fo  =  0,  then  the  property  is  true  because  both  sides  are  equal  to  0.  If  fc  ^  0.  let  e  >  0  be  given.  Since  lim/(.v)  =  L. 
there  exists  5  >  0  such  that  |/(.t)  -  L\  <  e/\b\  whenever  0  <  \x  -  c\  <  S.  Hence,  wherever  0  <  |.v  -  c-|  <  5. 
we  have 

\b\\fix)  -  L\  <  e    or     \bfix)  -  bL\  <  e 
which  implies  that  lim  [Z:'/(.v)]  =  bL. 


36       Chapter  1        Limits  and  Their  Properties 


111.  -M|/(x)|  <  f{x)g{x)  <  M\f(x)  I 

lim(-M|/W|)  <  limf(x)gix)  <  lim(M|/W|) 

x^c  x—*c  x—*c 

-M(0)  <  lim  f{x)g{x)  <  M(0) 

x—>c 

0  <  lim  f{x)g{x)  <  0 

x—*c 

Therefore,  lim  f{x)g{x)  =  0. 


M=_, 


113.  False.  As  x  approaches  0  from  the  left,  -•— '^  =  —  1. 

X 


I 
I 


115.  True. 


117.  False.  The  limit  does  not  exist. 


119.  Let 


fix) 


[    4,     if.?  >  0 
[-4.     if  j:  <  0 


lim  \f{x)\  =  lim4  =  4. 
j-»o  '■'       '        .x->0 


lim/(x)  does  not  exist  since  for  a:  <  0,/(x)  = 

l->0 


-4andforx  >  0,/(x)  =  4. 


121.  f(x)  = 
g{x)  = 


0,  if  x  is  rational 

1,  if  jc  is  irrational 

0,  if  x  is  rational 

X,  if  X  is  irrational 


lim/(x)  does  not  exist. 

x—*Q 

No  matter  how  "close  to"  0  x  is,  there  are  still  an  infinite  number  of  rational  and  irrational  numbers  so  that  lim/(x)  does  not 
exist. 


lim  g{x)  =  0. 

x—*0 

When  X  is  "close  to"  0,  both  parts  of  the  function  are  "close  to"  0. 


123.  (a)  lim 


1  —  cos  X 


1  -  cosx     1  +  cosx 


J-»0  XT 


lim         , 

jr-»0  jr 


1  +  cos  X 


(b)  Thus, 


1  -  cosx      1 


1  —  cos  X  ~  —x^ 


.       1  -  cos^x 

j:->OX^(1    +  COSx) 

sin'x  1 


■»o    jt       1  +  cosx 


COS  X  ~  I  -  -x^  for  X  =  0. 


(c)  cos(O.l)  =  1  -  |(0.1)2  =  0.995 


=  <=i 


(d)  cos(O.l)  =  0.9950,  which  agrees  with  part  (c). 


Section  1.4        Continuity  and  One-Sided  Limits        37 


Section  1.4       Continuity  and  One-Sided  Limits 


1.  (a)    lim  fix)  =  1 

(b)  lim  fix)  =  1 

j:->3 

(c)  lim/W  =  1 

The  function  is  continuous  at 
x  =  3. 


3.  (a)    lim  fix)  =  0 

(b)  lim  /W  =  0 

(c)  lim/U)  =  0 


The  function  is  NOT  continuous  at 
jc  =  3. 


5.  (a)    lim  fix)  =  2 

(b)  lim  /(j:)  =  -2 

X— #4 

(c)  lim /U)  does  not  exist 

J— »4 

The  function  is  NOT  continuous 
at  j;  =  4. 


_     ,.       X  -  5  1 

7.   lim  ^i -—  =  lim 


x^s-  r=  -  25 


5-  ;c  +  5       10 


without  bound  as  .r 


does  not  exist  because 


7F^^ 


grows 


11. 

,.       \x\        ,.       -; 
lim  ■■— ^  =    lun  — 

x->0-     X           x->0-     X 

1            1 

13. 

X  +  \x       X 

Ax^O"            Ajc 

X  -  ix  +  A.r)       1 
lim   — ,     .    .   ,      •  -:—  =    lim 


-A.t 


1 


Ai-»o-     A'tr  +  A.r)        zir       Ax^o~  .t(.x  +  Ajc)     Lx 
=    lim   -7 — — TT 


1 


1 


a:U  +  0) 


X  +  2      5 
15.    lim  fix)  =   lim  ^ —  =  - 

jc-»3  j:->3  Z  Z 


17.    lim  /(.r)  =  lim  (x  +  1)  =  2 

.r— ^1^  x-^l"*" 

lim/(.r)  =   limj.x^  +  1)  =  2 


lim/W  =  2 

jr— >1 


19.  lim  cot  X  does  not  exist  since 

X—*TT 

lim  cot  x  and  lim  cot  x  do  not  exist. 


21.    lim  (3W  -  5)  =  3(3)  -5  =  4 

-t— »4 

(H  =  3  for  3  <  -r  <  4) 


23. 

lim  (2  - 

x->3 

\- 

xfj  does  not  exist 

because 

lim  (2  - 

-r-*3 

-i- 

-.^1)  = 

-  2  - 

-  (-3)  = 

5 

and 

lim  (2  - 
x—*y 

-1- 

-.rl)  ■ 

-  2  ■ 

-  (-4)  = 

=  6. 

29.  gix)  =  V25  -  .t-  is  continuous 
on  [-5,  5], 


25.  fix) 


X-  -  4 


has  discontinuities  at  .t  =  —  2  and 
.r  =  2  since/(-2)  and/(2)  are  not 
defined. 


31.    lim  fix)  =  3  =   lim  f(x). 

x->0-  .t->0* 

/is  continuous  on  [—  1, 4]. 


27./W  =  H  +  .. 


has  discontinuities  at  each  integer 
k  since  lim  f[x)  ~  lim  /(jr). 

x—^k'  x—*k' 


33.  /(.t)  =  .t-  -  It  +  1  is  continuous 
for  all  real  x. 


38        Chapter  1        Limits  and  Their  Properties 


35.  f(x)  =  3x  —  cos  X  is  continuous  for  all  real  x. 


37.  fix)  =  -^ is  not  continuous  at  x  =  0, 1 .  Since 


I 


,  ,■  for  jc  =^  0, ;:  =  0  is  a  removable 

X'^  —  X        X  —  \ 

discontinuity,  whereas  x  =  1  is  a  nonremovable 
discontinuity. 


39.  fix) 


x^+  1 


is  continuous  for  all  real  x. 


41.  fix) 


x  +  2 


ix  +  2)ix  -  5) 


has  a  nonremovable  discontinuity  at  j:  =  5  since  lim/(x) 
does  not  exist,  and  has  a  removable  discontinuity  at 
X  =  —2  since 


lim  fix)  =   lim 


\x  +  2| 

43.  fix)  =  -' — — r"-  has  a  nonremovable  discontinuity  at  j:  =  -  2  since  lim  fix)  does  not  exist. 


45.  fix)  = 


X,  X   <    \ 

X?-,        X   >    \ 


has  a  possible  discontinuity  at  x  =  1. 
1.  fix)  =  1 


lim  /W  =  lim  X  =  r 
lhn/(jc)  =  limx^  =  1. 

3.  /(I)  =  lim/(jc) 


lim/W  =  1 


/is  continuous  alx  =  1,  therefore, /is  continuous  for  all  real  x. 


,  ^    r^  +  1,    X  <2 

47.  /U)  =  \  ^  has  a  possible  discontinuity  at  x  =  2. 

l3  -  X,      X  >  2 


1.  /(2)  =-+1=2 

lim/(.r)  =   lim  (^+  1)  =  2] 
2_  Mim/(x)  does  not  exist. 

lim  fix)  =   lim  (3  -  x)  =  1   J"""* 
Therefore, /has  a  nonremovable  discontinuity  atx  =  2. 


49./(x)  =  r"4- 


tan 


^.      U  <  1 


tan^.       -1  <x  <  1 


1.  /(-  1)  =  -  1 

2.  lim  fix)  =  - 1 

X— ♦  — 1 

3./(-l)=    lim/(x) 

X—*~l 


/(I)  =  1 
lim/(x)  =  1 


/(I)  =  lim/(x) 

x—*l 


X  <  —  1  or  X  >  1 


has  possible  discontinuities  atx=  — l,x=  1. 


/is  continuous  at  x  =  ±1,  therefore, /is  continuous  for  all  real  x. 


Section  1.4        Continuity  and  One-Sided  Limits       39 


51.  f(x)  =  CSC  2x  has  nonremovable  discontinuities  at  integer 
multiples  of  ir/2. 


53.  fix)  =  [jc  -  ll  has  nonremovable  discontinuities  at  each 
integer  k. 


55.    lim  f(x)  =  0 

x—*0* 

lim  fix)  =  0 
/is  not  continuous  at  x  =  -2.    -s 


\ 

/ 

c/ 

57.  /(2)  =  8 


Find  a  so  that  lim  or  =  8 


^  =  ^  =  2. 


59.  Find  a  and  b  such  that    lim    (ax  +  ^)  = 

a  -  fo=  -2 

(+)3a  +  fe  =  -2 

4a  =  -4 

a=  -I 

b=      2  +  (-1)  =  I 


-a  +  b  =  2  and  lim  (ox  +  fc)  =  3a  + 


2,  .t  <  -  1 

/U)  =  |-;c  +  1,        -1  <  X  <  3 
1-2,  jc  >  3 


-2. 


61.  /(gU))  =  ix  -  \Y 

Continuous  for  all  real  x. 


63.  figix)) 


1 


U-  +  5)  -  6      ;c-  -  1 
Nonremovable  discontinuities  at  ;c  =  ±  1 


65.  y  =  ix\-x 

Nonremovable  discontinuity  at  each  integer 


^;mx 


67.  fix)  = 


2x  -  4,       .r  <  3 


Nonremovable  discontinuity  at  .v  =  3 

5 


I 

/ 

/ 

/ 

69.  fix) 


X-  +  1 
Continuous  on  (— oo,  oo) 


71.  /U)  =  sec^ 

Continuous  on: 

.  .  .,(-6. -2),  (-2.  2),  (2.  6),  (6.  10), 


73.  fix)  = 


3 


75.  fix]  =  -^xf'  -  .v-^  +  3  is  continuous  on  [l.  2]. 

/(I)  =  ^  and  /(2)  =  -4.  By  the  Intermediate  Value 
Theorem,  /(c)  =  0  for  at  least  one  value  of  c  between 
1  and  2. 


The  graph  appears  to  be  continuous  on  the  interval 
[-4,  4].  Since /(O)  is  not  defined,  we  know  that/has 
a  discontinuity  at  .v  =  0.  This  discontinuity  is  removable 
so  it  does  not  show  up  on  the  graph. 


40 


Chapter  1        Limits  and  Their  Properties 


77.  f{x)  =  jc^  —  2  —  cos  X  is  continuous  on  [0,  it]. 

/(O)  =  -3  and  /(it)  =  77^  -  1  >  0.  By  the  Intermediate 
Value  Theorem,  /(c)  =  0  for  the  least  one  value  of  c 
between  0  and  -tt. 


79.  f{x)=x^  +  X-  \ 

f(x)  is  continuous  on  [0,  1]. 

/(O)  =  - 1  and/(l)  =  1 

By  the  Intermediate  Value  Theorem,  f{x)  =  0  for  at  least 
one  value  of  c  between  0  and  1 .  Using  a  graphing  utility, 
we  find  that  j:  =  0.6823. 


81.  git)  =  2  cos  r  -  3r 

g  is  continuous  on  [0,  1]. 
g{0)  =  2  >  Oandg(l)« 


1.9  <  0. 


By  the  Intermediate  Value  Theorem,  g(t)  =  0  for  at  least 
one  value  c  between  0  and  1.  Using  a  graphing  utility,  we 
fmd  that  t  ^  0.5636. 


83.  fix)  =  x^  +  X-  I 

f  is  continuous  on  [0,  5]. 
/(O)  =  - 1  and/(5)  =  29 

-1  <  11  <  29 
The  Intermediate  Value  Theorem  applies. 
a:2  +  jc  -  1  =  11 
x^  +  X  -  12  =  0 
ix  +  4)(;c  -  3)  =  0 
x=—4oTX  =  3 
c  =  3  {x  =  —4  is  not  in  the  interval.) 
Thus,/(3)  =11. 


85.  fix)  =  x^-x^  +  x-2 
/is  continuous  on  [0,  3]. 
/(0)  =  -2and/(3)  =  19  ,,    ■ 

-2  <  4  <  19 
The  Intermediate  Value  Theorem  applies. 
x^-x^  +  x-2  =  4 


x^  +  x 


0 


ix  -  2)ix^  +  ;c  +  3)  =  0 
X  =  2 

(x^  +  X  +  3  has  no  real  solution.) 
c  =  2 
Thus,/(2)  =  4. 


87.  (a)  The  limit  does  not  exist  at  x  =  c. 

(b)  The  function  is  not  defined  at  x  =  c. 

(c)  The  limit  exists  at  -"^  ~  i^'  but  it  is  not  equal  to  the 
value  of  the  function  di^  ^  ^■ 

(d)  The  limit  does  not  exist  at  x  =  c. 


89. 


The  function  is  not  continuous  at  x  =  3  because 
lim  /(x)  =  1  #  0  =   lim  fix). 


91.  The  functions  agree  for  integer  values  of  x: 

gix)  =  3  -  I-xl  =  3  -  (-x)  =  3  +  X  " 
fix)  =  3  +  W  =  3  +  X 


for  X  an  integer 


However,  for  non-integer  values  of  x,  the  functions 
differ  by  1 . 

fix)  =  3  +  M  =  g(x)  -  1  =  2  -  I-xl. 

For  example,  /(j)  =  3  +  0  =  3,  g{^  =  3  -  (- 1) 


Section  1.4        Continuity  and  One-Sided  Limits       41 


93.  Mf)  =  25  2 


f  +  2 


-  t 


t 

0 

1 

1.8 

2 

3 

3.8 

N{t) 

50 

25 

5 

50 

25 

5 

Discontinuous  at  every  positive  even  integer.Tlie 
company  replenishes  its  inventory  every  two  months. 


;     4     6     8     10    12 
Tune  (in  months) 


95.  Let  V  =  3  TTr^  be  the  volume  of  a  sphere  of  radius  r. 

V(l)  =|7r«4.19 

V(5)  =3tt(53)-523.6 

Since  4.19  <  275  <  523.6,  the  Intermediate  Value  Theorem  implies  that  there  is  at  least  one  value  r  between  1  and  5  such 
that  V{r)  =  275.  (In  fact,  r  «  4.0341.) 

97.  Let  c  be  any  real  number.  Then  \imf(x}  does  not  exist  since  there  are  both  rational  and 

x—*c 

irrational  numbers  arbitrarily  close  to  c.  Therefore, /is  not  continuous  at  c. 


-1,    if.v  <  0 

99.  sgn(.T)  =  1     0,    if  a:  =  0 

1,    ifx  >  0 


(a)  lim  sgnU)  =  - 1 

(b)  lim^  sgn(jc)  =  1 


(c)  lim  sgn(jr)  does  not  exist. 

x—^Q 


4-- 
3-- 
2 

1* 


-4  -3-2-1 


H 1 1 — 1-»- 


12      3     4 


101.  True;  iff(x)  =  g(x),  x  i-  c,  then  lim/U)  =  lim  2,{x)  and 

X~*C  .1— .c 

at  least  one  of  these  limits  (if  they  exist)  does  not  equal 
the  corresponding  function  s^x  =  c. 


103.  False: /(I)  is  not  defmed  and  lim/(.r)  does  not  exist. 

X— »I 


105.  (a)  f{x)  = 


(0      0  <  .X  <  fc 
\b      b  <  x  <2b 


NOT  continuous  a.tx  =  b. 


(b)  g{x)  = 


0  <  X  <  b 


b  --      b  <x  <2b 

7 


Continuous  on  [0.  2b]. 


42        Chapter  1        Limits  and  Their  Properties 


107.  f{x)  =  ^''^'^ £,  c  >  0 


Domain:  x  +  (P->Q=^x>  -c^andxT^o,  [-c^,  0)  U  (0,  oo) 

•Jx  +  c~  —  c     ^x  +  c~  +  c 


,.      Jx  +  c    -  c 

lim =  iim  ■ 

x->0  X  x^O  X 


JW?  +  c 
lim  • 


U  +  c^)  -c^        ..  1 


•'-»''  \jx  +  c^  +  c]       '^0  Va:  +  c^  +  c       Ic 


Define /(O)  =  l/(2c)  to  make /continuous  at  jc  =  0. 


109.  h[x)  =  x\x\ 

h  has  nonremovable  discontinuities  at 
x  =  ±l,±2,±3, ...  . 


"^ 


Section  1.5       InOnite  Limits 


1. 


lim    2 


,         ,.  TTX 

3.     lim    tan  — - 

j:->-2*  4 


lim    2 

-»-2- 


x^  -A 


TTX 

liin    tan  — -  =  oo 

;c-»-2-  4 


5.  /W  = 


X 

-3.5 

-3.1 

-3.01 

-3.001 

-2.999 

-2.99 

-2.9 

-2.5 

fix) 

0.308 

1.639 

16.64 

166.6 

- 166.7 

- 16.69 

-1.695 

-0.364 

lim  f(x)  =  oo 

j:->-3 

lim  /U)  =  -oo 

j:-*— 3 


7.  /U) 


;c2-9 


x 

-3.5 

-3.1 

-3.01 

-3.001 

-2.999 

-2.99 

-2.9 

-2.5 

fix) 

3.769 

15.75 

150.8 

1501 

-1499 

- 149.3 

-  14.25 

-2.273 

Vim  fix)  =  oo 


lim  fix)  =  -oo 

x—*-3* 


Section  1.5        Infinite  Limits       43 


9.   lim  ^  =  oo  =  lim  -^ 

jr-»0*  X^  i-»0~  X^ 


Therefore,  at  =  0  is  a  vertical  asymptote. 


"•ii.'?^(x-2)U+l)  =  °° 

Therefore,  j:  =  2  is  a  vertical  asymptote. 

.-l'?r(;c-2)U+l)  =  °° 

;t2-2 


lim 


-i-U-2)U+  1) 
Therefore,  x  =  —  1  is  a  vertical  asymptote. 


x^  X- 

13.     lim    -:; 7  =  oo  and    lim 


Jr->-2-  X'  —  4 


'  Jr-U"-2+  X^   -   4 


Therefore,  x  =  —  2  is  a  vertical  asymptote. 

T-2  r2 


lim 


-oo  and  lim 


x->2-  x^  —  4  """  -t'-^r  jr2  -  4 

Therefore,  jt  =  2  is  a  vertical  asymptote. 


15.  No  vertical  asymptote  since  the  denominator  is  never  zero. 


17.  fix)  =  tan  2x  = —  has  vertical  asymptotes  at 

cos  It 

{2n  +  \)tt      tt      n-TT 
X  = =  —  +  — ,  n  any  mteger. 


19.   lim     1  -  - 

r->0*  V  t- 


-OO  =  lim     1 :; 

1^0-  V         r- 


Therefore,  r  =  0  is  a  vertical  asymptote. 


21.     lim 


x^-2-  (x  +  2)(x  -  1) 
lim   7 TTT TT  =  -oo 

x-»-2-  (x  +  2)(x  -    1) 

Therefore,  x  =  -  2  is  a  vertical  asymptote. 

lim  -; — 7 -r  =  oo 

x-^r  (x  +  2)(x  -  1) 

lim  '. TT-, rr  =  —  oc 

x-.r  (x  +  2)(x  -  1) 

Therefore,  x  =  1  is  a  vertical  asymptote. 


23.  Ax)  = 


A^  +  1  _  (.T-t-  DU^  --r  +  1) 


X  +    1 


X  +    1 


has  no  vertical  asymptote  since 

lim  fix)  =    lim  ix-  -  .r  +  1)  =  3 

X— *— 1  J—*- I 


25.  fix. 


5)(.r  +  3)  _  x  +  3 


X*  5 


ix  -  5)(a:-  +1)      X-  +  V 
No  vertical  asymptotes.  The  graph  has  a  hole  at  x  =  5. 


27.  sit)  =  — —  has  vertical  asymptotes  al  t  =  mr.  n 
smt 

a  nonzero  integer.  There  is  no  \ertical  asymptote  at 
t  =  0  since 


lim^—  =  1. 
t->o  sm  t 


44       Chapter  1        Limits  and  Their  Properties 


29.    lim  i-— f-  =   Urn  [x  -  1) 

jr-»-l   X  +   \  Jr-»-l 


31.     lim   — —r  =  oo 
;t-»-l+  X  +  1 

;t^+  1 


lim 


\-  x+  \ 

Vertical  asymptote  at 
x=  -1 


Removable  discontinuity  at  a:  =  —  1 


33.   lim  r- 

x-,2*  X  -  1 


35.    lim 


x^-i-  (x  -  i)(x  +  3) 


,_      ,.       x^  +  2x-  ^         ,.       X-  \       4 
37.     lim    -^5— —  =    lim =  7 

x-^-r    XT  +  X  —  it  j:-»-3    X  —  I         5 


A     —  X  X  1 

x^l  (x    +  l)(x  -   1)        x-H  X^  +  I        2 


41.    lim     1  +  -    =  -00 


43.    lim  -: —  =  00 

jr-»o+  sin  X 


45.  lim =  lim  (v^sin;c)  =  0 


.r-»irCSCJ:  x^-ir 


47.      lim    X  seclTTx)  =  00  and     lim    x  sec(irx) 

^-^(1/2)-  xMU2r 

Therefore,    lim    x  secfTTj:)  does  not  exist. 

x-*(l/2) 


49.  f(x)  =  -^^-j- 


51.  fix)  = 


x^-  25 


lim  f(x)  =   lim =  00 


lim  fix)  =  -00 

x-*5 


J 

L 

r 

"^i 

53.  A  limit  in  which  fix)  increases  or  decreases  without 
bound  as  x  approaches  c  is  called  an  infinite  limit.  00  is 
not  a  number.  Rather,  the  symbol 

lim  fix)  =  00 

x-*c 

says  how  the  limit  fails  to  exist. 


55.  One  answer  is  fix)  = 


x-3 


X-  3 


ix  -  6)(;c  +  2)      x^--4x-  12' 


57. 


59.  5  =  -; ,  0  <  Irl  <  1.  Assume  k  i=  0. 


1  -  r 


lim  S  =  lim 

r->r  r->i-  1  —  r 


=  00      (or  —  00  if  fc  <  0) 


Section  1.5        Infinite  Limits        45 


^,    ^         52&X     „ 

61.  C  =  -— ,  0  <  X  <  100 

100  -  X 

(a)  C(25)  =  $176  million 

(b)  C(50)  =  $528  million 

(c)  C(75)  =  $1584  million 


(d)     lim 


528 


-.100-  100  -  ;c 


OD  Thus,  it  is  not  possible. 


2(7)  7 

63.  (a)  r  =     ,        '        =  —  ft/sec 


(b)  r- 


(c)    lim 


7625  -  49       12 

2(15)  3 

V625  -  225       2 


ft/sec 


--^^25-  V625  -  x'- 


65.  (a) 


X 

1 

0.5 

0.2 

0.1 

0.01 

0.001 

0.0001 

fix) 

0.1585 

0.041 1 

0.0067 

0.0017 

=  0 

=  0 

=  0 

X  -  sm.t 
lim  —■ =  0 

j:->0*  X 


(b) 


X 

1 

0.5 

0.2 

0.1 

0.01 

0.001 

0.0001 

fix) 

0.1585 

0.0823 

0.0333 

0.0167 

0.0017 

«0 

«0 

;c  -  smx 
lim  :; =  0 


(c) 


X 

1 

0.5 

0.2 

0.1 

0.01 

0.001 

0.0001 

fix) 

0.1585 

0.1646 

0.1663 

0.1666 

0.1667 

0.1667 

0.1667 

0.25 

1.5 

lim  - — ^  =  0.1167  (1/6) 

x->0*  XT 


(d) 


X 

1 

0.5 

0.2 

0.1 

0.01 

0.001 

0.0001 

fix) 

0.1585 

0.3292 

0.8317 

1.6658 

16.67 

166.7 

1667.0 

X  -  sin.T 

Iim  ; =  oo 

.1^0*  .V-* 


^  ,    ,.      .V  -  sin.v 

For  n  >  i,  lim  ;; =  oo. 

x-^O*  X" 


46 


Chapter  1        Limits  and  Their  Properties 


67.  (a)  Because  the  circumference  of  the  motor  is 
half  that  of  the  saw  arbor,  the  saw  makes 
1700/2  =  850  revolutions  per  minute. 

(c)  2(20  cot  </))  +  2(10  cot  (^):  straight  sections. 
The  angle  subtended  in  each  circle  is 


277 


2(f-^ 


77+  2</). 


Thus,  the  length  of  the  belt  around  the  pulleys  is 
20(77  +  24>)  +  10(77  +  24>)  =  30(77  +  24>). 
Total  length  =  60  cot  ^  +  30(77  +  2</)) 


Domain:  ( 0,  — 


69.  False;  for  instance,  let 


f(x)  = r  or 


six) 


X  -  1 


x^+  1 


(b)  The  direction  of  rotation  is  reversed, 
(d) 


(e)       450 


<!> 

0.3 

0.6 

0.9 

1.2 

1.5 

L 

306.2 

217.9 

195.9 

189.6 

188.5 

(0      lim     L  =  6077  ==  188.5 

«^(t/2)- 

(All  the  belts  are  around  pulleys.) 


(g) 

lim  L  = 

00 

71. 

False;  let 

f{x)  = 

§ 

;c  #  0 
;c  =  0. 
The  graph  of /has  a  vertical  asymptote  at  x  =  0,  but 

m  =  3. 


73.  Given  lim/(j:)  =  cxd  and  lim  g{x)  =  L: 

x—*c  x~*c 

(2)  Product: 

If  L  >  0,  then  for  e  =  L/2  >  0  there  exists  5;  >  0  such  that  \g{x)    -  L\  <  L/2  whenever  0  <  |a:  -  c|  <  S,.  Thus, 
L/2  <  g{x)  <  3L/2.  Since  lim/(j:)  =  00  then  forM  >  0,  there  exists  5,  >  0  such  that /(a:)  >  M(2/L)  whenever 
|jc  -  c|  <  S;.  Let  5  be  the  smaller  of  5i  and  Sj-  Then  for  0  <  |a:  -  c|  <  S,  we  have/(;t)g(x)  >  M(2/L){L/2)  =  M. 
Therefore  Vim  f(x)g{x)  =  00.  The  proof  is  similar  for  L  <  0. 

(3)  Quotient:  Let  e  >  0  be  given. 

There  exists  S,  >  0  such  that/(jr)  >  3L/2e  whenever  0  <  \x  —  c\  <  S^  and  there  exists  63  >  0  such  that  \g{x)  ~  L\  < 
L/2  whenever  0  <  |x  -  c|  <  S,.  This  inequality  gives  us  L/2  <  g{x)  <  3L/2.  Let  S  be  the  smaller  of  5,  and  Sj.  Then 
for  0  <    \x  —  c\  <  d,  v/e  have 


g(x) 


Ax) 


3L/2 
3L/2e 


e(x) 
Therefore,  lim  7H  =  0. 

x-*cf(x) 


75.  Given  lim  -7-,  =  0. 

x^cf(x) 


Suppose  lim/(j:)  exists  and  equals  L.  Then, 

x-*c 

liml 


1 


1 


x->cf{x)      lim/(;c)       L 


This  is  not  possible.  Thus,  Umf(x)  does  not  exist. 


Review  Exercises  for  Chapter  1        47 


Review  Exercises  for  Chapter  1 


1.  Calculus  required.  Using  a  graphing  utility,  you  can  estimate  the  length  to  be  8.3. 
Or,  the  length  is  slightly  longer  than  the  distance  between  the  two  points,  8.25. 


3. 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

-0.26 

-0.25 

-0.250 

-0.2499 

-0.249 

-0.24 

lim/W  «  -0.25 


5.  h{x) 


)r  -  2x 


(a)  \\mh{x)  =  -2 

x-»0 


(b)    lim  h{x)  =  -3 


7.  lim  (3  -  a:)  =  3  -  1  =  2 

Let  e  >  0  be  given.  Choose  6  =  e.  Then  for 
0<  |x-l|  <5=6,  you  have 

\x-\\<e 

\\-x\<e 

1(3  -x)-2\<e 

\f(x)  -L\<e 


9.  lim  (x-  -  3)  =  1 


Let  e  >  0  be  given.  We  need  |r=  -  3  -  1 1  <  e  =>   |.t-  -  4|  =  \{x  -  2)(a:  +  2)|  <  e  ^  |.r  -  2|  < 
Assuming,  1  <  .v  <  3,  you  can  choose  6  =  e/5.  Hence,  for  0  <  |.x  —  2|  <  S  =  e/5  you  have 


x  +  2 


X-  2     <T  < 


1 


5       \x  +  2\ 
\x-  2\\x  +  2\  <  e 
\x-  -  4|  <  e 
l(x^-3)-  1|  <  e 

l/W  -  L\<e 


11.  lim  Vm  =  V4  +  2  =  V6  =  2.45 

<-»4 


13.    lim  "5 7  =  lim =  —- 

r->-2  r  —  4       r->-2  t  -  2  4 


Jx  -  2 
15.  lim  — '■ =  lim 


Vi-2 


-.4     X  -  4 


■4(v3^-2)(^  +  2) 


lim  ^ =  — F =  - 

x-*'i  Vx  +  2       V4  +  2      4 


„    ,.     [l/(.v  +  D]  -  1       ,.     1  -  Ct  +  1) 

17.  lim  ^= =  lim  — : — .    ., 

.t->0  X  Jr->0     x(x  +  1) 

1 


=  lim 


i^>ox  +  1 


=  -I 


,n     r      ^  +  125       ,.      (.V  +  5)(.r  -  5.t  +  25) 
19.    lim  — r-  =    lim  


-5     X  +  5 


X  +  5 


,,        ,.        1    -  COS.V  ,.        /     X     \(l    -COS.tA  ,,Mr,\         rv 

21.    hm : =  lim    ^ —     =  (1)(0)  =  0 

x-»o      sm.v  x-'0\,sina:/\        .t        / 


lim  (r  -  5x  +  25) 


=  75 


48       Chapter  1        Limits  and  Their  Properties 


,,     ,.      sin[(7r/6)  +  Ajc]  -  (1/2)        ,.      sin(Tr/6)  cos  A;c  4-  cos(7r/6)  sin  Ax  -  (1/2) 
23.    lim  : =   lim  : 

Ax-»0  Ar  Ax->0  A.t 


1     (cos  Ajc-  1)        ,.      V^     sin  Ax 

=  lim  -  • -. H  lun  —T-  •  — : — 

Aj-»o  2  Ax  Ax-*o    2  Ax 


25.  lim[/(x)-g(.x)]  =  (-|)(f)=-| 

27./(x)  = ^-j 

(a) 


j; 

1.1 

1.01 

1.001 

1.0001 

fix) 

0.5680 

0.5764 

0.5773 

0.5773 

lim  +  1       V3  ^  Q^^^     (Actual  limit  is  ^3/3.^ 

J— ♦l^  ^    —     1 


,,    ,.      J2x  +1-73        ,.      V2x  +  1  -  73     72x  +1  +  73 

(c)   lim =  lim  ; •     ,  p 

j:-i*  .X  -  1  ^-»i*  x-1  72x  +1  +  73 

(2x  +  1)  -  3 
~  x-^v  (x  -  l)(72x  +  1  +  v^) 

2 
=  hm  — ,  = 

^^'"  72x+  1  +  73 


2  1    _^ 

2VS      73        3 


(b) 


-_    ,.     s{a)  -  s{t)       ,.     (-4.9(4)-  +  200)  -  (-4.9r  +  200) 

29.  lim =  lim 

r-»o      a  —  t  »->4  4  —  t 

,.     4.9(r  -  4)(f  +  4) 
=  lim : 

r-*4  A  —  t 

=  lim  -4.9(r  +  4)  =  -39.2  m/sec 

I->4 


31.    lim 


\x-  31 


j:^3-     X:  —  3 


lim^^=-l 

Jr^3-       X  —  5 


33.  lim/(x)  =  0 

x-*2 


35.  lim  /!(f)  does  not  exist  because  lim  h{i)  =  1  +  1=2  and 

r— >I  r— »1" 

lim  h(t)  =  i(l  +  1)  =  1. 


37.  fix)  =  Ix  +  31 

lim  [x  +  31  =  /c  +  3  where  ^  is  an  integer. 

lim  |x  +  3]1  =  /c  +  2  where  A:  is  an  integer. 

Nonremovable  discontinuity  at  each  integer  k 
Continuous  on  {k,  k  +  I)  for  all  integers  k 


39.  fix)  = 


3x-  -  x-2       (3x  +  2)(x:  -  1) 


1 


1 


lim/(x:)  =  lim  (3.x  +  2)  =  5 

J— » I  Jr— >  1 

Removable  discontinuity  at  x  =  1 
Continuous  on  (— oo,  1)  U  (1,  oo) 


41.  fix) 


lim 


1 


ix  -  2)2 
1 


x^2  (;c  -  2)2 

Nonremovable  discontinuity  at  x  =  2 
Continuous  on  (-co,  2)  U  (2,  oo) 


43.  fix)  = 


X  +  1 
lim  /(x)  =  —  oo 

JC-+1 

lim  /(x:)  =  oo 
jif-*i* 

Nonremovable  discontinuity  at  x:  =  —  1 
Continuous  on  (-oo,  —  1)  U  (-  1,  oo) 


Problem  Solving  for  Chapter  1        49 


45.  f{x)  =  CSC  — 

Nonremovable  discontinuities  at  each  even  integer. 
Continuous  on 

(2k,  2k +2) 

for  all  integers  k. 


49.  /is  continuous  on  [l,  2].  /(I)  =  -  1  <  0  and 

/(2)  =  13  >  0.  Therefore  by  the  Intermediate  Value 
Theorem,  there  is  at  least  one  "alue  c  in  (1,  2)  such 
that  2c5  -  3  =  0. 


47.  /(2)  =  5 

Find  c  so  that  lim  (ex  +  6)  =  5. 

c(2)  +  6  =  5 

2c  =  -1 

1 
c=-- 

51.  fix)  =  ^^  ={x  +  2) 

\  X  -2 

Lk-2| 

(a)    lim/U)  =  -4 

jr-»2 

(b)   lim^/W  =  4 

(c)  lim/(jc)  does  not  exist. 


53.  gW  =  1  +  - 

Vertical  asymptote  at  x  =  0 

2x^  +  X+  \ 


57.     lim 


X  +  2 


55.  /(.r 


(x  -  10)= 
Vertical  asymptote  at  x  =  10 


59.     lim   4-^- 


1 


J-*-!*  X- 


_     ,.     .r-  +  2,t  +  1 

61.    lim  ; 

j:-»r       j;  -  1 


63.    lim  [x J 


sin  4x 
65.    lim  — - —  =  lim 

.r->0*       5x  X-.0* 


4/ sin  4a: 

5V    4x 


„     ,.      csclv        ,.  1 

67.    lim  =    lim  — ^ — —  =  oo 

.v->o*      X  X  ->o*  X  Sin  Zr 


69.C  =  |^,0.0<100 
100  —  p 

(a)  C(15)  ==  $14,117.65  (b)  C(50)  =  $80,000 

(c)  C(90)  =  $720,000 


(d)     lim    tt:: =  oo 


p->ioo'  100  -  p 


Problem  Solving  for  Chapter  1 


1.  (a)  Perimeter  APAO  =  Jx-  +  (v  -  1)=  +  Jx-  +  y-  +  1  (b)  r(x) 


Jx-  +  (.V-2  -    1):  +    Jx-  +  X*  +    1 


Perimeter  APBO  =  V(.t  -  1)-  +r  +  n/^+T  +  1 


V(a-  -    IP  +  A^  +    7^2  +  A-^  +    1 


(c)    hm  r(x)  =  .    ,   „   ,    .  =  T  =  1 
.v->o+  1+0+1       2 


x-  +  ix'  -  \)-  +  ^x~  +  .1-'  +  1 


Jix  -  ly-  +  x"  +  ^'x^  +  .x-*  +  1 


.X 

4 

2 

1 

0.1 

0.01 

Perimeter  AP.-^O 

33.02 

9.08 

3.41 

2.10 

2.01 

Perimeter  APBO 

33.77 

9.60 

3.41 

2.00 

2.00 

r{x) 

0.98 

0.95        1 

1.05 

1.005 

50        Chapter  1        Limits  and  Their  Properties 


3.  (a)  There  are  6  triangles,  each  with  a  central  angle  of 
60°  =  77-/3.  Hence, 


Area  hexagon  =  6 


■bh 


2 
3V3 


2(1)  Sin - 


-  2.598. 


h  =  sme 


Error:  tt r —  =  0.5435. 


(b)  There  are  n  triangles,  each  with  central  angle  of 
6  =  iTr/n.  Hence, 


An  =  n 


bh 


1,,,  .  Itt]  nsmilv/n 
:r(l  sin —  =- — ^r-^ 
2  «  J  2 


n 

6 

12 

24 

48 

96 

An 

2.598 

3 

3.106 

3.133 

3.139 

(c) 


(d)  As  n  gets  larger  and  larger,  In/n  approaches  0. 

Letting  x  =  27r/n, 

sin(2ir/«)       sin(2Tr/n)         sinj: 

An  =  — —. =     ,      ,  ,    77  = 77 

2/n  (277/m)  j: 

which  approaches  (1)77  =  77. 


5.  (a)  Slope  =  — 


12 


(b)  Slope  of  tangent  line  is 


y+l2  =  —{x-  5) 
169 


12' 


y  =  — JT  -  —  Tangent  line 


(c)  Q=(x,y)  =  {x,^l69-x^) 

-  V169  -  jc2  +  12 
X  —  5 

,.     12  -  V169  -  x^     12  +  V169  -  x^ 

(d)  lim  m^  =  lim ;: • , 

-t^s    ^      ;t^5  X  -  5  12  +  Vl69  -  ;c2 

^  144  -  (169  -  x^) 

"  ^™  (;c  -  5)(l2  +  ^169"^^) 


=  lim 


x^  -  25 


=  lim 


^5  (x  -  5)(l2  +  V169  -  x^) 
ix  +  5) 


5  12  +  Vl69  -  x^ 
10  5 


12  +  12       12 
This  is  the  same  slope  as  part  (b). 


7.  (a)  3  +  ;c'/3  >  0 
a:'/3  >  -3 
;c  >  -27 
Domain:  x  >  —27,xi=  1 


(b) 


(c)     lim  J{x)  = 


V3  +  (-27)'/3  -  2 


-27  -  1 
-2         1 


-28       14 


0.0714 


. ,,   ,.     .,  ,       ,.     V3  +  -t'/^  -  2     V3  +  x'/3  +  2 
(d)  lim/(x)  =  lim ; •      .  ,,: 


=  lim 


3  +  ;c'/3  -  4 


=  lim 


1  (x  -  l^v/sT^iTs  +  2) 
;c'/3  -  1 


^-^1  (xi/3  -  l)(;c2/3  +  ^1/3  +  i)(V3  +  x^/i  +  2) 

1 


=  lim 


^->l  (x2/3  +  ;t'/3  +    1)(V3   +  ;c'/3   +  2) 


1 


(1  +  1  +  1)(2  +  2)  ~  12 


9.  (a)  lim/W  =  3:  ^„  ^4 
fb)  /continuous  at  2:  g, 


(c)    lim  fix)  =  3:  g„  g,,  g^ 

X— ♦2 


Problem  Solving  for  Chapter  J        51 


11. 


-2-- 
-3-- 


13.  (a)        y 


a  b 


(a)        /(1)  =  I11  +  I-]1=  1  +(-l)  =  0 
/(O)  =  0 

/(i)  =  0  +  (-l)=-l 
/(-2.7)  =  -3  +  2  =  -1 


(b)    \\mf(x)  = 

-1 

lim  fix)  = 

Jr->1* 

-1 

Junjix)  = 

-1 

(c)  /is  continuous  for  all  real  numbers  except 
X  =  0,±l,+2,±3, .  .  . 


(b)  (i)    lim^  P„  ,{x)  =  1 

x—*a 

(ii)    lim  P„  ,{x)  =  0 
(iii)    lim  P„  ,{x)  =  0 

X— >o 

(iv)    lim  P^,(x)  =  1 

x—*b 

(c)  Pn  ^  is  continuous  for  all  positive  real  numbers 
except  x  =  a,b. 

(d)  The  area  under  the  graph  of  u, 
and  above  the  j:-axis,  is  1. 


CHAPTER     2 
Differentiation 


Section  2.1      The  Derivative  and  the  Tangent  Line  Problem  ...  53 

Section  2.2      Basic  Differentiation  Rules  and  Rates  of  Change    .  60 

Section  23      The  Product  and  Quotient  Rules  and 

Higher-Order  Derivatives 67 

Section  2.4      The  Chain  Rule 73 

Section  2.5      Implicit  Differentiation 79 

Section  2.6      Related  Rates 85 

Review  Exercises      92 

Problem  Solving 98 


CHAPTER     2 
Differentiation 

Section  2.1       The  Derivative  and  the  Tangent  Line  Problem 

Solutions  to  Odd-Numbered  Exercises 


1.  (a)  m  =  0 
(b)  m  =  -3 


3.  (a),  (b) 


(c).=  ^^f^U -!)-/(!) 


:(x-  l)  +  2 


l(x  -  1)  +  2 
X  +  I 


12       3       4       5       6 


5.  fix)  =  3  —  2j:  is  a  line.  Slope 


=  lim 

AI-.0 

/(0  + 

Af)-/(0) 

Af 

=  lim 

A/->0 

3(Ar) 

-  (Af)'  -  0 

Af 

=  lim 

M->0 

(3- 

Ar)  =  3 

13.  f(x)  =  -5x 


fix)  =   lim 


=  lim  - 

A;t-»0 


/(.t+ Ax)-/(a:) 
zSa 

-5U  +  .A-v)  -  (-5.t) 


A.r 


lim  —  5  =  -5 

Al->0 


7. 

Slope 

at  (1,-3)  = 

=  lim 

Aj-»0 

g(i  +  ^x)  - 

\x 

gi\) 

= 

=   lim 

(1  +  ^xy-  - 

A.r 

4 -(-3) 

= 

=   lim 

1  +  2(A.t)  + 
Ax 

(Ax)2  -  1 

= 

=  lim 

Aj:->0 

[2  +  2(^x)'] 

=  2 

11. 

/(.O 

=  3 

ru) 

=   lim  f^^ 

Ai->0 

+  A.r) 
A.r 

-fix) 

=   lim  — — 

Ai->0     Ax 

3 

=   lim  0  = 

0 

15 

/i(i)  = 

=  3.f. 

h'is) 

=  lim  -^ 

+  ^s) 

-his) 

3+  j(5  + 

ls)-{i^ 

f>) 

A5^0 

Is 

=  lim  -;— 

As-KI   Aj 

2 
"I 

53 


54        Chapter  2        Dijferentiation 


17.  f[x)  =  2.t2  +  X  -  1 

f(x+  ^x)-f{x) 


J    \X) 

—    um 

A.r 

=  lim 

A1-.0 

[2(;c  +  ^xf  +  [x  +  hx)  - 

-1]- 

[2r  +  X  -  1] 

^x 

=  lim 

{Ix"  +  4x^x  +  liH^f  + 

;c  +  ^ 

-  l)- 

(2^2  + 

X-  1) 

Aa 

=   lim 

Ax->0 

Ax^x  +  2(Ax)^  +  Ajc       ,.      ,. 

-, — =  lim  (Ax 

Ajc                     ax-»o 

+  2Ax  +  1)  = 

4x+  1 

19.  fix) 

=  X3- 

12x 

fix) 

=   lim 

f{x  +  ^x)-f{x) 

Ax 

=  lim 

Ax->0 

[(x  +  AxY  -  \2(x  +  Ajc) 

1-U' 

-12x] 

Ajc 

=   lim 

x^  +  3x^Ax  +  3a;(A;c)2  + 

(AxP- 

12x- 

12A;c- 

-  x3  +  12x 

Ax 

=  lim 

Ax^O 

3;c2Ax  +  3;c(A;c)2  +  (A;c)3 
Ax 

-  12Ax 

=  lim  (3x2  +  3^^  +  (^)2  _  j2)  =  3^2  -  12 

Ax->0 


21.  fix)  ' 


/'(x)  =   lim 


X-  1 

/(x  +  Ax)-/(x) 


Ax->0  Ax 

1  1 


x  +  Ax-1       X  —  1 

=   lim  1 

Ax-»0  Ax 

U  -  1)  -  (x  +  Ax  -  1) 
~  iJc^o  Ax(x  +  Ax  -  l)(x  -  1) 

=  r  -Ax 

iJ™oAx(x  +  Ax-  l)(x-  1) 

"  iji^o  (x  +  Ax  -  l)(x  -  1) 
^  1 

u-ip 


23.  /(x)  =  Vx+  1 

/'(x)  =  lim  ^<-^y-^(-) 

•^  Ax^O  Ax 


Vx  +  Ax  +T  -  Vx  +  1  _  /Vx  +  A.r  +  1  +  Vx  +  1\ 
^^0  Ax  VVxTAxTT  +  Vx  +  1/ 


Ax- 

(x  +  Ax  +  1)  -  (x  +  1) 


=   lim 


Ax-*o  Ax[Vx  +  Ax  +  1  +  Vx  +  1] 

lim     ,  ^ , 

■^-'0  Vx  +  Ax  +  1  +  Vx  +  1 

1 ^         1 

Vx  +  1  +  Vx  +  1       2Vx  +  1 


Section  2.1        The  Derivative  and  the  Tangent  Line  Problem       55 


25.  (a)  fix)  =x^  +  \ 
fix)  =   lim 


fix  +  Ax) -fix) 
Ax 


^  ^.^^^  [jx  +  Ax)^  +\]-[x'+l] 

Ax-»0  AjC 

,.      2xA;c  +  (A.r)^ 
=   lim  ; 

A.t->0  Ax 


=  lim  (Ix  +  A.x)  =  2x 


At  (2,  5),  the  slope  of  the  tangent  line  is 

m  =  2(2)  =  4.  The  equation  of  the  tangent  line  is 


y-5 

=  4(.t 

-2) 

>'-5 

=  4x 

-  8 

y 

=  4x 

-  3. 

27. 

(a)  fix)  = 

;c3 

fix)  = 

lim 

Ax->0 

fix 

+  A.x) 
Av 

-fix) 

lim 

ix  + 

Axf- 
A.X 

-x" 

lim 

A.v->0 

3x^Ax  +  3.r(Ax)^  + 

(Ax)^ 

Ax 

=   lim  (3x^  +  3xAx  +  (Ax)^)  =  3x^ 

At  (2,  8),  the  slope  of  the  tangent  \s  m  =  3(2)-  =  12. 
The  equation  of  the  tangent  line  is 

>  -  8  =  12(;t  -  2) 

V  =  12;>:  -  16. 


(b) 


V 

\/- 

/ 

(b) 


r 

/ 

1 

29.  (a)  fix)  =  Vx 


■'  AX-.0  Ax 


=   lim 


Vx  +  Ax  -  V^     Vx  +  Ax  +  Vx 
z^mo  Ax  Jx  +  Ax  +  J~x 

(x  +  Ax)  -  X 


=  lim 


Aat-^o  A,x(  V.x  +  Ax  +  Vx) 


=  lim 


1 


A:c->o  Vx:  +  Ax  +  Jx      iji 
At  (1,  1),  the  slope  of  the  tangent  line  is 

1         1 

m  =  — 1=  =  -. 

2j\       2 

The  equation  of  the  tangent  line  is 
y-l=\ix-i) 


1       1 

V  =  tj:  +  T. 
■22 


(b) 


56        Chapter  2        Differentiation 


31.  (a)/(;c)  =x  +  - 


f'ix)  =   lim 


f{x+   ^x)-f{x) 

Ax 


=  lim 

Ax->0 


{x  +  Ax)  +  ——r  -  {x  +  - 
x  +  Ax       \        X 


=  lim 


lim 

Aj:->0 


Ax 

x{x  +  Ax)(x  +  Ax)  +  4x  -  x\x  +  Ax)  -  4(.t  +  A^-) 
x{Ax)(x  +  Ax) 

x^  +  2x^(Ax)  +  x(Ax)^  -  x^  -  x\Ax)  -  A(Ax) 
x{Ax)(x  +  Ax) 


x^(Ax)  +  ^(Ajc)^  -  4(M 
Ajuo  x{Ax){x  +  Ax) 

,.      x^+x{Ax)-A 

Imi   — ; — T — 

Ajv^O      x(x  +  Ax) 


=  1 


4 


X  X 

At  (4,  5),  the  slope  of  the  tangent  line  is 

,43  :  :. 

16      4 

The  equation  of  the  tangent  line  is 


(b) 


y 

1        J/' 

X^\ 

y  -  5  =  -(x  -  4) 


y  =  -^x  +  2. 


33.  From  Exercise  27  we  know  that/'U)  =  3x^.  Since  the 
slope  of  the  given  line  is  3,  we  have 

3^2  =  3 

x  =  ±\. 

Therefore,  at  the  points  (1,1)  and  (-  1,  -  1)  the  tangent 
lines  are  parallel  to  3x  -  >  +  1  =0.  These  lines  have 
equations 

and  y  +  1  =  3(.t  +  1) 


y-l=3{x-  1) 
y  =  3x  -  2 


y  =  3x  +  2. 


35.  Using  the  limit  definition  of  derivative, 
■1 


fix)  = 


2xVx' 


Since  the  slope  of  the  given  line  is  —5,  we  have 

1_^  _1 

2x^/x  2 

x=  1. 

Therefore,  at  the  point  (1,  1)  the  tangent  line  is  parallel  to 
x  +  2y  -  6  =  0.  The  equation  of  this  line  is 

1, 


y  - 

1  =  --{x  -  1 

y  - 

1       1 

l  =  -2-  +  2 

1    ^3 

37.  ^(5)  =  2  because  the  tangent  line  passes  through  (5,  2). 


gXi) 


2-0  _    2 
5  -  9  ~  -4 


39.  f{x)  =  X  =>f'ix)  =  1     matches  (b) 


Section  2. 1        The  Derivative  and  the  Tangent  Line  Problem       57 


41.  f(x)  =  Jx^>  f'{x)  matches  (a) 
(decreasing  slope  as  jr  — >  oo) 


43. 


Answers  will  vary. 
Sample  answer:  y  =  —x 

45.  (a)  If /'(c)  =  3  and /is  odd.  then/'(-c)  =/'(c)  =  3 
(b)  If /'(c)  =  3  and/  is  even,  then/'(-c)  =  -/(c)  =  -3 

47.  Let  (.rg,  y^)  be  a  point  of  tangency  on  the  graph  of/.  By  the  limit  definition  for  the  derivative, /'(j;)  =  4  -  Ir.  The  slope  of  the 
line  through  (2,  5)  and  (xq,  Vq)  equals  the  derivative  of/ at  x^. 

5  -  v„ 

=  4  -  2Xn 


1-  Xq 

5  -  Vo  =  (2  -  x^){A  -  2xo) 

5  —  {4xq  —  Xff)  =  8  —  8xg  +  Zkq- 

0  =  Xq-  -  4xo  +  3 

0  =  (.Vo  -  l){xo  -  3)  = 


J^o  =  1.3 


Therefore,  the  points  of  tangency  are  (1,  3)  and  (3,  3),  and  the  corresponding  slopes  are  2  and  -2.  The  equations  of  the  tangent 
lines  are 

y-5  =  2(.r-2)       y  -  5  =  -2(.i:  -  2) 

y  =  2.V  +  1  y  =  -2x  +  9 

49.  (a)  g'iO)  =  -3 

(b)  ^'(3)  =  0  ■      •  ■ 

(c)  Because  g'(l)  =  -3,  g  is  decreasing  (falling)  at  x  =  1. 

(d)  Because  g'(-4)  =  3,  g  is  increasing  (rising)  at  x  =  —4. 

(e)  Because  g'{4)  and  g'(6)  are  both  positive,  g(6)  is  greater  than  g{4),  and  g(6)  -  g(4)  >  0. 

(f)  No,  it  is  not  possible.  All  you  can  say  is  that  g  is  decreasing  (falling)  at  x  =  2. 


51.  fix)  =  ir^ 

By  the  limit  definition  of  the  derivative  we  have/'(.r) 


X 

—  2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

fix) 

-2 

27 

32 

1 

4 

1 

32 

0 

1 

32 

1 
4 

27 
32 

2 

fix) 

3 

27 
16 

3 
4 

3 
16 

0 

3 
16 

3 
4 

27 
16 

3 

2 


58       Chapter  2        Differentiation 


53.  gix) 


fix  +  Om)-f{x) 
0.01 
=  {2(x  +  0.01)  -  {x  +  0.01)2  _  2x  +  a;2)  +  100 

3 


\ 

^^ 

'   / 

\\ 

The  graph  of  g(x)  is  approximately  the  graph  off'{x). 


55.  /(2)  =  2(4  -  2)  =  4,  /(2.1)  =  2.1(4  -  2.1)  =  3.99 

T.qq  —  A 
f'{2)  -  Yl^  =  ~°-^  [Exact: /'(2)  =  0] 


57.f{x)=^andf'(x)=:^. 


As  X  —>  oo,  /  is  nearly  horizontal  and  thus  /'  ~  0. 


59.  fix)  =  4  -  (;c  -  3)2 

/(2  +  Ax)-/(2) 


■Sa^  (x)  = 


iu 


{x-2)+f{2) 


4  -  (2  +  Ax  -  3)2  -  3,        ^,      .,       1  -  (Ax  -  1)2         ^^       ,       ,     ,         ^.,        ^.       , 
^ (jc  -  2)  +  3  = 4 H-t  -  2)  +  3  =  i-^x  +  2){x  -  2)  +  3 


Ajc 


Ax 


(a)  Ax  =     1:  5^  =  (x  -  2)  +  3  =  X  +  1 
Ac  =  0.5:  S 


^-  (-j(x-2)  +  3  =-x 


19 


Ax  =  0.1:5,,=  ^-j(x-2)  +  3=-x-- 
(b)  As  Ajc->0,  the  line  approaches  the  tangent  line  to/at  (2,  3). 


> 

/^ 

^/    \ 

in.    -' 


61.  /(x)  =x2  -  1,C  =  2 

f'Oi      1-      /W-/(2)       ,.     (x2  -  1)  -  3       ,.      (x  -  2)(x  +  2) 
/  (2)  =  lim =  lim  — ■ — —  =  lim — 

x->2  X  —  2  x->2  X  —  2  x->2  X  —  2 


=  lim  (x  +  2)  =  4 

x->2 


63. /(x)  =x3  +  2x2+  l,c=  -2 


/(x)  -/(-2)        ,.      x2(x  +  2)        ,.      (x^  +  2x2  +  1)  -  1 


/'(-2)  =    lim  ^^-^^^^ — ^-r =    lim  ""  ^""   '     '  =    lim 

x->-2  X  +  2  .r->-2      X  +  2  x-4-2 


x  +  2 


=    lim  x2  =  4 

x^-2 


65.  g(x)  =  Vjlf,  c  =  0 

pfr)  -   p(0)  VlxT 

^'(0)  =  lim  ^^ fr^  =  lim  —!-!■.  Does  not  exist. 

J-^O         X  —  0  x->0       X 

As  X  ^  0   , =  — p  — >  -  oo 

^  Vx 

yui    1 

Asx^  0-^,—'-^  =  ^^  oo 
X  Vx 


67.  /(x)  =  (x  -  6)2/3,  c  =  6 

j:— *6        X  ~  O 

,.        (X  -  6)2/3  _  0 

=  am ;: 

x-^6         X  —  6 


=  lim- 


1 


""e  (x  -  6)'/3 
Does  not  exist. 


Section  2. 1        The  Derivative  and  the  Tangent  Line  Problem        59 


69.  h{x)  =  U  +  5),c  =  -5 

V(-5)=    lim^-W^^ 

-t->~5      X  -  (  —  5) 

,.       |;c  +  5|  -  0 
=   lim  ■■ ■— — 

x->-5        X  +  5 


=    lim 


k  +  5| 

-5    X  +  5 


Does  not  exist. 


71.  fix)  is  differentiable  everywhere  except  at  ;<: 
(Sharp  turn  in  the  graph.) 


-3. 


73.  fix)  is  differentiable  everywhere  except  at  j:  =  -  1 . 
(Discontinuity) 


75.  fix)  is  differentiable  everywhere  except  at  j:  =  3. 
(Sharp  turn  in  the  graph) 


77.  fix)  is  differentiable  on  the  interval  (1,  oo). 
(At  j:  =  1  the  tangent  line  is  vertical) 


79.  fix)  is  differentiable  everywhere  except  at  .r  =  0. 
(Discontinuity) 


81./(;c)=  |;t-  1| 

The  derivative  from  the  left  is 

lim^W^=lim^^ 
The  derivative  from  the  right  is 

lim  ^«^  =   lim  ^^ 

Jr-»1*         X  —    I  Jr-»1*  X  —    1 


=    1. 


The  one-sided  limits  are  not  equal.  Therefore, /is  not 
differentiable  atx  =  1 . 


r<^  +  1,  r  <  2 
85.  Note  that/is  continuous  at  x  =  2.  fix)  =  \  ^ 

[4x  -  3,  -v  >  2 


83.  fix) 


ix  -    1)3,    X   <    1 

[x  -  1)-,  X  >   1 


The  derivative  from  the  left  is 


lim 


/U)-/(i) 

X  -   I 


lim 


ix  -  1) 


X  -   1 


lim  ix  -  1)=  =  0. 


The  derivative  from  the  right  is 

j:-»1*  .t  -    1  j:-»1"  X  -    1 

=  lim  ix  -  1)  =  0. 

Jr->1* 

These  one-sided  limits  are  equal.  Therefore. /is 
differentiable  at  .t  =  1.  (/'(I)  =  0) 


The  derivative  from  the  left  is  lim  ■'^-^ — {^  =   lim  — =  lim  (:t  4-  2)  =  4. 

Jr->2-  X  —   2  jr-»;-  A"  —   2  jr->2- 

The  derivative  from  the  right  is  lim  — '■ —  =  lim  — '■ =   lim  4  =  4. 

X-.2*  X  -  2  x-*2*  X  -  2  .r->2* 

The  one-sided  limits  are  equal.  Therefore, /is  differentiable  at  v  =  2.  (/'(2)  =  4) 


87.  (a)  The  distance  from  (3,  1)  to  the  line  /?ir  —  >>  -I-  4  =  0  is 

|Ati  +  By,  +  C\ 
J  A-  +  B' 

|/7i(3)  -  1(1) -F  4|       |3m4-3| 


(b) 


JirF+l. 


Jm-  +  1 


The  function  d  is  not  differentiable  at  m  =  —  1.  This  corresponds  to  the  line 
y  =  —X  +  4,  which  passes  through  the  point  (3,  1). 


60       Chapter  2        Differentiation 


89.  False.  The  slope  is  lim 

A;e->0 


/(2  + Ax)-/(2) 
^x 


91.  False.  If  the  derivative  from  the  left  of  a  point  does  not  equal  the  derivative  from  the  right  of  a  point,  then  the  derivative  does 
not  exist  at  that  point.  For  example,  if/(x)  =  \x\,  then  the  derivative  from  the  left  at  j:  =  0  is  -  1  and  the  derivative  from  the 
right  at  a:  =  0  is  1 .  At  j£  =  0,  the  derivative  does  not  exist. 


93.  f(x)  = 


xsin(l/jc),       X  i^  0 


0, 


x  =  0 


Using  the  Squeeze  Theorem,  we  have  -\x\  <  x  sin(l/x)  <  |a:|,  a:  =?^  0.  Thus,  lim  x  sia(\/x)  =  0  =  /(O)  and/is  continuous  at 
X  =  Q.  Using  the  alternative  form  of  the  derivative  we  have 


,.      fix)  -/(O)       ,.     A:sin(lA)  -  0       ,.     ,    . 
lim  ''-^^ — 77^  =  Imi ^"-^ =  lim  I  sm 

x-iO         X  —  \J  x^O  X  —  \J  J:->0 


"i)- 


Since  this  limit  does  not  exist  (it  oscillates  between  -  1  and  1),  the  function  is  not  differentiable  at  a:  =  0. 


g{x)- 


X^  SV!\i\/x),         X  T^  0 


0, 


0 


Using  the  Squeeze  Theorem  again  v.'e  have  -x'-  <  x'-  sia(l/x)  <  x^,x  i=  0.  Thus,  lim :?  sin(l/j:)  =  0  =  /(O)  and/is  continu- 
ous at  X  =  0.  Using  the  alternative  form  of  the  derivative  again  we  have 

,.      /W-/(0)       ,.     x2sin(lA)-0      ,.         .    1       „ 
lim  -''^-^ — r^  =  lim —'—T =  hm  x  sin  -  =  0. 

jr^O         X  —  0  j:->0  X  —  0  x-^0  X 

Therefore,  g  is  differentiable  at  x  =  0,  ^  '(0)  =  0. 


Section  2.2       Basic  Differentiation  Rules  and  Rates  of  Change 


1.  (a) 


y  =  x'/2 


yd)   =5 


3.    y  =  8 
y'  =  Q 


(b)       y  =  x3/2 


„l/2 


y'W  =  I 

5.   >'  =  x6 
y'=  6x? 


(c) 


7.  y 


y  =  x^ 

(d)        y  =  ^ 

y'  =  2x 

y'=3x^ 

y'il)  =  2 

y\\)  =  3 

x'      "" 

9.  y  =  ^  =  xi/5 

=  -7x-8  = 

-7 

y       5              5x^/5 

11.   fix)  =  X  +  1 
fix)  =  1 


13.  fit)  =  -2;2  +  3r  -  6  IS.  g(x)  =  x^  +  4x3 

/'(;)=  -4,  + 3  g'W  =  2x  +  12x2 


17.    sit)  =  t^-lt  +  A 
s'ii)  =  'hi^  -1 


77 

19.   y  =  ^  sin  6  -  cos  e 


21.    y  =  x^  —  X  cos  X 


23.    V  = 3  sin  X 

x 


y'  =  —cos  e  +  sin  0 


y'  =  2x  +  —  sinx 


x2 


—  3  cos  X 


Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change        61 


Function  Rewrite 


25.  V 


27.   y  = 


29.  y 


3 

(2x)3 


>"  =  ? 


>'  =  7-^ 


>>  =  x 


-1/2 


Derivative 
y'=  -5;c-3 


y'  =  -5^-^"'' 


=  --r-3/2 


Simplify 


y  = 


^ 


2x^/2 


31.  fix)  =  ^  =  3x-2,  (1,  3) 


fix)  =  -6x-3  =  -J- 


/'(l)  =  -6 


33.  fix)  =  -|  +  |x3,  (o,  -^ 

21 
Z'U)  =  yx2 

/'(O)  =  0 


35.        V  =  (2x  +  1)2,  (0,  1) 

y'=  8;c  +  4 
j'(0)=4 


37.  /(e)  =  4  sin  0  -  e,  (0,  0) 

fie)  =  4  COS  e  -  1 

/'(O)  =  4(1)  -1=3 


39. 


fix)  =  x'-  +  5  -  3^-2 
/V)  =  2x  +  6x-3  =  2i  + 


41.   ^(r)  =  ^2  -  -^  =  f2  -  4r3 


g'(f)  =  2f  +  12r-*  =  2r  + 


12 


43.  fix)  =  ^^ ^^^^^  =  ;c  -  3  +  4.t-2 


/'W  =  l-3      "" 


X3  ^3 

47.  /(x)  =  v^  -  6  ^  =  xi/2  -  6x'/3 

1  1  2 

51.  fix)  =  6Vx  +  5  cos  x  =  6.x:'^2  +  5  cosjc  ' 


/'(x)  =  3x  ''2  —  5  sin  JT  =  — =  -  5  sin  jc 


45.    y  =  x(x2  +  1)  =  x3  +  X 
y'=  3x2  +  1 

49.   his)  =  i-*/^  -  ^2/3 

4                9                   4  7 

t  Y^l  =  -5-4/5  _  £c-i/3  =  —Z f_ 


53.  (a)    >-  =  X*  -  3x2  +  2 
y'  =  4x3  -  ^x 

At  (1.0):  y'  =  4(1)3  _  5(1)  =  _2. 
Tangent  line:  y  -  0  =  -2(x  -  1) 

2x  +  y  -  2  =  0 
(b) 


v; 

V 

\/^ 

(1.0?^ 

55.  (a)  fix)  =  ^  =  ^1^"'^" 

-3  —3 

f'(x)  =  ^x"''/"  =  — — 


At  (1,  2),   /'(I)  =  -^ 


Tangent  line; 


V  -  2  =  -Hx  -  1) 


3     .   7 
3x  +  2v  -  7  =  0 


y  =  --X  +  - 


(b) 


\ 

\^_ 

\ 

62        Chapter  2        Differentiation 


57.    y  =  X*  -  Sx^  +  2 
>>'  =  4j:^  -  16jr 

=  4x{x^  -  4) 

=  4x{x  -  2){x  +  2) 
y'  =  0  =>  j:  =  0,  ±2 
Horizontal  tangents:  (0,  2),  (2,  -  14),  (-2,  -  14) 


59.   y 


x2 


2x  '  =  — ^  cannot  equal  zero. 


Therefore,  there  are  no  horizontal  tangents. 


61.    y  =  X  +  sin  X,  0  <  X  <  Itt 

y '  =  1  +  cos  X  =  0 

cos  JC=— 1    =>    X  =   TT 

At  X  =   TT,  y  =   TT. 

Horizontal  tangent:  (n,  n) 


63.   AT^  —  fcc  =  4x  -  9     Equate  functions 

2x  -  k  =  4  Equate  derivatives 

Hence,  k  =  2x  —  4  and 
x^  -  {2x  -  4)x  =  4x  -  9- 

For  jc  =  3,  <:  =  2  and  for  x 


-x^  =  -9=:>j:  =  ±3. 
-3, /t=  -10. 


A;  3 

65.        -  =  — -X  +  3      Equate  functions 

X         4 


k^ 

X- 


Equate  derivatives 


3   2 

3  4^^ 
Hence,  k  =  —x^  and  — 

4  a: 


-3^1        3 
4  4 


3.3., 
■  — X  +  3  =»  -X  =  3  : 


.  X  =  2  =»  A:  =  3. 


67.  (a)  The  slope  appears  to  be  steepest  between  A  and  B. 

(b)  The  average  rate  of  change  between  A  and  B  is 
greater  than  the  instantaneous  rate  of  change  at  B. 


(c) 


69.  g(x)=/(x)  +  6^g'W=/'(x) 


71, 


ff/is  linear  then  its  derivative  is  a  constant  function. 
fix)  =  ax  +  b 
fix)  =  a 


Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change       63 


73.  Let  (x^,  y^  and  (xj,  y^^  be  the  points  of  tangency  ony  =  x^  and  y  =  —x~  +  6x  -  5,  respectively.  The  derivatives  of 
these  functions  are 

y'  =  2x  =^  m  =  2x^     and    y'=  — 2x  +  6  =>  m=  —  Ixj  +  6. 

m  =  2x,  =  —  Ivj  +  6 

JCl  =  -^2  +  3 

Since  y,  =  .r,^  and  jj  =  -x^^  +  60:3  ~  5, 

V2  -  yi     (-x,^  +  6x2  -  5)  -  (-x,^) 

ra  = = =  —  2x,  +  6. 


{-x.}  +  6X-,  -  5)  -  (-x,  +  3)2 


=  -2x,  +  6 


X2  —  {~X2  +  3) 

{-x^  +  6x2  -  5)  -  Uj-  -  6x2  +  9)  =  (-2x2  +  6)(2x2  -  3) 
-Ixj'  +  12t2  -  14  =  -4x2-  +  18x2  -  18 
2x2'  -  6x2  +  4  =  0 
2(x2  -  2)(x2  -  1)  =  0 


1  or  2 


1  =>  y2  =  0,  X,  =  2  and  Vj  =  4 


Thus,  the  tangent  line  through  (1,0)  and  (2,  4)  is 


y-0  = 


(x  -  1)  =>  y  =  4x  -  4. 


\2  -  \) 

Xj  =  2  =>  y,  =  3,  X,  =  1  and  Ji  =  1 
Thus,  the  tangent  line  through  (2,  3)  and  (1,  1)  is 

(i  -  r 


V  -  1  = 


2  -  1 


(x  -  1)  =>  y  =  2x  -  1. 


75.  /(x)  =  J~x,  (-4,0) 

'■"'-r"'-in 


1 


0  -  V 


ij'x      -4-x 
4  +  X  =  2Vxy 
4  +  X  =  2VxVx 
4  +  X  =  2x 

X  =  4,  y  =  2 
The  point  (4,  2)  is  on  the  graph  of/. 
0-2 


Tangent  line:     y  -  2 


-4-4 
4y  -  8  =  X  -  4 

0  =  X  -  4v  +  4 


(.t  -  4) 


77.   /'(I)  =  -  1 


64        Chapter  2        Differentiation 


79.  (a)  One  possible  secant  is  between  (3.9,  7.7019)  and  (4,  8): 
8  -  7.7019, 


y-i 


<^-4) 


4  -  3.9 
y  -  8  =  2.981U  -  4) 
y  =  5W  =  2.981;c- 3.924 

(b)  fix)  =  \x^l^  ^  /'(4)  =  f(2)  =  3 

r(.r)  =  3(;c  -  4)  +  8  =  3jc  -  4 

5(x)  is  an  approximation  of  the  tangent  line  Tt^:). 

(c)  As  you  move  further  away  from  (4,  8),  the  accuracy  of  the  approximation  T  gets  worse. 


(d) 


Ax 

-3 

-2 

-1 

-0.5 

-0.1 

0 

0.1 

0.5 

1 

2 

3 

/(4  +  Ax) 

1 

2.828 

5.196 

6.548 

7.702 

8 

8.302 

9.546 

11.180 

14.697 

18.520 

7t4  +  Ax) 

-1 

2 

5 

6.5 

7.7 

8 

8.3 

9.5 

11 

14 

17 

81.  False.  Let/(x)  =  x-  and  g{x)  =  x^  +  4.  Then 
/'(x)  =  g'W  =  2x,but/(x)^g(x). 


83.  False.  If  y  =  ir^,  then  dy/dx  =  0.  (tt^  is  a  constant.) 


85.  True.  If  g(x)  =  3/(.x),  then  g'(x)  =  3/'(x). 


87.  f(t)  =  2t  +  7,  [1,2] 

fit)  =  2 

Instantaneous  rate  of  change  is  the  constant  2. 
Average  rate  of  change: 


/(2)-/(l)      [2(2)  +  7]  -  [2(1)  +  7] 


=  2 


2-1  1 

(These  are  the  same  because/is  a  line  of  slope  2.) 


89.  f(x)  =  --.  [1,  2] 


fix) 


x' 


Instantaneous  rate  of  change: 
(1,-1)  ^/'(1)  =  1 


2.-l)^rm-\ 


Average  rate  of  change: 

/(2)-/(l)      (-1/2) -(-1)  ^  j_ 
2-1  2-1  2 


Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change       65 


91.  (a)  s{t)  =  -  16r=  +  1362 

v(r)  =  -32r 

sir)  -  s{\) 
^">      2-1       "  ^^^^  -  1346  =  -48  ft/sec 

(c)  v(t)  =  sXt)=  -32/ 

Whenf  =  1:  v(l)  =  -32  ft/sec. 
When  t  =  2:  v(2)  =  -64  ft/sec. 

(d)  - 16/2  +  1362  =  0 
1362 


f2  = 


16 


/  =  ^^»  9.226  sec 


(e)v(^)  =  -32(^) 

=  -871362  «  -295.242  ft/ sec 


93.      s(t)  =  -A.9fi  +  Vot  +  So 
=  -4.9f2  +  120r 
v(r)  =  -9.8;  +  120 
v(5)  =  -9.8(5)  +  120  =  71  m/sec 
v(10)  =  -9.8(10)  +  120  =  22  m/sec 


95. 


■S.   50-- 
.S    '» 


-t— I- 


2       4      6       8      10 
Time  (in  minutes) 


(The  velocity  has  been  converted  to  miles  per  hour) 

99.  (a)  Using  a  graphing  utility,  you  obtain 
«  =  0.167V  -  0.02. 
(c)  T=  R  +  B  =  0.00586V-  +  0.1431v  +  0.44 

(e)  --  =  0.01172V  +  0,1431 
flv 


Forv  =  40,  r'(40)  «  0.612. 
Forv  =  80,  r'(80)  «  1.081. 
Forv  =  100,  r'(lOO)  =«  1.315. 


97.  V  =  40  mph  =  f  mi/min 
(f  mi/min)(6  min)  =  4  mi 

V  =  0  mph  =  0  mi/min 
(0  mi/min)(2  min)  =  0  mi 

V  =  60  mph  =  1  mi/min 
(1  mi/min)(2  min)  =  2  mi 


(b)  Using  a  graphing  utility,  you  obtain 

B  =  0.00586v2  -  0.0239V  +  0.46. 
(d)     60 


Time  (in  minules) 


(f)  For  increasing  speeds,  the  total  stopping  distance 
increases. 


101.  A 


,  dA 


'  ds 

When  .r  =  4  m, 
dA 


ds 


=  8  square  meters  per  meter  change  in  i. 


103. 


^      1,008,000      ,,^ 
C  = :; +  6.3(2 


dC_ 
dQ 


Q 
1,008.000 


+  6.3 


C(351)  -  C(350)  =  5083.095  -  5085  =  -$1.91 
d€ 


When  Q  =  350, 


dQ 


$1.93. 


105.  (a)   /'(1 .47)  is  the  rate  of  change  of  the  amount  of  gasoline  sold  when  the  price  is  $1.47  per  gallon, 
(b)   /'(1. 47)  is  usually  negative.  As  prices  go  up,  sales  go  down. 


66        Chapter  2        Differentiation 


107.  y  =  ax-  +  bx  +  c 

Since  the  parabola  passes  through  (0,  1)  and  (1,  0),  we  have 
(0,  1):  1  =  a(0)2  +  b{Q)  +  c  ^  c  =  1 
(1,  0):  0  =  a{\Y  +  b(\)  +  1  =*  fc  =  -a  -  1. 
Thus,  y  =  ax^  +  {—a  —  \)x  +  \.  From  the  tangent  line  y  =  x  -  1,  we  know  that  the  derivative  is  1  at  the  point  (1,  0). 
y'  =  lax  +  {-a  —  1) 
1  =  2a(l)  +  (-«-!) 
1  =a  -  1 
a  =  2 

6=  -a  -  1  =  -3 
Therefore,  y  =  2x^  -  l,x  +  \. 

109.    y  =  ]^  -9x 

y'  =  3x2  -  9  ■  ,.     . 

Tangent  lines  through  (1, —9): 

.      y  +  9  =  (3x2  _  9)(^  _  1) 
•        (x3  -  9x)  +  9  =  3x3  -  3x2  -  9x  +  9 

0  =  2x3  -  3x2  =  ^2(2;c  -  3) 

X  =  0  or  X  =  2 
The  points  of  tangency  are  (0,  0)  and  (f,  -y).  At  (0,  0)  the  slope  is  ^'(0)  =  -9.  At  (f,  -y)  the  slope  is  y '(2)  =  "I  • 
Tangent  lines: 

y-Q=  -9(;c  -  0)     and  y  +  f  =  "K^  "2) 

n  9  27 

y  =  -9x  y  =  -4X  -  -^  ■  ■ 

9x  +  J  =  0  9x  +  4y  +  27  =  0 

111.  /(x)  =      2    .    J,  ^  o 

[x2  +  i),      X  >  2 

/must  be  continuous  at  x  =  2  to  be  differentiable  at  x  =  2. 
lim  fix)  =  lim  ox^  =  8a  1  8a  =  4  +  fo 

lim  /(x)  =  lim  (x2  +  /,)  =  4  +  Z7  J      ^"^  ~  ■*  "  ^ 

x->2*  x-»2* 


fix) 


3ax2,      X  <  2 
2x,         X  >  2 


For/to  be  diiferentiable  at  x  =  2,  the  left  derivative  must  equal  the  right  derivative. 

3a(2)2  =  2(2) 
12a  =  4 


a  =  3 

i  =  8a  -  4  =  -I 


Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives        67 


113.  Let/W  =  cosx 

f(x  +  Ax)-f{x) 


f'(x)  =   lim 

Ax->0 


=  lim 

Ax-»0 


Ax 

cos  X  COS  Ajc  —  sin  j:  sin  Ajc  —  cos  x 
Ajc 


,.      cosx(coszix-  1)        ,.  /sinAx 

=  liin  : lim  smx — : — 

Ax->o  Ajc  /u->o  \    Ax 

=  0  -  sinx(l)  =  -sinx 


Section  2.3       The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives 


1.  g(x)  =  (x-  +  DU^  -  It) 

g'(x)  =  {x'-  +  l)(2.r  -  2)  +  ix^  -  2x)(2x) 
=  Ix^  -  2^2  +  2r  -  2  +  2x3  -  4x2 
=  4x^  -  6x-  +  lx  -  2 


S.  f(x)  =  x^cosx 

f'(x)  =  x3(— sinx)  +  cosx(3x-) 
=  3x-  cosx  —  x^  sinx 


3.  hit)  =    yiifi  +  4)  =  fi/3(f2  +  4) 

h'(t)  =   f'/3(2f)   +  (f2+4)l    -2/3 


=  2f4/3  + 


t-  +  4 

3f2/3 


7f2  +  4 
3/2/3 


7.  /(x) 


X2  +   1 


fix)  = 


(x2  +    1)(1)   -  x(1t)  1    -x2 


(x2  +    1)2  (x2  +   1)2 


9.  h(x) 


rx 


rl/3 


X3   +    1  .x3   +    1 


h\x)  = 


(X3  +    l)jX-2/3  -  X'''3(3x2) 
U^Tl)^ 

(x3   +    1)  -  X(9x2) 
3x2/3(x3  +    1)2 

1  -  8x3 


3x2/3(x3  +    1)2 


11.  g(x 


gXx)  = 


x2(cosx)  -  sin.t(2t)  _  x  cos  x  -  2  sin  x 

(x2)2  -  x3 


13.  fix)  =  (x3  -  3x)(2t2  +  3x  +  5) 

fix)  =  (x3  -  3x)(4x  +  3)  +  (2x2  +  3;c  +  5)(3;c2  _  3) 

=  lOx^  +  12x3  -  3^2  _  18^  _  15 
/'(0)  =  -15 


15.  fix)  = 


/'W  = 


/'(I)  = 


x2  -  4 


X  -  3 

ix  -  3)(2x)  -  (x2  - 

-4)(1) 

2r2  -  6.r  -  x^ 

U  -  3)2 

*  4 

U  -  3)2 

.r2  -  dx  +  4 
U  -  3)2 

1-6+4          1 
(1  -  3)2           4 

17.      fix)  =  X  cos  X 

fix)  =  (x)(-sinx)  +  (cosx)(l)  =  cosx  -  xsinx 

Hf)=#-f(#)=f'-'» 


68        Chapter  2        Differentiation 


Function                          Rewrite 

Of 

nvafive 

19.  v^^^;^       .^.^^f. 

y' 

2         2 
=  3^^3 

21..  =  3^3                         .  =  1-^ 

y' 

=  -7;c-4 

23.  y  =  —                       y  =  4v^, ;c>  0 

y' 

=  2;c-'/2 

-/«  =  ^^^ 

..  .       U^  -  l){-2  -  2;c)  -  (3  -  2;c  -  x^)(2x) 

/W-                                         (^2_l)2 

2^2  -  4;c  +  2      2(x  -  1)^ 

"U+D-^-'^i 

/            4     \                4x 
27./W=.(l-^^3)=.-^^3 

29. 

(x  +  3)4-4x(l)       U2  +  6;c  +  9)- 
-^^""^                     U  +  3)2           "            (;c  +  3)2 

12 

^2  +  6;c  -  3 

Simplih 

,      2;c  +  2 


2a:  +  5 


2;c'/2  +  5;c-i 


fix)   =X-'/2-|;C-3/2  =  X-3/2 


^~i 


U  +  3)2 


2;c  -  5  ^  2x-  5 
2^Vx  "    2x3/2 


31.    ftW  =  (53  -  2)2  =  56  -  4^  +  4 
/i'(i)  =  6^  -  12*2  =  6^2(^3  -  2) 


33.  fix) 


2x-  \        2x-  \ 


X  —  3      xix  —  3)      ^2  —  3x 


,  ,  ^  U2  -  3a:)2  -  (2x  -  l)(2x  -  3)  ^  2^2  -  6x  -  4^2  +  8a  -  3 
^  ^'''  U2  -  3a)2  ^2  -  3x)2 


-2^2  +  2x  -  3 
(x2  -  3x)2 


2^2  -  2x  +  3 

x2(x-3)2 


35.  /W  =  (3jt3  +  4x)ix  -  5)(x  +  1) 

fix)  =  (9x2  +  4)(^  _  5)(^  +  1)  +  (3x3  +  4x)i\)ix  +  1)  +  (3x3  +  4^)(^  _  5)(i) 

=  (9x2  +  4)(^2  _  4^  _  5)  +  3^4  +  3^3  +  4^2  +  4;c  +  3;c4  _  i5_^  +  4j^2  _  20x 
=  9x*  -  36x3  _  4i;f2  _  15^  -  20  +  6x^  -  12x3  +  8x2  -  j^^ 
=  ISx'*  -  48x3  -  33x2  _  2,2x  -  20 


37.  /(x)  = 


/'(^)  = 


X2  +  C2 


X2-C2 

(x2  -   c2)(2x)   -    (x2  +  c2)(2x) 


(x2  -   c2)2 


39.  fix)  =  fsmt 

fit)  =  P  cost  +  2t  sin  t 
=  titcost  +  2  sin  t) 


—4x^2 

(x2  -   c2)2 


Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives        69 


41.  fit)  =  ^  43.  fix)  =  -X  +  tan  ;t 


„/  V  _  -tsinf  -  cosf  _      f  sin  t  +  cos  t 


fix)  =  - 1  +  sec^j:  =  laiv^x 


45.  g(f)  =    4/^  +  8  sec  f  =  f'/"  +  8  sec  f  47.  y  =  ^''\     ^'"''^  =  |(sec.t  -  tanx) 

-^  2cos.r  2 

g'W  =7^3'"' +  8secftanf  =  — J7T  +  Ssecrtanf  ,3,  ,    ,      3        , 

^  ^r"'  ;y   =  -(sec  j:  tan  .t  -  sec-  x)  =  Tsec  .r(tan  x  -  sec  x) 

3 
=  -(sec X tanx  —  tan^x  -  1) 

49.    y  —  —  CSC  X  —  sin  X  51.  fix)  =  x^  tan  x 

y '  =  CSC  X  cot  X  —  cos  x  fix)  =  x-  sec-  x  -H  2x  tan  x 

COS  X  =  x(x  sec^  X  -H  2  tan  x) 

=  —r^ cos  X 

sin-x 

=  cosx(csc-x  —  1) 

=  cos  X  cot'^  X 

53.  y  =  2t  sin  X  +  x^  cos  x  55.    g(;^)  =  |1±_1  W  _  5) 

>> '  =  2x  cos  X  +  2  sin  X  -I-  x-(— sin  x)  -t-  2x  cos  x 

=  4x  cos  X  -^  2  sin  x  -  x^  sin  x  S  'W  =       ^,  ,   .^2  tfo™  of  answer  may  vary) 


(x  +  2)2 


57.  g(e)  = 


1  —  sin 


,,  .       1  -  sin  9  -I-  e  cos  e 

ff  (0)  = r^ — Tz:; (form  of  answer  may  vary) 

(sm  9-1)- 


1   +  CSC  X  " 

59.  y  = 

1    —  CSC  X 

-     ,  _  (1  -  cscx)(-cscxcotx)  -  (1  -I-  CSC  x)(csc  X  cot  x)  _  -2  CSC  X  cot  X 
-*'   ~  (1  -  cscx)=  ~    (1  -  cscx)- 

M  ^  -2(2)(^)  ^  _^ 
y[6)         (1-2)2  4V3 


61. 

ftW  = 

sec  t 

f 

h'it)  = 

f(sec  r  tan  f)  - 

(sec  r)(l) 

• 

t- 

= 

sec  r(f  tan  r  — 

;2 

i) 

/iV)  = 

sec  Triirtan  tt 

— 

il 

1 

70       Chapter  2        Differentiation 


63.  (a)  f(x)  =  {x^  -3x+  l){x  +  2),    (1,  -3) 

fix)  =  (;c3  -  3.t  +  1)(1)  +  {x  +  2)(3;c2  -  3) 

=  4;c3  +  6;c2  -  6x  -  5 
/'(I)  =  -1  =  slope  at  (1,-3). 
Tangent  line:  y  +  3  =  —l(x-  1)  => y  =  —x  —  2 


(b) 


65.  (a)  fix)  = 
fix)  = 
/'(2)  = 


(2,  2) 


;c  -  1 

(x  -  1)(1)  -  xil) -1 


ix  -  1)2  ix  -  1)2 


1 


=  -  1  =  slope  at  (2,  2). 


(2  -  1)2 
Tangent  line:  >>  -  2  =  -  lU  —  2)  =>  3?  =  -x  +  4 


(b) 


-i^ 

\i    \ 

67.  (a)     /W  =  tanx,    (^ j,  1 

/'(jc)  =  sec2x 


/'(f)  =  2  =  slopeat   Jl 


Tangent  line: 


y-i=2[x 


(b) 


jm 

J( 

if 

Y 

y-i  =  2x-- 

4j:-2y-Tr+2  =  0 


69 

/(-t)  = 

JC  - 

1 

fix)  = 

ix- 

-  1)(2x)  -  ;. 

^(1) 

ix  -  1)2 

^2 

-  2x       x(jc 

-2) 

ix  -    1)2  (x  -    1)2 

fix)  =  0  when  x  =  0  or  x  =  2. 
Horizontal  tangents  are  at  (0, 0)  and  (2, 4). 


71.  fix)  = 
g'ix)  = 


(x  +  2)3  -  3x(l)  _        6 
ix  +  2)2  (x  +  2)2 

(x  +  2)5  -  (5x  +  4)(1) 6 


ix  +  2)2 


ix  +  2)2 


,  ,       5x  +  4  3x  2x  +  4       ,,  ,       ^ 

/  and  g  differ  by  a  constant. 


73.  /(x)  =x"sinx 

fix)  =  x"  cos  X  +  nx"  " '  sin  X 
=  x"" '  (x  cos  X  +  n  sin  x) 


When  n  =  1 
When  n  =  2 
When  n  =  3 
When  n  =  4 


/'(x)  =  X  cos  X  +  sin  x. 
/'(x)  =  x{x  cos  X  +  2  sin  x). 
fix)  =  x2(x  cos  X  +  3  sin  x). 
fix)  =  x^ix  cos  X  +  4  sin  x). 


75.  Area  =  Ait)  =  (2f  +  l)Vf  =  2/3/2  +  ^1/2 
A'W  =  2(|f'/2)+|r'/2 

=  3?i''2  +  1,-1/2 


6t  +  1 

2Vf 


cm2/sec 


For  general  n,f'ix)  =  x"    '  (x  cos  x  +  n  sin  x). 


Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives        71 


77.     C=  100(202  + 

X 


""^    ioo(-^  + 


■2        X  +  30 
30 


1  <  X 


dx 

(a)  When  ;c  =  10 


:^        {x  +  30)2 
dC 


dx 
dC 


$38.13. 


(b)  Whenx  =  15:  -—  =  -$10.37. 

dx 

/"ft"' 

(c)  When  a:  =  20:  -—  =  -$3.80. 

dx 

As  the  order  size  increases,  the  cost  per  item 
decreases. 


79.     Pit)  =  500 
P'it)  =  500 
=  500 
=  2000 


11    '*'  " 

L        50  +  f2j 
(50  +  r2)(4)  - 

-  (4r)(2r) 

(50  +  Pjz 
200  -  4t- 


(50  +  t^y_ 

"   50  =  r 


.(50  +  a^J 
P'(2)  =  31.55  bacteria  per  hour 


81.  (a)         sec  x  = 


d.        -.       d 


(cos;c)(0)  -  (1)(— sinx)  _       sin.r       _      1         sin;c 


(cos  xy 


cos  X  cos  x      cos  X     cos  X 


=  sec  X  tan  x 


(b)         CSC  j: 


sinx 


-[csc^]  = 

d 
dx 

1 
,  sin  X 

(c)         cot  X  = 

cosx 
sin.v 

-[cot..]  = 

d 
dx 

"cos-t 

.sin;c 

83.  fix)  =  4x^/2 

fix)  =  6;ci/2 

/'W  =  3;c-/2 

■N 

3 

fx 

(sin.v)(0)  -  (1)(cosj:)  cosjt 


1        cos  j: 


(sin  jc)- 


sin  X  sm  X  sm  x     sin  x 


-  CSC  X  cot  x 


cos-t]       sin  .t(  — sin.r)  —  (cos. r)(cosj:)  sin^jc  +  cos^x  1 


(sin  .r)- 


sm''j: 
85.  fix)  = 

•  ■   /W  = 


sin-.v 


X  - 

- 1 

ix 

- 1)(1)  - 

.t(l) 

-1 

(-r  -  D- 

ix 

-D- 

2 

ix  -  D' 


87.  fix)  =  3  sin  x 
fix)  =  3  cos  X 
f'\x)  =  -  3  sin  X 


89.  fix)  =  x^ 
fix)  =  2r 


=  -)  /: 


91.  /"(x)  =  2v'x 

/'•'>(.v)=^(2).r-'-  =  -Jp 


93. 


/(2)  =  0 

One  such  function  is/(.v)  =  (x  —  2)-. 


95.  fix)  =  2gix)  +  hix) 
fix)  =  2g'ix)+h'ix) 
fi2)  =  2g'i2)  +  h'il) 
=  2(-2)  +  4 
=  0 


97.  fix)  = 
fix)  = 
/'(2)  = 


hix) 

hix)g'ix)  -  gix)h'ix) 
[hix)y 

h(2)g'i2)  -  g(2)h\2) 
[h(2)Y 

(-l)(-2)-(3)(4) 


(-1)- 


=  -10 


72       Chapter  2        Differentiation 


99. 


It  appears  that/ is  cubic;  so/'  would  be  quadratic  and 
/"would  be  linear. 


103.  v(r) 
,       a(t) 


lOOr 


2t+  15 

(It  +  15)(100)  -  (100?)(2) 

{2t  +  15)2 

1500 

(2r  +  15P 


(a)  a(5)  = 


101.  v(t)  =  36  -  r^,  0<r<6 
a(r)  =  -2t 
v(3)  =  27  m/sec 
a{3)  =  -  6  m/sec 
The  speed  of  the  object  is  decreasing. 


1500 


(b)  a(10)  = 

(c)  a(20)  = 


[2(5)  +  15? 
1500 


[2(10)  +  15? 

1500 

[2(20)  +  15]^ 


=  2.4  ft/sec2 
=  1.2ft/sec2 
»  0.5  ft/sec2 


105.  f(x)  =  g(x)h{x) 

(a)     fix)  =  gix}h'{x)  +  h(x)g'(x) 

fix)  =  g{x)li"{x)  +  g'(x)h'{x)  +  h(x)g"ix)  +  h'{x)g'ix) 

=  g(x)hXx)  +  2g'{x)h  Xx)  +  h{x)g\x) 
rix)  =  g(x)h"'(x)  +  g'{x)h"(x)  +  2g'{x)h'\x)  +  2g"ix)h'(x)  +  h(x)g"'(x)  +  h'{x)g%x) 

=  g{x)h  '"{x)  +  3g  'ix)h'{x)  +  3g%x)h  Xx)  +  g  "'ix)hix} 
f^%x)  =  g(xW'Kx)  +  gXx)h"Xx)  +  3gXx)h"Xx)  +  3g'\x)h'U)  +  Sg'UMx)  +  3g"'{x)hXx) 
+  g"Xx)hXx)  +  g^'KxMx) 
=  gixW'Kx)  +  4gXx)h"Xx)  +  6g'{x)h'{x)  +  4g"'ix)hXx)  +  g^'Kx)h{x) 

(X>)  f    w      gwn    W  +  j^(^  _  j)(^  _  2) .  .  .  (2)(1)^  ^'''^        ^'''  ^  (2)(l)[(n  -  2)(n  -  3)  ■  ■  •  (2)(1)]^  ^'         ^' 

+  ,.J:[-:^^z'^-::^^'L.,g"'ix)h^-^^(^  +  ■  ■  ■ 


(3)(2)(1)[(«  -  3)in  -  4)  ■  ■  •  (2)(1) 
n{n-  \)(n-2)-  ■  ■  (2)(1) 


[{n-l)(n-2)-  ■  •(2)(l)](i; 


g^"-'Kx)hXx)+g^"\x)h{x) 


=  gix)hMix)  +  !,(„":  i),gW^"'-"(^)  +  2!(/-  2)!g'^^)^^"""(^)  +  ■  ■  ■ 


-g(«-'>(x)A'(;t)  +  gW(x);i(;c) 


(n-  1)!1!' 
Note:  «!  =  «(«  —  1) ...  3  •  2  •  1  (read  "n  factorial.") 


Section  2.4        The  Chain  Rule        73 


107.    f(x)  =  cos  X 

f'(x)  =  -sinjr 

f"(x)  =  -cos  a; 

(a)  Pi(x)  =  f'(a)ix  -  a)  +  fia 
1 


^1  7r\  77         1 

/  —     =  COS  —  =  - 
-'*  3/  3       2 


r/|  ■''■\  •      "■  v/3 

/ljj  =  -s.n-=-— 
/(-    =-cos-=-- 


^f.  -  ^] . 


2   V' 


=  -4l"-3J    -T"l"-3J  +  2 
(c)  P,  's  a  better  approximation. 


(b) 


/■jX 

<. 

> 

(d)  The  accuracy  worsens  as  you  move  farther  away 
fromx  =  a  =  (ir/S). 


109.  False.  If  y  =  f{x)gix),  then 
dy 


dx 


-  f(x)g'{x)  +  g{x)f'{x). 


111.  True 

h'(c)  =  f(c)g'(c)  +  g(c)f\c) 
=  /(c)(0)  +  g(c)(0) 
=  0 


113.  True 


115.  fix)  =  x\x\  = 


X-,      iix>Q 
-x^,   \ix  <  0 


fix) 


fix)  = 


2x,      ifjc  >  0 
-2x,   \ix  <  0 

2,      if  a:  >  0 
-2,   if.)c  <  0 


/"(O)  does  not  exist  since  the  left  and  right  derivatives 
are  not  equal. 


Section  2.4       The  Chain  Rule 


y=Mx)) 

1.  y  =  {6x  -  5)" 


"  =  g(x) 
u  =  bx  —  5 


■    y=f{u) 


y  =  W 


3.  y  =  Ti^^nr 


u  =  X-  —  1 


=  ^ 


5.  V  =  csc'j: 


M  =  cscx 


7.    .V  =  (2x  -  7)' 

y'=3(2j<:-  7)-(2)  =  6(2x-  7)^ 


9.    ^(.v)  =  3(4  -  9.V)-' 

g'(x)  =  12(4  -  9Af(-9)  =  - 108(4  -  9x)^ 


11.  fix)  =  (9  -  ;c=)=/' 


13.  /(f)  =  (1  -  f)"- 

/'(f)=^l-r)-'-(-l) 


2vl  -/ 


74        Chapter  2        Differentiation 


15.    y  =  (9;(2  +  4)1/3 


17.  y  =  2(4  -  j;2)i/'» 


^'=2^  (4-;c2)-3'V2;c) 


4^(4  -  ;c2 


19.    >>  =  (;c-  2)-' 

y'=-l(2-;c)-2(l)  = 


1 


(^  -  2? 


21.  /(t)  =  (r  -  3)-2 
fit)  =  -2(r  -  3)-3  = 


a  -  3)3 


23.    y  =  (x  +  2)-'/2 

^  =  _i(^  +  2)-3/2  = \ 


25.  f{x)  =  x\x  -  If 

fix)  =  x\A{x  -  2)3(1)]  +  (;c  -  2)^(2;t) 
=  2x{x  -  2)3[2x  +  (x-  2)] 
=  2x{x  -  2)3(3x  -  2) 


27.    y  =  xj\  -  x^  =  x{\  -  x^y^ 


y   =x 


\(\  -  x^)-'/^(-Xx) 


+  (1  -  x2)'/2(l) 


=  -xW  -  x^Y"^  +  (1  -  x2)'/2 

=  (1  -  x')-''\-x^  +  (1  -  ;c2)] 
1  -2x2 


yn^ 


/  <    ,' x  +  5 

31.  g{x)=    — 


gW  =  21 


;c2  +  2, 

;c  +  5  \/(x2  +  2)  -  (x  +  5)(2;i;) 


35.    y 


;c2  +  2/\  (a;2  +  2)2 

_  l{x  +  5)(2  -  10;c  -  x^) 
(x2  +  2)3 

J~x  +  1 
;c2+  1 

1  -  3;c2  -  4;(3/2 
275(;c2  +  1)2 


The  zero  of  y '  corresponds  to  the  point  on  the  graph  of 
y  where  the  tangent  line  is  horizontal. 


29.    y  = 


=  X(x2  +    l)-l/2 


y'  =  /-^(x2  +  l)-3''2(2x)l  +  (x2  +  l)-'/2(i) 

=    -;c2(x2  +    I)-3/2  +  (^2  +    l)-l/2 
=   (;c2  +    l)-3/2[-;c2  +  {x"  +    1)] 
1 


(;c2  +  1)3/2 


33.  /(v)  = 


/'(v)  =  3 


1  -  2v 
1  +  V 

1  -  2v\V(l  +  v)(-2)  -  (1  -  2v) 


1  +  V  /  V  (1  +  v)2 

9(1  -  2v)2 


37.    «(f)  = 


(1  +  v)* 

3f2 
Jfi  +  2t-  \ 


^  Itjfi  +  3f  -  2) 
^  ^  ^      (r2  +  2f  -  1)3/2 

The  zeros  of  g '  correspond  to  the  points  on  the  graph  of 
g  where  the  tangent  lines  are  horizontal. 


Section  2.4        The  Chain  Rule        75 


39.    y 


=  V^ 


,^      J(x  +  l)/x 
^  2x{x  +  1) 

y '  has  no  zeros. 


.   .  .^^ 

L. 

v 

( 

41.    s(t) 
s\t) 


-1{1  -  t)J\  +  t 


JVT 


The  zero  of  s  '{t)  corresponds  to  the  point  on  the  graph  of 
s{t)  where  the  tangent  line  is  horizontal. 


s 


43.    y 


cos  TTJC  +    1 


dy  _  —  vx  sin  vx  —  cos  ttx  -  1 
clx~  x^ 


TTX  sin  TTX  +  cos  TTX  +   1 


M 


The  zeros  of  y '  correspond  to  the  points  on  the  graph  of  y  where  the  tangent  lines  are  horizontal. 


45.  (a)        y  =  sin  X 
y'  =  cosjc 

y'io)  =  1 

1  cycle  in  [0,  Itt] 


(b)   y  =  sin  2x 
y '  =  2  cos  2x 
y'iO)  =  2 
2  cycles  in  [0,  2Tr] 
The  slope  of  sin  ax  at  the  origin  is  a. 


47.    y  =  cos  3jc 
dy 


dx 


=  -  3  sin  3a: 


51.  y  =  sin  (irx)-  =  sin  (ir-x^) 

y'  =  cos  (tt x-)[27r\x]  =  27r-.vcos(iT-j:-) 

53.  h(x)  =  sin  2jc  cos  2x 

h  '(x)  =  sin  2t(-  2  sin  Iv)  +  cos  2j:(2  cos  2jc) 
=  2  cos-  2x  —  2  sin-  2t 
=  2  cos  4.1:. 

Alternate  solution:     h{x)  =  —  sin  4.r 


h  '(x)  =  -  cos  4j:(4)  =  2  cos  4.r 


49.    g{x)  =  3  tan  4x 
g'{x)  =  12  sec-4jt 


sc    f,  ^      cot.t       cosj: 

55.  f(x)  = =  ^^;— 

Sin  X      sin-  X 


fix)  = 


sin-  .rl— sin  .r)  —  cos  xjl  sin  x  cos  .t) 
sin'*  .t 

—  sin^A:  —  2  cos-.r       —  1  —  cos-.t 


sin^  .v 


sin-  .V 


76       Chapter  2        Differentiation 


57.  y  =  4  sec^  X 

>> '  =  8  sec  a:  •  sec  j:  tan  ^  =  8  sec^  xtanx 


61.  fix)  =  3sec2(7rf-  0 

/'W  =  6sec(Trr  -  l)sec(Trr-  l)tan(7rr-  IKtt) 

6Trsin(Trr  —  1) 


=  6irsec2(irr  -  1)  tan(irf  -  1)  = 


cos^  (irt  -  1) 


59.  /(fl)  =  J  sin2  20  =  |(sin  26)^ 

fie)  =  2(3)(sin  20)(cos  2e)(2) 
=  sin2ecos2e  =  5  sin  40 

63.    y  =  ^  +  -  sin(2;c)2 
=  -/x  +  -  sin(4;c2) 
£  =  |;c-'/2  +  icos(4x2)(8x) 


1 


2v^ 


+  2x  cos(2x)2 


65.     y  =  sin(cosx) 

—  =  cos(cosar)  •  (— sinx) 
ax 

=  —  sin  j:  cos(cos  x) 


67.     s(t)  =  it^  +  2t+  8)'/2,    (2,4) 
J'W  =|(f2  +  2f+  8)-'/2(2f +2) 
t+  1 


^'(2)  = 


Vr^  +  2r  + 
3 


69-      /W  =  ^  =  3(^3  _  4)-i,    /     i,_3 


/'W  =  -3(;c3  -  4)-2(3x2: 


9;r2 


ix'  -  4y- 


/'(-1)  = 


25 


71.   /(r)  =  i^,    (0,-2) 


/'(O 


r-  1 

(t  -  1)(3)  -  (3f  +  2)(1) 


-5 


(f  -  1)^ 


/'(O)  =  -5 


it  -  1)' 


73.        y  =  37  -  sec3(2;c),    (0,  36) 

y'  =  -3  sec2(2x)[2  sec(2;c)  tan(2x)] 

=  -6sec3(2x)tan(2x) 
y'iO)  =  0 


75.  (a)  fix)  =  J3x^  -  2,    (3,  5) 
/'(x)  =  ^3;c^  -  2)->/2(6x) 
3x 


V3]t 


/'(3)  = 


Tangent  line: 


><  -  5  =  -(a:  -  3)  ^  9;c  -  5y  -  2  =  0 


(b) 


\j 

/" 

/ 

77.  (a)   /(x)  =  sin  2x,    (tt,  0) 
fix)  =  2  cos  2x 
/V)  =  2 
Tangent  line: 

>  =  2(;c  -  tt)  ^>  2x  -  y  -  27r  =  0 
(b) 


Section  2.4        The  Chain  Rule       77 


79.   fix)  =  2(;c2  -  \f 
fix)  =  6(;c^  -  mix) 

=  llxU"  -2x^+1) 
=  llr^  -  24A-5  +  Xlx 

fix)  =  eOjc"  -  72jc2  +  12 
=  12(5x2  -  l)(jc2  -  1) 


81.    /(x)  =  sin  x2 
/'(x)  =  2xcosx2 

/"(x)  =  2x[2x(-smx=)]  +  2cosx2 
=  2[cos  x^  —  Ix^  sin  x-] 


83. 


85. 


The  zeros  of/'  correspond  to  the  points  where  the  graph 
of/has  horizontal  tangents. 


The  zeros  of/'  correspond  to  the  points  where  the  graph 
of/ has  horizontal  tangents. 


87.  g(x)=/(3x) 

g'(x)  =/'(3.r)(3)  ^  g'(x)  =  3/'(3x) 


89.  (a)  fix)  =  gix)hix) 

fix)  =  g{x)h'ix)  +  g'ix)hix) 
f'iS)  =  (-3)(-2)  +  (6)(3)  =  24 


('^^^w-fS 


fix) 
/'(5) 


Mx)g'(x)  -  g(x);it^) 

(3)(6)  -  (-3)(-2)       12      4 
(3)2  9       3 


(b)  /(.r)  =  gihix)) 

fix)  =  g'ihix))h'ix) 

/'(5)  =  g'(3)(-2)  =  -2g'(3) 

Need  g'(3)  to  find /'(5). 

(d)  fix)  =  [g(x)]^ 

/'(x)  =  3[g(.r)]2g'(.t) 
/'(5)  =  3(- 3)2(6)  =  162 


91.  (a)  /=  132.400(331  -  v)"' 

/'  =  (-1)(132,400)(331  -  v)--i-\) 

132,400 

"  (331  -  v)  = 

Whenv  =  30,/'=  1.461. 


(b)   /=  132,400(331  +  v)"' 

/'  =  (-1)(132,400)(331  +  v)-2(l) 

-132.400 
(331  +  v)- 

Whenv  =  30,/'=  -1.016. 


93.  e  =  0.2  cos  8f 

The  maximum  angular  displacement  is  9  =  0.2  (since 
-  1  <  cos  8f  <  1). 


M 
dt 


0.2[-8sin8t]  =  -1.6  sin  8r 


When  t  =  3.  dd/dt  =  -  1.6  sin  24  =  1.4489  radians  per 
second. 


95.    S  =  CiR-  -  r-) 

f=c(2Rf-2r'-f 
dt         \       dt  dt 


Since  r  is  constant,  we  have  dr/dt  =  0  and 

^  =  (1.76  X  105)(2)(1.2  X  10--)(10-5) 
dt 

=  4.224  X  10"-  =  0.04224. 


78 


Chapter  2        Differentiation 


97.  (a)  x=  -  1.6372f3  +  19.3120f2  -  0.5082r  -  0.6161 
(b)  C=  60x+  1350 

=  60(-1.6372r3  +  19.3120r2  -  0.5082«  -  0.6161)  +  1350 
dC 


dt 


=  60(- 4.9 116(2  +  38.624r  -  0.5082) 


=  -294.696r2  +  2317.44f  -  30.492 
The  function  —  is  quadratic,  not  linear.  The  cost  function  levels  off  at  the  end  of  the  day,  perhaps  due  to  fatigue. 


99.  f{x)  =  sin  ^x 

(a)  fix)  =  )3  cos  fix 
f"{x)  =  -0'smpx 
f"'(x)  =  -p^cosfix 

/(^'  =  /S"  sin  lix 

(b)  fix)  +  p^fix)  =  -/32  sin  fix  +  fi^ism  fix)  =  0 

(c)  f  ^^\x)  =  {- ly  fi^'' sin  fix 
/(^--DW  =  (-!)*+ 1/32*-' cos /Sjc 


101.  (a)  r'ix)  =  f'{g{x))g'ix) 
r'(l)=/'(g(l))g'(l) 

Note  that  ^(  1 )  =  4  and  /'(4) 


6-2 


Also,  g'{l)  =  0.  Thus,  r'(l)  =  0 
(b)  s'ix)  =  g'{fix))f'{x) 
s'{4)  =  g'(f(4))/'(4) 


Notethat/(4)  =  |g'(| 


6-4       1      ^ 

T  =  -and 

6-2      2 


/'(4) 


Thus,  5'(4)=  1(1 


103.     g  =  Vx(x  +  n) 
=  ~Jx-  +  nx 

^  =  i(;c2  +  nx}-'/2{2x  +  n) 
ax      2 

2x  +  n  i 


Ijx^  +  >u 
(2;c  +  «)/2 
VaCx  +  w) 

[x  +  (x  +  «)]/2 

VjcU  +  «) 
£ 


105.    g(x)  =  |2jc  -  3| 
2a:-  3 


g'{x) 


2JC-3 


X9t 


107.    /j(x)  =  |x|cosx 


h  '(x)  =  —  \x\  sinx  +  -r~\  cos  x,    x  ^  0 


Section  2.5        Implicit  Differentiation       79 


109.  (a)  f(x)  =  tan  - 


/(I)  =  1 


/W  =  -sec2  — 


.,„   s         TT         -,  TTX  TTX    TT 

/  W=-sec2— -tan— (- 


/'(I)  =  J(2)  =  f 


/"(l)=|(2j(l)  =  J 


/',W=/'(l)(;c-l)+/(l)  =  |(;c-l)+l. 

P.U)  =  |(f)(x  -  IF  +/'(1)U  -  1)  +/(!)  =  |{:c  -  IP  +  |(x  -  1)  +  1 


(b) 


(c)  Pj  '5  ^  better  approximation  than  P, 

(d)  The  accuracy  worsens  as  you  move  away  from  x  =  c  =  1 . 


111.  False.  Ify  =  (1  -  xY'-,  theny'  =  jd  -  x)-'/-(-l). 


113.  True 


Section  2.5       Implicit  Differentiation 


1.      x^  +  f  =  36 
2x  +  2yy'  =  0 


^1/2  +  y/2  =  9 


-1/2 


,-1/2 


5.  .r^  -  XV  +  y'  =  4 

3x'  -  jty '  —  y  +  2yy '  =  0 

(2y  —  x)y '  =  y  —  3x^ 

Zy  —  X 


7.  x^y  -  y  -  X  =  0 

3.t3y2y'+  3.A-'  -  y'  -  1  =0 

(3;c3>'=  -  l)v'=  1  -  3xn^ 

,  _  1  -  3.rK-^ 
•'■        3.r3%-  -  1 


9.  x^  -  ?>x-  +  Zxy~  =  12 

3x2  _  3^2y-  _  6^^^,  +  4;tyy'  +  2r  =  0 

(4xv  -  3x2)y'  =  6xy  -  3x-  -  2y- 

j  _  6xy  -  3x-  —  2y2 
^    ~        4x7  -  3x2 


11.        sin.v  +  2cos  2y  =  1 
cos  X  -  4(sin  2y)y '  =  0 


4  sin  2v 


80       Chapter  2        Differentiation 


13.   sin.r  =  ;>:(1  +  tany) 

cos.r  =  x{sec'^  y)y'  +  (1  +  tany){\) 
,      cos  X  —  tan  V  —  1 

y  = T" 

X  sec-  y 

17.  (a)  ;c2  +  y2  =  16 

/  =  16  -  a:^ 


±Vl6  -  x^ 


15.  y  =  sin(xy) 

y'  =  [xy'  +  >']cos(xy) 
y'  -  X  cos{xy)y'  =  y  cos(xy) 

y  cos(xy) 


y  = 


I  —  X  cos(xy) 


(b) 


y=  Vl6-jc2 


y  =  -V16-x2 


/ 


(c)  Explicitly 
dy  _l 


dx 


(16  -  x?)-'"-(-2x) 


(d)  Implicitly: 

2x  +  lyy'  =  0 


Vl6  -  ;c2 


±716" 


19.  (a)   \(iy-=  144  -  9^;^ 


^  =  1^044  -  9x2)  =  ^(,6  _  ^2) 


b^yie" 


(b) 


(c)  Explicitly: 

J  =  ±|(16-jc2)-/2(-2x) 


3x 


-3x         -^x 


4716  -  X-      4(4/3)y       16y 


(d)  Implicitly: 

18x  +  32xv'  =  0 


-9x 
16)- 


21.  xy  =  4 

xy'  +  y(l)  =  0 
xy'=  -y 

'■  =  ? 

At  (-4,-1):  y'=-\ 


2'-      ^"-x=  +  4 

,     ,      (x2  +  4)(2x)  -  (x2 - 

-  4)(2x) 

^•^^    "                  (x2  +  4)2 

^^^ 

^^^        (x^  +  AY 

8x 

-^       y(x2  +  AY 

At  (2,  0),  >>'  is  undefined. 

Section  2.5        Implicit  Differentiation       81 


25.  x2/3   +  y2/3  =   5 


r-1/3 


-1/3 


At  (8,1):  y'=  --. 


3/^ 


27.  tan(a:  +  y)  =  jc 

(1  +y')sec2(j(  +  >)  =  1 

1  -  secHx  +  y) 

sec^U  +  y) 

—  tan^U  +  y) 


tan^U  +  y)  +  1 


—  cin^l 


sin^U  +  y) 


x2+  1 


At  (0,0):  y'  =  0. 


29. 

0 

c=  +  4)y  = 

=  8 

(^^' 

+  4)y' 

+  y(2x)  = 
y'  = 

=  0 

-2xy 
x~  +  4 

= 

-Zx[S/(x^  + 
x^  +  4 

-16;c 

4)] 

(x-  +  4)- 


.    ,^  ,,      ,      -32  1 

At(2.1):y'  =  — =-- 


Or,  you  could  just  solve  for  y:  y  =  — - 


31.  (x^  +  y2)2  =  4x^ 

2(x^  +  y-){2x  +  lyy')  =  4.r=y'  +  y(8x) 
4j:^  +  4x^ '  +  4xy  +  4v^y '  =  4.t^' '  +  8xy 

4j:n7 '  +  4y^y '  —  4x^ '  =  8xv  —  4.r^  —  4xy^ 
4y  '(j:^  +  >'^  ~  X-)  =  4(2xv'  —  .r'  —  xy~) 


At(l,  1):  y'=  0. 


,  _  2xy  —  x^  —  xy- 

x?y  +  y^  —  X- 


33. 

tany  = 

y'sec'v  = 

X 

1 

.v'  = 

1 

=  cos- 

•y,  - 

n 

sec-  y 

2 

sec^v  = 

1  +  tan 

2y  = 

1  + 

X- 

y'  = 

1 

1  +x- 

37. 

x^ 

-  y^  = 

16 

Ix  - 

2yy '  = 

y'  = 

0 
x 

y 

X 

-  yy'  = 

0 

1    -  yy"  - 

(y'f  = 

0 

\-yy"- 

(;)=  = 

0 

T  - 

-  y'y"  = 

.X- 

v"- 

1 

r  - 

1 
X'  _ 

77 

<  V  <  y 


35.      x^  +  y2  =  36 
2x  +  2vv'  =  0 


„      y(-l)-^■n■' 

y   = ; ■■ 

y- 


-V  -l--r  - 


(-f) 


-36 


^ 


-^'^       39.      r  =  .x' 
^       2yv' '  =  3.r- 


>\^i 


.V"^ 


<^' 


-< 


fi 


,  _  3£2  _  3£2    ^  _  3y     .r^      3y 
2y        2y     xy       2v     \-       2t 

„      2T(3yO  -  3y(2) 


y  = 


,  ,c 


.^^ 


•^ 


^ 


r< 


4x^ 
lx[i  •  (3y/lv)]  -  6y 


16 


f  y3 


•1 


K^ 


^    .    M 


^  4.1-      4v 


4.r= 


1> 


..^^ 


•.^> 


V\^    ...c 


'> 


A 


.■^'X 


82        Chapter  2        Differentiation 


41.  v^  +  v9  =  4 


|;c-'/2  +  ir'/^'  =  o 


V^ 


At(9,  l),:y'=  -J 


Tangent  line:  y  -  1  =  ~:;(x  —  9) 


y=-^x  +  4 
X  +  Sy  -  12  =  0 


43.  x^  +  f  =  25 
—X 


At  (4,  3): 


Tangent  line:  y  -  3  =  —(x  -  4)  =^  4;c  +  3^  -  25  =  0 


Normal  line:  .v  -  3  =  -{x  -  4)  =>  3j:  -  4>'  =  0. 


At  (-3,  4): 


Tangent  line:  y  —  4  =  -(x  +  3)  =>  3j:  -  4y  +  25  =  0 


Normal  line:  y  -  4  =  -r-ix  +  3)  =>  4;c  +  3y  =  0. 


45.       x^  +  y^  =  r^ 

2x  +  2yy'  =  0 


y '  =  —  =  slope  of  tangent  line 


-  slope  of  normal  line 


Let  (xq,  Jq)  be  a  point  on  the  circle.  If  Xq  =  0,  then  the  tangent  line  is  horizontal,  the  normal  line  is  vertical  and,  hence,  passes 
through  the  origin.  H  Xg  i^  0,  then  the  equation  of  the  normal  line  is 


yo 

y  =  —x 


which  passes  through  the  origin. 


Section  2.5        Implicit  Differentiation        83 


47.  25j;2  +  I6f  +  200;c  -  \60y  +  400  =  0 

50.x  +  32yy'  +  200  -  \60y'  =  0 

,  ^  200  +  50.t 
^   ~  160  -  32.V 

Horizontal  tangents  occur  when  x  =  -4: 

25(16)  +  163'2  +  200(-4)  -  160y  +  400  =  0 

>'(>'-  10)  =  0=*>'  =  0,  10 
Horizontal  tangents:  (-4,  0),  (-4,  10). 

Vertical  tangents  occur  when  >>  =  5: 

25jc2  +  400  +  200.t  -  800  +  400  =  0 

25;c(.x:  +  8)  =  0  =>  .v  =  0,  -  8 

Vertical  tangents:  (0,  5),  (-  8.  5). 


(-8.5) 


49.  Find  the  points  of  intersection  by  letting  y^  =  4x  in  the  equation  2x^  +  y^  =  6. 
2^2  +  4x  =  6       and       (x  +  3)ix  -  1)  =  0 
The  curves  intersect  at  (1,  ±2). 


Ellipse: 

Parabola: 

4x  +  lyy'  =  0 

2yy '  =  4 

Ix 

,      2 

y=-j 

'  ^y 

At  (1,2),  the  slopes  are: 

y'=-l 

y'=  1- 

At(l,  -2),  the  slopes  are: 

y'=  1 

y'=-l. 

Tangents  are  perpendicular. 

51.  y  =  —X  and  x  =  sin  v 

Point  of  intersection:  (0,  0) 

y  =  -x:                X  =  sin  y: 

y'  =  -I                1  =  y '  cos  y 

y'  =  sec  y 

At  (0,  0),  the  slopes  are: 

y'=  -1                y'=  1. 

Tangents  are  perpendicular. 

53.           xy=  C             x^  -f  =  K 

xy'  +  y  =  Q          2x-2yy'=Q 

y                    ,     X 

y=--            y=- 

.   b^  =  4x| 

f 

f 

k 

^=. 

|lr2  +  y2  =  6 

C=  I 


\ 

'"7- 

J- 

\ 

At  any  point  of  intersection  [x.  y)  the  product  of  the 
slopes  is  (-y/.ir)(.t/y)  =  -  1.  The  curves  are  orthogonal. 


84 


Chapter  2        Differentiation 


55.  2/  -  3jt*  =  0 

(a)  Ayy'  -  llr^  =  0 

Ayy'  =  \2x^ 

'  =  12^=  3^ 

57.  cos  Try  -  3  sin  ttj:  =  1 

(a)  —  IT  sin  (Try)^'  —  3t7  cos  ttat  =  0 


(b)  —  77  sin(T7>')-p  -  Btt  cos(irx)—  =  0 
at  at 


,  -  3  cos  TTX 

y  =  — ■ 

sin  try 

59.  A  function  is  in  explicit  form  if  y  is  written  as  a  function 
of  x:  y  =  f(x).  For  example,  y  =  x^.  An  implicit  equation 
is  not  in  tlie  form  y  =  f{x).  For  example,  x^  +  y^  =  5. 


■  /     \dy      .       ,     Jbi 
-smlTT-y)—  =  3  cos(Tr;c)— ■ 


61.  (a)    x^  =  4(4;c2  _  ^2) 
4/  =  16;c2  -  y^ 

f  =  4x^  -  -x* 


4 


4x^  -  -y^ 


(b) 


v  =  3=*9 


4;c2  -  7A^ 
4 


36  =  16x'  -  x^ 
y^  -  ]6x^  +  36  =  0 


^,^16±  7256^144^^^^ 


Note  that  jc^  =  8  ±  728  =  8  +  2^7  =  (l  ±  Vv)". 
Hence,  there  are  four  values  of  x: 

-1-V^,  1-V7,  -1  +  V7,  1  +  7? 

x(8  -  x^) 


To  find  the  slope,  2yy '  =  8x  —  x^ 


■y  = 


2(3) 


For  a:  =  -  1  -  Jl,y'  =  jIV?  +  7),  and  the  line  is 

>-,  =  \[Jl  +  7)(x  +  I  +  77)  +  3  =  ^[(77  +  i)x  +  877  +  23)]. 
For  X  =  \  —  77,  y'  =  jl  77  -  7),  and  the  line  is 

yi  =  Kv^  -  7)(x  -  1  +  77)  +  3  =  ^[(77  -  l)x  +  23  -  877]. 
For  j:  =  -  1  +  Jl,y'  =  -^iVl  -  l),  and  the  line  is 

Vi  =  -1(77  -  7)(;c  +  1  -  77)  +  3  =  -5[(77  -  l)x  -  (23  -  87?)]. 
Forx  =  1  +  77,^'  =  -5(7^  +  7),  and  the  line  is 

y,  =  -}(77  +  7)(;c  -  1  -  77)  +  3  =  -^[{^  +  l)x  -  (877  +  23)]. 
—CONTINUED— 


V 

X 

-ff 

^ 

Section  2.6        Related  Rates       85 


61.  —CONTINUED— 

(c)  Equating  y^  and  y^, 

-\{ji  -  i){x  + 1  -  v?)  +  3  =  -|(y7  +  i){x  - 1  -  y?)  +  3 

(V7  -  i){x  +  1  -  V?)  =  (77  +  7)(jc  -  1  -  Vv) 
V7;c  +V7-7-7JC-7  +  7^7  =  Jlx  -Jl-l  +  lx-1-  1  Jl 

16V7  =  \Ax 
877 


nx  =     _    ,  then  v  =  5  and  the  hnes  intersect  at  |     „    .  5 


63.  Let /(a:)  =  .t^  =  ;t^''*,  where  p  and  q  are  nonzero  integers  and  g  >  0.  First  consider  the  case  where  p  =  1.  The  derivative  of 
/(jc)  =  x'/*  is  given  by 

:f  [.'/.]  =  lim  f^^^^)-f^-^  =  nn,  /W^M 

dJC  :^r^0  ^x  t-^x  t  —  X 

where  t  =  x  +  Ajc.  Observe  that 

fit)  -  f(x)  _  f'/"  -  x^^i  _      t'^l"  -  x^li 


t  -  X 


t  -  X  {t"")"  -  {x^li)" 


(fl/9  _  y\lq^(f\-(\lq)   +   jl-(2/,)^l/<,  _!_...    +   jl/«^I-(2/9)    +  yA-illqf) 

_  1 

~  fl-(l/9)  +  fl- (2/9)^1/?  _|.   .    .    .   +  jl/9^1-(2/?)  +  ^1 -(!/«)■ 

As  f  — >.i:,  the  denominator  approaches  g.x'~"^*'.  That  is. 

Now  consider/(.t)  =  ji^/'  =  (.x^)'/«.  From  the  Chain  Rule, 

g  iit  g  q  q  \         q 


Section  2.6       Related  Rates 


1.    y=  ^x 

dy_  ^  I    1    \dx 
dt       XlJ'x]  dt 

dt  dt 

(a)  When  .v  =  4  and  (iv/dr  =  3, 

dt      2v^^^^~4- 

(b)  When  .r  =  25  and  dyjdt  =  2, 

^  =  2725(2)  =  20. 
dt 


3. 

.rv'  = 

4 

''1t  = 

0 

dy  _ 
dt 

vWv 
xjdt 

dt 

(- 

x\dy 
\ldt 

(a)  When  x  = 

=  8. 

V  =  1 

y  =  1/2,  anddxM=  10. 


(b)  When  .r  =  1.  v  =  4.  and  dy/dt  =  -6. 


dt 


-i,-«  =  i 


86       Chapter  2        Differentiation 


5.    y  =  x2  +  1 
dx 


dt 


=  2 


dt  dt 

(a)  When  ;c  =  - 1 
dy 


dt 


=  2(-l)(2)  =  -4  cm/sec. 


7. 

J  = 

tan  j: 

ate  _ 
dt 

2 

dy 
dt 

sec^j: 

^ 
A 

(a)  When x=  -it/3, 
dy 


-j-  =  (2)2(2)  =  8  cm/sec. 
dt 


(b)  When  x  =  0, 
dy 


,   =  2(0)(2)  =  0  cm/sec. 
dt 

(c)  When  x  =  \, 

^  =  2(1)(2)  =  4  cm/sec. 
af 

dx  dy       .  . 

9.  (a)   —  negative  =>  —  positive 


(b)  —  positive  =>  —  negative 
ar  dt 


(b)  When  x  =  -  tt/4, 
dy 


-j-=  (72)2(2)  =  4  cm/sec. 


(c)  When  x  =  0, 


^  =  (1)2(2)  =  2  cm/sec. 

dy 
11.  Yes,  >>  changes  at  a  constant  rate:  ~r  =  a 

No,  the  rate  -p  is  a  multiple  of  —r- 
dt  *^         dt 


dx 
dt' 


13.       D  =    Jx-+f  =    7x2  +  (^2  +    1)2  =    7x^  +  3x2+1 


—  =  7 

dt 


dD       1,  .       ,  ,       ,x—i /-,/,,.    ,  \dx  2x^  +  3x 

dt       2'  'dt      Vx^  +  3x2  + 


dx 


4x3  +  6x 


1  dt       Jxf  +  3x2+1 


15. 

A  = 

77r2 

dr  _ 
df 

3 

dt 

2Trr  — 
dt 

(a)  When  r  = 

6, 

dA  _ 
dt 

27r( 

(b)  When  r  = 

24 

dA 

dt 


=  27r(6)(3)  =  36-77  cm2/min. 


=  2Tr(24)(3)  =  1447rcm2/min. 


2  s  2 


eh,  e 

cos  X  =  ~=^  h  =  s cos  - 

2       s  2 


.     1,,     \  L    .  e\        6 

A  =  -bh  =  -\2s  sin  -II  5  cos  - 


=  yl2sm-cos-l=-sine 


dA      s2 


,de 


de     1 


(b)  -—  =  —  cos  fl-—  where  ^-  =  -  rad/min. 
d/       2  df  dt       2 


77  dA 


^'^^"^=6'd7  =  y-     2  8 


V3\/l\      735 


^^"^=3'dr=2(2A2 


52 


(c)  If  dS/df  is  constant,  dA/dt  is  proportional  to  cosft 


Section  2.6        Related  Rates       87 


4  dV 

19,     V  =  -7rr3,  ^  =  800 
3  dt 


dV  _  ,  dr 

-J-  =  Airr-  — - 
dt  dt 


1     /rfV 


i"47^r2UJ"47^r^^^°^^ 


(a)  When  r  =  30, 


"7  =  :; — r^Tv^?  (800)  =  — -  cm/min. 
£?r      47r(30r  9tt 


(b)  When  r  =  60,  ^ 


1 


dt      47r(60)' 


(800) 


1 
18-n- 


cm/min. 


21.     s  =  6;c2 


=  3 

=  12x 

dx 
dt 

(a) 

When 

x=  \, 

ds 

—  =  12(1)(3)  =  36cmVsec. 

dt 


(b)  Whenx  =  10, 
ds 


dt 


12(10)(3)  =  360cm7sec. 


23.     V  =  -irr-h  =-Tr(-hAh      [since  2r  =  3h] 

4 

—  =  10 

dt 

^  =  ^^2  ^        ^  _  4(rfV/^f) 
dr  ~   4        dt"^  dt~     9-771%- 


When/!  =  15 


d/i  _    4(10) 


dt       977(15)-      40577 


ft/min. 


25. 


(a)  Total  volume  of  pool  =  -(2)(12)(6)  +  (1)(6)(12)  =  144  m^ 


Volume  of  Im.  of  water  =  -(1)(6)(6)  =  18  m^ 

(see  similar  triangle  diagram) 

%  pool  filled  =  Ts(100%)  =  12.5% 

(b)  Since  for  Q  <  h  <  2,  b  =  6/i,  you  have 

V  =  \bh(6)  =  3bh  =  3(6h)h  =  Wr 

1  1 


dV 

...  dh 

1        dh 

36/!—  = 

=  -=>--r 

dt 

dt 

4         dt 

1 


144/1       144(1)       144 


m/min. 


88        Chapter  2        Differentiation 


27.  x2  +  /  =  252 


^    dx  dy 

Ix  —  +  2y  —  =  0 
dt  dt 


dy  _  j2£ 
dt        y 


dx 
dt 


Ix   .       dx 
—  since  —-  -  2. 
y  dt 


(a)  When  x  =  l,y=  7576  =  24,  -f 

dt 


dy      -2(7)       -7 


24 


12 


ft/sec. 


(b)     A  =  -xy 


When;f  =  IS,)'  =  7400  =  20. 


rfy 


-2(15)  _  -3 


When;c  =  24,j  =  7,^  = 
dt 


dt 
2(24) 


20 
-48 


ft/ sec. 


ft/sec. 


dy         dx 

iVJt^'Jt. 


dx 


From  part  (a)  we  have  a:  =  7, 3;  =  24,  — -  =  2, 

dt 

dy  1 


(c) 


tan  0  =  - 

y 


^  „  d6       1     dx       X     dy 
sec^  e  —  = ; r--f 


dt      y     dt 


dt 


de  ^    \,\     dx       X     dy^ 

—  =  cos- 6\-  ■ ^  •  -r 

dt  V,y     dt      y~     dt\ 


Thus, 


dA 
dt 


)_ 

2 

527 

24 


12 


+  24(2) 


21.96  ftVsec. 


Usingx=  7,^  =  24,^  =  2,^ 
^  dt  dt 


24 


de 


12 


and  cos  8  =  —,  we  have  -r  =  \t7 


25 


dt 


24  \2 


25 


24^  ^       (24)- 1     12 


12 


rad/sec. 


29.  When  y  =  6,  ;t  =  712^  -  6-  =  6  V3,  and 


s=  Vx-  +  (12  -  y)2 
=  VIO8  -I-  36  =  12. 


;c2  +  (12  -  y)2  =  52 


12 -V 

^^ 

^^ 

■ 

n... 

X 

^^te 

y 

\ 

^ 

y< 

n 

x-r  +  {y-  \2)-f  =  s  — 
dt  dt         dt 

Also.  ;c2 -K /=  122 

^    dx   ,  ^    dy      „        dy       —x  dx 
dt  dt  dt        y     dt 


™,  dx  ,   ,         ,^J—xdx 

Thus,  X— -I-  [y-  12    —  — 

dt  \  y    dt 


dx 
dt 


X  + 


\2x 


ds_ 
dt' 


ds 
=  'Jt 

dx  _   sy      ds 


(12)(6) 


dt       \2x  '  dt      (12)(673) 


(-0.2) 


5V3 


15 


m/sec  (horizontal) 


(iy  ^  -;cflDc  ^  -6v^     (-VI)  ^  J_ 


rff 


y    rfr 


15 


m/sec  (vertical). 


Section  2.6        Related  Rates       89 


31. 

(a) 

s^  = 
dx 

dt 

dy  _ 
dt 

-450 
-600 

dt 

dt 

^  dt 

ds 

x{dx/dt) 

+  y{dyldt) 

100  200 

Distance  (in  miles) 


When  x=  150  and  >>  =  200,  s  =  250  and 
ds  _  150(-450)  +  200(-600) 


dt 


250 


=  -750mph. 


250       1 
(b)  r  =  —  =  J  hr  =  20  min 


33. 

1 
s~  = 

X  — 

dx 

dt 

90-  +  x- 
30 

-28 

.   ds 

2s— = 
dt 

dx        ds      X 
dt        dt      s 

dx 

'  dt 

Whenj: 

s  = 

=  30, 

5oyio 

=  V90-  +  30=  = 

ds 
dt  " 

^13^'-'^ 

-28 

yio 

5    — 

8.85  ft/sec 

35. 

«f 

-''              •     llv 

-  15.x  = 

6y 

y  -  X 

dt 

dy      5     dx      5 ,  _,       25  .  , 

^.,  d{y-x)      dv      dx      25       ^       10,., 


90        Chapter  2        Differentiation 


37.  x(t)  =  ^sm^,x^-  +  y^=  1 
2         6 

277 

(a)  Period:  — 77  =  12  seconds 

77/6 


(b)When.  =  i.^7l-(l)^^f, 

73' 


Lowest  point:  I  0, 


(c)  When  x  =  -,y 


VMI 


and  r  =  1 


39.  Since  the  evaporation  rate  is  proportional  to  the  surface 
area,  dV/dt  =  kiAirr-^).  However,  since  V  —  (4/3)Trr', 
we  have 

dV      .      ^dr 

dt  dt 

Therefore, 


dt  dt 


dx  l/7r\  TTt  TT  TTt 

~r  =  T  7"     COS  -T  =  TX  COS  —r 

dt      2\6/         6        12         6 


X2  +  /  =    1 

^    dx      „    dy      „        dy       -x  dx 

2x— +  2vT^  =  0=>-f  = — . 

dt        ■  dt  dt        y     dt 


Thus, 


di 
dt 


Speed 


1/4  TT  /  77 

-77  /   1   \^  ^    -77     1 


■VSt 


yi5V12/  2         24  75  120    • 


-7577 


120 


7577 

120 


m/sec 


41. 


py\.^ 


1.3^V0.3^+V'3^  =  0 

dt  dt 


^  dt  dt 


..3pf=-v4 


dt 


dt 


43. 


tan  e  = 


30 


3  m/sec. 


sec-  d 


dd_    ]_di 

dt  ~  30  dt 

de        1         ^dy 

— -  =  TT  COS'  e  •  — - 

rfr       30  rff 


When  >-  =  30,  e  =  77/4  and  cos  6  =  v  z/2.  Thus, 

rfe       1  /l\,,v       1      ., 
^=30l2r^  =  M'^/^^'=- 


Section  2.6        Related  Rates       91 


45. 


tan  e  =  -,  y  =  5 

X 


^=  -600mi/hr 
dt 


.^li 


,-T 


,=5 


,      ^^.dO  5      dx 

(sec^e)—  =  — r  •  — 

do 


dt    ''''\-7^)-d-t  =  U[-7^)jt 


=  (-§  )(|)f  =  (-sin2  0)(|)(-6OO)  =  120sin'9 

(a)  When  6  =  30°,  ^  =  ^  =  30  rad/hr  =  ^  rad/min. 
at         4  2 


(b)  When  e  =  60°,  y  =  12o(|)  =  90  rad/hr  =  |  rad/min. 


(c)  When  6  =  75°,  ^  =  120  sin^  75°  «  1 1 1.96  rad/hr  =  1.87  rad/min. 
dt 


47,  —  =  (10rev/sec)(2irrad/rev)  =  20'n-rad/sec 


(a)  cos  9  =  — 

.    „de       I  dx 

-'"^^Yt^ToTt 

^=-30sin.^  = 
dt                       dt 

(b)     2 

wo 

A      A 

0 

vAT 

-30  sin  e(207r)  =  -60077  sin  e 


(c)  \dx/dt\  =  I -60077  sin  0|  is  greatest  when  sin  e  =  1  =>     6=  (tt/I)  +  mr(oT90°  +  n  ■  180°) 
\dx/dt\  is  least  when  6  =  mriorn  •  180°). 


(d)  For  e  =  30°, 


dx 

dt 


-600T7sin(30°)  =  -6OO77-  =  -  3OO77  cm/sec. 


For  e  =  60°,  ^  =  -60077sin(60°)  =  -60077^  =  -300V^  77  cm/ sec 
dt  2 


49.  tan  e  =  —  =>  j:  =  50  tan  e 


— -  =  50  sec-  6  —- 
dt  dt 


2  =  50  sec- 


1^ 


— -  =  rrcos^  e,  -—  <  e  <  — 

dt       25  4  4 


92       Chapter  2        Differentiation 


51.  x~  +  )r  =  25;  acceleration  of  the  top  of  the  ladder  =  -jj 


dx  dy 

First  derivative:  lx—-  +  2y—  =  Q 
dt        ■  dt 

dx   ,      dy 
X—  +  y—  =  0 
dt         dt 

....  d-x   ,   dx     dx  ,     dhi      dy     dy      . 

Second  denvative:  x  — -r  +  —r  '  —r  ~^  TT^  +  ~; T  =  0 

dt-       dt     dt         dt^       dt     dt 


d^      (I 
dt^  ' 


dy^  _1_ 
dt  12' 


dx 
dt 


dh  _  fdx\2  _  fdyy 
'^      \dt)        [dtj  . 

dx  .  .  d^x 


When  X  =  7,  y  =  24,  — -  =  —  — -,  and  — -  =  2  (see  Exercise  27).  Since  -—  is  constant,  -rr  =  0. 
■^  -'*  '^  -'•  dt  dt^ 


d^  ^    1 
dt'^  "  24 


-7(0)  -  {ly 


24 


:]  = 


1441       24 


625 
144 


=  -0.1808  ft/sec^ 


53.  (a)  Using  a  graphing  utility,  you  obtain  mis)  =  -0.8815^  +  29.105  -  206.2 

(b)^  =  ^j;=(- 1.762. +  29.10)f 
dt        ds    dt  dt 

ds 
(c)  Ifr  =  s(1995J,  then.  =  15.5  and— =  1.2. 

Thus.  ^  =  (-  1.762(15.5)  +  29.10)(1.2)  =  2.15  million. 
dt 


Review  Exercises  for  Chapter  2 


1.  fix) 

=  X-  -Ix  +  Z 

f'(x) 

f(x  +  Ax)-f{x) 

=   lim 

Aj->o              Ax 

,.      [{x  +  Axf  -  2{x  +  Ax)  +  3]-  [x^  -  2x  +  3] 

Ax-»0                                                       Ax 

• 

,.      ix"  +  2x(Ax)  +  {Ax)-  -2x-  2(Ax)  +  3)  -  {x^  - 

-  2x  +  3) 

iit->o                                                 Ax 

,.      2x(Ax)  +  (Ax)-  -  2(Ax)        ,.      ,^ 
=  hm  — ^^ — ^--~ 5^ — -  =   lim  (2a:  +  A;c  -  2)  = 

AJ-.0                          Ax                  _             Ax-^O 

=  2x  -  2 

3.  f(x) 

=  Vx  +  I 

5. /isd 

fix) 

fix  +  Ax) -fix) 
—   lim 

^x-M            Ax 

,.      (Vx  +  Ax  +  1)  -  (Vx  +  1) 

5.  /  is  differentiable  for  all  .t  =?^  —  1 . 


=   lim 

Ax->0 


lim 


Ax 

^x  +  Ax  -  yx     Vx  +  Ax  +  Vx 
Ax  Vx  +  Ax+  7x 

(x  +  Ax)  —  X 


Ax-^o  Ax(Vx  +  Ax  +  Vx) 

r  1  1 

^-0  Vx  +  Ax  +  Vx      2Vx 


Review  Exercises  for  Chapter  2       93 


7.  fix)  =  4  -  |;c  -  2| 

(a)  Continuous  at  x  =  2. 

(b)  Not  differentiable  at  jr  =  2  because  of  the  sharp  turn 
in  the  graph. 


4        1 
9.  Using  the  limit  definition,  you  obtain  g  '{x)  =  -x  -  - 

4       1       -3 
Atx=-l,g'(-l)=----  =  — 


11.  (a)  Using  the  limit  defintion,  f\x)  =  "ix^. 

At  X  =  -  !,/'(- 1)  =  3.  The  tangent  line  is 

>-- (-2)  =  3(;c -(-!)) 
.V  =  3x  +  1 

(b)  -4f 


13.  g'(2)  =  lim. 


gW  -  g(2) 


2         X-1 

=  lim-^(--V' 

jr->2  JT  —  2 

,.     A^  -  ;c2  -  4 
=  lim 

x-*^       X  —  2 

,.     (x  -  2)U2  +  x  +  2) 
=  lim r 


lim  U^  +  ;c  +  2)  =  8 

a:-»2 


IS. 


17.  >-  =  25 
y'  =  0 


19.  /W  =  x» 

f'(x)  =  ar' 


21.  /i(r)  =  3r* 
A '(f)  =  12f' 


23.  /U)  =  .r3  -  3x' 

f'(x)  =  3x-  -  6x  =  3.x(.r  -  2) 


25.  A(x)  =  6V^  +  3^  =  dr'/2  +  Sx'/' 
/I'W  =  3;t-'/2  +  X-V3  =    3    _^      1 


29.  fid)  =  20  -  3  sin  9 
/'(0)  =  2  -  3  cos  e 


27.    g(r)  =  |r- 

-4  -4 


31.  fie)  =  3  cos  e 


sin  e 


fie)  =  -3 sine - 


cos  e 


94        Chapter  2        Dijferentiation 


33.        F  =  200yr 
100 


F'{t)  = 


Vr 


(a)  When  T  =  4,  F'(4)  =  50  vibrations/sec/lb. 

(b)  When  7=9,  F'(9)  =  335  vibrations/sec/lb. 


35.      s(t)  =  -  16f2  +  5o 

^(9.2)  =  -  16(9.2)2  +  So  =  0 


5o  =  1354.24 


The  building  is  approximately  1354  feet  high  (or  415  m). 


37.  (a) 


20  40  60 

Total  horizontal  distance:  50 
(b)  0  =  X  -  0.02x2 


0=x  1 


50 


implies  x  =  50. 


39.  x{t)  =  f  -  2t  +  2  =  it-  2){t  -  1) 
(a)  vit)  =  x'it)  =  2t  -  3 

ait)  =  v'(r)  =  2 
(c)  v(f)  =  Oforr  =  i 

^  =  (l-2)(|-i)  =  (4)(l)  =  -i 


(c)  Ball  reaches  maximum  height  when  x  =  25. 

(d)  y  =  x-  0.02x2 
y'=  1  -  0.04x 

y'(0)  =  1 
y'ilO)  =  0.6 
^'(25)  =  0 
y'i30)  =  -0.2 
y'(50)=-l 

(e)  y'(25)  =  0 

(b)  v(f)  <  0  for  f  <  5. 
(d)  x(f)  =  Oforf=  1,2. 

lv(l)|  =  |2(l)-3|  =  l 

|v(2)|  =  |2(2)  -  3|  =  1 

The  speed  is  1  when  the  position  is  0. 


41.  fix)  =  (3.x2  +  7)(x2  -  2.x  +  3) 

fix)  =  (3x2  +  7)(2;^  -  2)  +  (x2  -  2x  +  3)(6x:) 
=  2(6^3  -  9x2  +  16^  _  7) 

45.  fix)  =  2x  -  x-2 


fix)  =  2  +  2x-^  =  2(  1  +  -J 
.       _  2(x3  +  1) 

X3 


43.  hix)  =  Jlc  sin  ;t  =  x'/2  sin  x 
1 


h'ix)  = 

47.  /(:c)  = 
fix)  = 


2V5" 


X2   + 


+   J~XI. 


1 


Jt2-    1 

(x2  -  l)(2x  +  1)  -  (^2  +  X  -  l)(2x:) 


ix"  -  1)2 


-(;c2+l) 
(x2  -    1)2 


49.  fix)  =  (4  -  3x2)-' 


6x 


/'(x)  =  -(4  -  3x2)-2(-6x)      ^4  _  3^,^, 
53.  >>  =  3^2  sec  X 

y' 


ji.  y  — 

cosx 

cos  X  ilx)  -  x\-  sin  x) 
cos2  X 

2x  cos  X  +  x2  sin  x 

cos2x 

55.    y  =  -jctanjc 

3; '  =  — x:  sec2  X  —  tan  X 

Review  Exercises  for  Chapter  2        95 


57.    y  =  X  cos  j:  —  sin  j: 

y'  =  — j:  sin ;c  +  cos  X  -  cos  j:  =  -xsin;c 


59.  gU)  =  r^  -  3r  +  2 
g'it)  =  3^2-3 
g"{t)  =  6r 


61.  f(0)  =  3  tan  9 
f'(d)  =  3  sec2  6 
f'(e)  =  6  sec  e  (sec  6  tan  0)  =  6  sec^  0  tan 


63.  >>  =  2  stn  j:  +  3  cos  x 

y'  =  2  cos x  —  3  sin x 
y"  =  —  2  sin  ;t  —  3  cos  x 
y"  +  y  =  —  (2  sin  ;c  +  3  cos  x)  +  (2  sin  jc  +  3  cos  x) 
=  0 


65.  f(x)  =  (1  -  .r3)'/2 


1, 


/'W=^l-x5)->/2(-3x2) 
3;c2 


2Vl  -:t3 


67.  /zW  =  (^     ^^' 


h'(x)  =  2 


X^  +   ly 

;c-3\/y-+  1)(1)  -  (;c  -  3)(2x)\ 


a:=  +  1 


+  1)^       ; 


2U  -  3)(-.t^  +  fa  +  1) 


69.  /(i)  =  {s-  -  1)5/2(53  +  5) 

f'(s)   =   (52  -    1)V2(3^2)   +   (^   +  5)(|)(^2  _    1)3/2(2^) 

=  sis'  -  l)3/2[35(i2  -  1)  +  Sis'  +  5)] 
=  sis'  -  1)3/2(8^3  -  3i  +  25) 


71.    y  =  3  cos(3.r  +  1) 
y'  =  -9sin(3;c  +  1) 


73.    y  =  "z  CSC  2x 


y '  =  r{  —  CSC  2x  cot  2i:)(2) 


-  CSC  2x  cot  2t 


.r      sin  2x 


=  r{l  —  cos  2x)  =  sin^.r 


2  2 

77.    y  =  -  sin3/2  x  -  -  sin'^/^x 


=  sinl/2 


inV2  , 


sm'''^  JTCOS  j:  —  sm^'-xcos  j: 
(cos  j:)Vsin  j:(1  —  sin^x) 

c3 


=  ( cos=  xl  V  sin  a: 


79.  V  = 


.T  +  2 


,  _  ix  +  2)Trcos  TT.r  —  sin  tt.v 
•''   "  (-v  +  2)2 


81.  /(/)  =  fit  -  ly 

fit)  =  t(t-  DVt  -  2) 

The  zeros  of/'  correspond  to  the  points  on  the  graph  off 
where  the  tangent  line  is  horizontal. 


83.    gix)  =  2x(.r  +  D-'/^ 

X  +  2 


g'U)  = 


ix  +    1)3/2 


g '  does  not  equal  zero  for  any  value  of  t  in  the  domain. 
The  graph  of  g  has  no  horizontal  tangent  lines. 


•■\ 

^ 

"  J 

96       Chapter  2        Differentiation 


85.  fit)  =  {t+  l)i/2(r  +  l)'/3  =  (r  +  l)V6 
5 


/'(f) 


6(f  +  !)'/« 


/'  does  not  equal  zero  for  any  x  in  the  domain.  The 
graph  of/has  no  horizontal  tangent  lines. 


^ 

^ 

/■ 

87.    y  =  tanVl  -  x 


c=yr 


2Vl  -.« 

y '  does  not  equal  zero  for  any  x  in  the  domain.  The  graph 
has  no  horizontal  tangent  lines. 


r^ 


89.    y  =  2;t2  +  sin  2jc 
>-'  =  4;c  +  2cos2i 
y"  =  4  —  4s'm2x 


91.  /(a:)  =  cot  X 

93.   /(r)  = 

fix)  =  -csc^a; 

/"=  -2cscjf(-cscj: 

cotjc) 

/'(f)  = 

=  2  csc^  X  cot  ;c 

/"(f)  = 

t 

(1- 

ty 

f  + 

1 

(1- 

f)' 

2(f4 

-2) 

(1  -  f)^ 


95.  gie)  =  tan  30  -  sin(e  -  1) 

g'ie)  =  Ssec^se-  cos(e-  i) 

g"(e)  =  18  sec2  3etan  361  +  sin(e  -  1) 

97.    r=  700(f2  +  4r+  10)-' 

-  1400(f  +  2) 
"  (f2  +  4r  +  10)2 

(a)  When  f  =  1, 

^,      -1400(1  +  2) 


(1  +  4  +  10)2 
(c)  When  ;  =  5, 

- 1400(5  +  2) 


==  - 18.667  deg/hr. 


r 


(25  +  30  +  10) 


5=  -3.240  deg/hr. 


(b)  When  r  =  3, 

^,  _  - 1400(3  +  2) 


(9  +  12  +  10)2 
(d)  When  t  =  W, 

-1400(10  +  2) 


7" 


(100  +  40  +  10)2 


-7.284  deg/hr. 


=  -0.747  deg/hr. 


99.  x2  +  3xy  -f-  y  =  10 

2x  -I-  3xy'  -I-  3y  -I-  3>'2y'=  0 

3(a:  +  /)>>'=  -(Ix  -(-  3>') 

-(2A:  +  3y) 
^  Hx  +  f) 


101. 


yv^t  ~  x^  =  16 


2V^  —  X  ,  __  2vxy  —  y 
iVy     ^    "       2Jx 

,  ^  ijxy  -  y  _      ijy      ^  lyjx  -  yVy 
2jx         iVxy  —  X      Ixjy  —  x^x 


Review  Exercises  for  Chapter  2       97 


103.  xsxny  =  y  cos  x 

{xcosy)y'  +  smy  =  ->>  sinj:  +  >''cos;c 

>''(^cos>'  -  cos  x)  =  — ysinjt  —  siny 

,  _  y  sin  a:  +  sin  y 
cos  X  —  X  cos  y 


105.       Jt^  +  y2  =  20 
2x  +  lyy'  =Q 


At  (2,  4):  y'=  -- 


i4 


\, 


Tangent  line:  y  —  4  =  —  xU  -  2) 

;c  +  2y  -  10  =  0 
Normal  line;  y  -  4  =  l{x  -  2) 
2x-y  =  Q 


107.    y=  ^x 
dy 


dt 


=  2  units/sec 


dy  1     ^v  ^^2^^  =  4^ 


dt      2jx  dt 


dt 


dt 


1   dx 


(a)  When  x  =  — ,  —  =  2  V2  units/sec. 

dx 

(b)  When  j:  =  1,  —  =  4  units/sec. 

dt 

dx 

(c)  When  j:  =  4,  —  =  8  units/sec. 

dt 


109. 

5 

h   ~ 

1/2 
2 

S  = 

^' 

dt 

1 

Width  of  water  at  depth  h: 

w  =  2  +  2s  =  2  +  2\hx 


A  +  h 


''-f(^-^>  =  j«*'* 


dV      5,,       ,.dh 


dt 

dh  ^  2{dV/dt) 
dt  ~  5(4  +  h) 

dh 


When  h  =  1.  ^  =  rr  m/min. 
dt      25 


111.    s{t)  =  60  -  4.9r 
s\t)  =  -9.8r 
5  =  35  =  60  -  4.9f- 
4.9r=  =  25 
5 


tan  30° 


74.9 
.r(f)  =  Jls(t) 


^=73^=V3(-9.8h^ 
=  -  38.34  m/sec 


98        Chapter  2        Differentiation 


Problem  Solving  for  Chapter  2 


1.  (a)  x~  +  (y  -  r)^  =  r^  Circle 

X-  =  y    Parabola 
Substituting, 

(■y    _     ;.)2    =     ^    _    y 

y'^  —  2ry  +  r'  =  r^  —  >> 
y^  —  2ry  +  >>  =  0 
y{y  -  2r  +  1)  =  0 

Since  you  want  only  one  solution,  let  1  —  2r  =  0  =>  r 
Graph  y  =  x'^  and  x'^  +  [y  -  5)'  =  4 


(b)  Let  (x,  y)  be  a  point  of  tangency:  x^  +  (y  -  b)^  =  1  =>  2j:  +  llj"  -  b)y'  =  0  =>  y ' 
y  =  ;c'^  =>  >; '  =  2x  (parabola).  Equating, 

r 

2jc^ 


Z.-y 


(circle). 


b-y 

2{b  -  y)  =  1 


Also,  a;^  +  (y  -  Z))^  =  1  and  y  =  x^  imply 
y  +  (y  -  fc)2  =  1  =*  y  +  l^y  -  (y  +  ^j j  =  1 


Center:    0 


Graph  y  =  x-  and  x- 


■  y--=  l=>y  =  -  and/7  =  -. 


3.  (a)    f(x)  =  cos;c 
/(O)  =  1 
/'(0)  =  0 

P,{x)  =  1 


(c) 


P\ix)   =  %  +  OiX 

P,(0)  =  ao=»ao=  1 
P'i(O)  =  a,  =*  a,  =  0 


(b)    f(x)  =  cosx 
/(O)  =  1 
/'(O)  =  0 
/"(0)=-l 

P^ix)  =  1  -  I;c2 


j: 

-1.0 

-0.1 

-0.001 

0 

0.001 

0.1 

1.0 

cosx 

0.5403 

0.9950 

«  1 

1 

«  1 

0.9950 

0.5403 

i'aW 

0.5 

0.9950 

=  1 

1 

"  1 

0.9950 

0.5 

PjW  is  a  good  approximation  of  f{x)  =  cos  x  when  x  is  near  0. 


(d)    fix)  =  sin;c 

/(O)  =  0 

/'(O)  =  1 

/"(O)  =  0 

/"'(0)=  -1 

P^ix)  =x-\x^ 


Oq  +  a,j;  +  flj^^  +  ^s-"^ 


P,m=  ao^ao  =  0 
P\{0)  =  a,  =^  a,  =  1 
^"3(0)  =  2^2  =>  02  =  0 
^"'3(0)  =  603  =>  03  =  - 


PjW  =  Oq  +  OiX  +  a^K- 

P^iO)  =  flo  =5>  ao  =  1 
/"2(0)  =  ai=»a,  =  0 
P"2(0)  =  2a2^a2=  -i 


Problem  Solving  for  Chapter  2 


99 


5.  Letp(jc)  =  Aj^  +  Bx^  +  Cx  +  D 
p'{x)  =  3Ax-  +  2Bx  +  C 
At  (1,  1);    A  +    B  +  C  +  D  =    1  Equation  1 

3A  +  2B  +  C  =14  Equation  2 

At  (-1, -3): -A  +    B-C  +  D=-3      Equations 
3A  -  2B  +  C  =  -2      Equation  4 

Adding  Equations  1  and  3:  25  +  2D  =  -2 
Subtracting  Equations  1  and  3:  2A  +  2C  =  4 

Adding  Equations  2  and  4:  6A  +  2C  =  12 
Subtracting  Equations  2  and  4:  45  =  16 

Hence,  S  =  4  and  £>  =  k(-2  -  2B)  =  -5 

Subtracting  2A  +  2C  =  4  and  6A  +  2C  =  12,  you  obtain  4A 

Thus,  pW  =  2^3  +  4x-  -  5. 


■  A  =  2.  Finally,  C  =  5(4  -  2A)  =  0 


7.  (a)      .x^  =  a-x^  -  a^y^ 
a^y-  =  a-x —  x^ 


±Va-.v--.V> 


„      .  Va-.r-  -  -r^ 

Graph:  >>,  = and  Vj  = 


^cP-x-  —  .r* 


(b) 


frb 

^ 

a=  1 

vj., 

(±a,  0)  are  the  Ar-intercepts,  along  with  (0,  0). 
(c)  Differentiating  implicitly, 
Ax^  =  2a- .1:  —  2a^yy' 

y  =  — r-^; = r =  Q^2x-  =  a-=^x  =  —7=. 

2ay  a^  V2 


4 

-> 
a- 


V  =  ±7 


^  .        I  a     a\  I  a        a\  (      a     a\  l-a      a\ 

Four  poutts:  ^-^, -j.  ^^,  --j.  ^-^.  ^ j.  (yj'  "^J 


100        Chapter  2        Differentiation 


9.  (a) 


(b) 


90      100 
jVo/  drawn  to  scale 


(0,  30) 


1.6) 
no.  3) 


60      70 
!^ot  drawn  to  scale 


Line  determined  by  (0,  30)  and  (90,  6): 


y-30 


30-6 
0-90 


U-0) 


24 


'90-"         15^^ 


? 


+  30 


-4  10 

When  X  =  100,  y  =  -j-r(100)  +  30  =  —  >  3  =>  Shadow  determined  by  man. 


Line  determined  by  (0,  30)  and  (60,  6): 


-2 
When  x  =  70,y  =  -z-(70)  +  30  =  2  <  3  =>  Shadow  determined  by  child. 


(c)  Need  (0,  30),  {d,  6),  {d  +  10,  3)  collinear. 


30-6 

6-3             24       3 

0'  d 

d-  id+  10)^  d       10 

d  =  80  feet 


dx 


(d)  Let  V  be  the  length  of  the  street  light  to  the  tip  of  the  shadow.  We  know  that  —  = 

dt 

For  X  >  80,  the  shadow  is  determined  by  the  man. 

y       y  ~  X  5        ,  dy      5  dx       —25 

5^  =  -^=^^  =  ?^'^^  =  4^  =  ~- 

For  X  <  80,  the  shadow  is  determined  by  the  child. 


y_  ^  y  -  X 
30  3 

Therefore, 


10 


10        100      _,rfy       10^       -50 


dt 


-25 

4 
-50 

9 


;c  >  80 
0  <  .x  <  80 


dy 

—r  is  not  continuous  at  j:  =  80. 

dt 


11.  L'(x)  =   lim 

Ajt->0 


=  lim 

Aj:->0 


L{x  +  ^x)  -  L{x) 
Ax 

Ljx)  +  L(Ax)  -  L(x) 


Ax 


lim 


L{Ax) 


<ii^o    Ajc 


Also,  Z.'(0)  =   lim 


UAx)  -  L(0) 


Ax->0  Ax 

But,  L(0)  =  0  because  Z,(0)  =  L(0  -I-  0)  =  L(0)  -f-  L(0)  =>  L(0)  =  0. 

Thus,  I,  W  =  Z.'(0),  forall;c. 

The  graph  of  L  is  a  line  through  the  origin  of  slope  L'{0). 


Problem  Solving  for  Chapter  2        101 


13.  (a) 


z  (degrees) 

0.1 

0.01 

0.0001 

sinz 

0.0174524 

0.0174533 

0.0174533 

(b)  lim^-^- 0.0174533 

z->0     z 


,    .    ^  ,.     smz        77 
In  fact,  lim  — 

J->0      z 


(c)  —(sin  z)  =    lim 

dz  A;-»0 


=    lim 


180 

sin  (z  +  Az)  -  sin  z 

Az 

sin  z  •  cos  Az  +  sin  Az  •  cos  z  -  sin  z 


Az 


I     sin  z  r +    lim 

oL         V         Az         /J       Aj:-»oL 


=    lim  I  sin  z 


=  sinz(0)  +  cosz(j^    =-f^cosz 


cos  z 


sin  Az 

Az 


(d)  5(90)  =  sin(^  9o)  =  sin  ^  =  1;  C(180)  =  cos(^  180  )  =  - 1 

—S{z)  =  —  sin(cz)  =  c  •  cos(cz)  =  757:C(z) 
az  az  ISO 


(e)  The  formulas  for  the  derivatives  are  more  complicated  in  degrees. 


15.  jit)  =  a 'it) 

(a)  j(t)  is  the  rate  of  change  of  the  acceleration. 

(b)  From  Exercise  102  in  Section  2.3, 
s{t)  =  -8.25f2  +  66; 

v(r)  =  -  16.5f  +  66 
a(t)  =  - 16.5 
a'(t)=j(t)  =  0 


CHAPTER     3 
Applications  of  Differentiation 


Section  3.1       Extrema  on  an  Interval     103 

Section  3.2      Rolle's  Theorem  and  the  Mean  Value  Theorem     .  107 

Section  3.3      Increasing  and  Decreasing  Functions  and 

the  First  Derivative  Test 113 

Section  3.4      Concavity  and  the  Second  Derivative  Test    ....  121 

Section  3.5      Limits  at  Infinity     129 

Section  3.6      A  Summary  of  Curve  Sketching     136 

Section  3.7      Optimization  Problems     145 

Section  3.8      Newton's  Method 155 

Section  3.9      Differentials 160 

Review  Exercises 163 

Problem  Solving     172 


CHAPTER     3 
Applications  of  Differentiation 

Section  3.1       Extrema  on  an  Interval 

Solutions  to  Odd-Numbered  Exercises 


1.  fix) 


fix) 


x^  +  4 


(^  +  4)(2;c)  -  U=)(2t) 


&x 


U2  +  4)- 


tr-  +  4y 


/'(O)  =  0 


3.  fix)  =x  + 


27 

2x2 


27 
X  +  —x 


fix)  =  1  -  27x-3  =  1 


27 


/'(3)  =  1  -  |J  =  1  -  1  =  0 


5.    /(x)  =  U  + 2)2/3 
f'i—2)  is  undefined. 


7.  Critical  numbers:  x  =  2 
X  =  2:  absolute  maximum 


9.  Critical  numbers:  x  =  1,  2,  3 
X  =  1,3:  absolute  maximum 
X  =  2:  absolute  minimum 


11.  f(x)  =  xKx  -3)  =  x^  -3x- 
f'(x)  =  3;c2  -  6x  =  3x(.t  -  2) 
Critical  numbers:  x  =  0,  x  =  2 


13.    ^(f)  =  fv/4  -  t,  t  <  3 


gV)  =  r 


i(4_   f)-l/2(_l)|   +   (4-,)l/2 


=  ^4-r)-'/2[-f  +  2(4-r)] 
8  -  3r 


2V4  -  / 
Critical  number  is  t 


15.    hix)  =  sin^x  +  cosx,  0  <  .t  <  27r 

h'(x)  =  2  sin  .t  cos  AT  —  sinx  =  sinx(2  cos.r  —  1) 


TT  5  TT 

On  (0,  27r),  critical  numbers:  x  =  — ,  x  =  tt,  x  =  — 


17.  fix)  =  2(3  -  x),  [-  1.  2] 

fix)  =  -  2  =>  No  critical  numbers 
Left  endpwint:  (- 1,  8)  Maximum 
Right  endpoint:  (2,  2)  Minimum 


19.  fix)  =  -X-  +  3x.  [0.  3] 
/'(x)=  -2r  +  3 
Left  endpoint:  (0.  0)  Minimum 
Critical  number:  (2.4)  Maximum 
Right  endpoint:  (3.  0)  Minimum 


103 


104       Chapter  3        Applications  of  Differentiation 


21.   f{x)=x^-jx',  [-1,2] 
f'(x)  =  3x2  -  3x  =  2x(x  -  1) 


Left  endpoint:  \~'^'~2J  '^™'""'" 
Right  endpoint:  (2,  2)  Maximum 
Critical  number:  (0,  0) 

V 


Critical  number:     1, 


23.  fix)  =  3a;2/3  -  2x,  [-  1,  1] 

/'W  =  2;c-'/3  -  2  =  2(LzJ^ 

Left  endpoint:  (- 1,  5)  Maximum 
Critical  number;  (0,  0)  Minimum 
Right  endpoint:  (1,  1) 


25.    ,W  =  -^,[-l,l] 


1 


6t 


(t^  +  3)2 


g'it) 


Left  endpoint:  I  ~  1.  T 1  Maximum 
Critical  number:  (0,  0)  Minimum 
Right  endpoint:  (  1.  T )  Maximum 


27.    his)  =  y-h;,  [0,  1] 
h'is)  = 


s-2' 

-1 

(^  -  2)2 


Left  endpoint:  I  0,  -  —  1  Maximum 
Right  endpoint:  (1,  -  1)  Minimum 


29.   fix)  =  cos  TTX,     0,  - 
fix)   =    -  TT  sin  TTX 

Left  endpoint:  (0, 


1)  Maximum 

/l   V3^ 
Right  endpoint:  I  -,  — r- 


Minimum 


4  7131:      r,     «n 

31.    y  =  -  +  tan—,  [1,  2] 

X  O 

,  -4  77  ^  TTX  _ 

TT       ,  ira       4 

On  the  interval  [1,2],  this  equation  has  no  solutions. 
Thus,  there  are  no  critical  numbers. 

Left  endpoint:  (l,  v^  +  3)  =  (1,  4.4142)  Maximum 

Right  endpoint:  (2,  3)  Minimum 


33.  (a)  Minimum:  (0,  —3) 
Maximum:  (2,  1) 

(b)  Minimum:  (0,  -3) 

(c)  Maximum:  (2,  1) 

(d)  No  extrema 


35.  fix)  =  x^-2x 

(a)  Minimum:  (1,  —  1) 
Maximum:  (—1,3) 

(b)  Maximum:  (3,  3) 

(c)  Minimum:  (1,  —1) 

(d)  Minimum:  (1,  —  1) 


Section  3.1        Extrema  on  an  Interval        105 


37.  f(x) 


2x  +  2,    0  <  .r  <  1 
4x-,  1  <  X  <  3 


Left  endpoint:  (0,  2)  Minimum 
Right  endpoint:  (3,  36)  Maximum 


39.  fix)  =  J— ^A\ A] 

Right  endpoint:  (4,  1)  Minimum 


41.  (a)     5 


(1.4.7)1 


(0.4398.-1.0613) 


Maximum:  (1,  4.7)  (endpoint) 
Minimum:  (0.4398,  - 1.0613) 


(b) 


fix)  =  3.2^5  +  5jc3  -  3.5x,  [0,  I] 

fix)  =  16.r^  +  15^2  -  3.5 

16x^  +  \5x-  -  3.5  =  0 

,  ^  -15  ±  Jil5)-  -  4i\6)i-3S) 
2(16) 

-15  ±  7449 


32 


/- 15  +  . 
V  32 


'449 


-  0.4398 


/(O)  =  0 

/( 1 )  =  4.7  Maximum  (endpoint) 


<V^ 


/449 


=  -1.0613 


Minimum:  (0.4398,  - 1.0613) 


43.    fix)  =  (1  +  x3)'/2,  [0,  2] 

fix)  =  ^Ki  +  x^)-''- 


f%x)   =  J(X*  +  4x)(l    +  .t5)-3/2 


f"\x)  =  -^(.t«  +  20x^  -  8)(1  +  x3)-V2 

O 

Setting/'"  =  0,  we  have  .r«  +  20.r3  -8  =  0. 


jc3  = 


-20  ±  7400  -  4(1)F8) 


x=  i/- 10  ±  yiM  =  73  -  1 

In  the  interval  [0,  2],  choose 


=  V-  10  ±  v-^  =  73  -  1  =  0.732. 
/"(  {/-\0  +  7i08)   =  1.47  is  the  maximum  value. 


45.        fix)  =  ix+  l)-^\  [0,  2] 
/'(x)=|(x+l)-'/3 


fix)  =  -^(.T  +  i)-*/3 

f"{x)  =  ^(.v  +  1)-'/^ 


/(4)(.^)   =    _|^(^  +    1 


-10/3 


/^%)  =  f§u  +  l)-"/^ 

|/*^*(0)|  =  —  is  the  maximum  value. 
81 


106        Chapters        Applications  of  Differentiation 


47.  f(x)  =  tan  X 

/is  continuous  on  [0,  7r/4]  but  not  on  [0,  tt].        iim    tan  j:  =  oo. 

X  — »7r/2 


49. 


51.  (a)  Yes 

(b)  No 


53.  (a)  No 

(b)  Yes 


55.  P  =  VI  -  RI^  =  12/  -  0.5/2,  0  <  /  <  15 

P  =  0  when  /  =  0. 

P=  67.5  when /=  15. 

P'=  12  -  /=  0 

Critical  number:  /  =  12  amps 

When  /  =  12  amps,  P  =  72,  the  maximum  output. 

No,  a  20-amp  fuse  would  not  increase  the  power  output. 
P  is  decreasing  for  /  >  12. 


57. 


3s^l^-C0Sd\    TT  „  IT 

s  =  6hs  +  —        ■   - —  I-  <  e<- 

2  \       smO       /   6  2 


dS^3fi 
dd       2^ 


•  Vscsc  e  cot  0  +  csc^  e) 


=  -^csc  g{-  Vscot  e  +  esc  e)  =  0 

CSC  6  =  V^cot  0 
sec  S  =  Vs 

e  =  arcsecVs  =  0.9553  radians 


5|'f)  =  6fo  +  ^V3) 


5(arcseCv/3)  =  6fc  +  -~-{j2) 

S  is  minimum  when  d  =  arcsecVS  =  0.9553  radians. 


59.  (a)  y  =  ax^  +  bx  +  c 

y'  =  2ax  +  b  ••  ^ 

The  coordinates  of  S  are  (500,  30),  and  those  of  A  are  (-  500, 45). 
From  the  slopes  at  A  and  B, 

-1000a  +  b=  -0.09 

1000a  +  b  =  0.06. 

Solving  these  two  equations,  you  obtain  a  =  3/40000  and  fc  =  -3/200.  From  the  points  (500,  30)  and  (-500,  45), 
you  obtain 


30  = 

45  = 


40000 
3 


50°'  +  '"^[wo^  ^  '^ 


40000  50°' -^ii)^^- 
75 


In  both  cases,  c  =  18.75  =  — -.  Thus, 
4 


3       2__3_        75 
^      40000"^        200^       4' 


—CONTINUED— 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem        107 


59.  —CONTINUED— 

(b) 


X 

-500 

-400 

-300 

-200 

-100 

0 

100 

200 

300 

400 

500 

d 

0 

.75 

3 

6.75 

12 

18.75 

12 

6.75 

3 

.75 

0 

For  -500  <  X  <Q,d={a:^  +  bx  +  c)-  (-0.09^). 
For  0  <  ;c  <  500,  rf  =  (or^  +  to  +  c)  -  (0.06.r). 
(c)  The  lowest  point  on  the  highway  is  (100,  18),  which  is  not  directly  over  the  point  where  the  two  hillsides  come  together. 


61.  True.  See  Exercise  25. 


63.  True. 


Section  3.2       Rolle's  Theorem  and  the  Mean  Value  Theorem 


1.  Rolle's  Theorem  does  not  apply  to /(j:)  =  1  —  |x  -  1| 
over  [0,  2]  since/ is  not  differentiable  at  .r  =  1. 


5.  fix)  =  xJITa 

j:-intercepts:  (-4.  0),  (0,  0) 


f'{x)  =x^x  +  4)-i/2  +  {x  +  4)1/2 


)-'/^(f 


=  {x  +  A)-"A^+  (x  +  A) 


fix)  =  I  2^  +  4  ]{x  +  4)-'/2  =  0  at;c  = 


3.  fix)  =x^  -  x-2  =  ix-2)ix+  I) 
jc-intercepts:  (-1,0),  (2,0) 


fix)  =  2x-l  =  0atx  =  -. 


7.  fix)  =  x--2x,  [0,  2] 

/(0)=/(2)  =  0 

/is  continuous  on  [0,  2]. /is  differentiable  on  (0,  2). 
Rolle's  Theorem  applies. 

fix)  =  2x  -  2 

2x-2  =  0^.t=l 

c  value:   1 


9./(;c)  =  (:c-  l);.r-2)(x-3),[l,3] 

/(l)=/(3)  =  0 

/is  continuous  on  [1,  3]. /is  differentiable  on  (1,  3). 
Rolle's  Theorem  applies. 

fix)  =x^  -  6x-  +  ll.r  -  6 

fix)  =  3x-  -  \2x+  11 

3a-  -  12x  +  11  =  0=>x=      ~ 


11.  /(.r)=x2/3-  l,[-8,8] 

/(-8)=/(8)  =  3 

/is  continuous  on  [—8.  8]. /is  not  differentiable  on 
(—8,  8)  since /'(O)  does  not  exist.  Rolle's  Theorem  does 
not  apply. 


6-73  6  +  v^ 


108        Chapters        Applications  of  Differentiation 


/(-l)=/(3)  =  0 

/is  continuous  on  [- 1,  3].  (Note:  The  discontinuity,  x  =  —2,  is  not  in  the  interval.)/is  differentiable  on  (—  1,  3).  Rolle's 
Theorem  applies. 

f,,  X       (x  +  2)(2;c  -  2)  -  U^  -  2x  -  3)(1)       . 
/  U)  = 7 — -^:^ =  0 


ix  +  2)2 


c  value:  —  2+V5 


x^  +  4;c  -  1 

ix  +  ly 


=  zi4M  =  _2±V5 


15. /W  =  sinx,  [0,2it] 

/(0)=/(27r)  =  0 

/is  continuous  on  [0,  2Tr]./is  differentiable  on  (0,  lir). 
Rolle's  Theorem  applies. 

f'{x)  =  cos  X 

77    377 

c  values:  — ,  — — 

2    2  V 


17.  fix)  =  —  -  4  sin^jc, 


■  [»f] 


/(o)-/m.o 


/is  continuous  on  [0,  77/6]. /is  differentiable  on  (0,  77/6). 
Rolle's  Theorem  applies. 


fix)  = 8  sin  a:  cos  x  =  0 

77 


19.  fix)  =  tan  X,  [0,  77]       , 

/(0)=/(77)   =   0 

/is  not  continuous  on  [0,  77]  since/(T7/2)  does  not  exist. 
Rolle's  Theorem  does  not  apply. 


77 

8  sm  X  cos  X 

477 

1    •    0 

-smlx 

3 

277 

sin2x 

1 

—  arcsm 

.217/ 

x 

X  =» 

0.2489 

c  value: 

0.2489 

.1.      fix)  = 

=  w- 

1,  [-1,1] 

/{-1)  = 

=  /(!)  = 

0 

/is  continuous  on  [-  1,  l]./is  not  differentiable  on 
(—  1, 1)  since/'(0)  does  not  exist.  Rolle's  Theorem  does 
not  apply. 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem        109 


23.       fix)  =  4a:  -  tan  ttx. 


'4' 4 


A-4J^A4J-o 

/is  continuous  on  [-1/4,  1/4]. /is  differentiable  on 
(- 1/4,  1/4).  Rolle's  Theorem  applies. 

f'{x)  =  4  -  V  sec-  TTX  =  0 


25.  fit)  =  -16f2  +  48r  +  32 
(a) /(I)  =/(2)  =  64 

Q^)  V  =  f'(t)  must  be  0  at  some  time  in  (1 ,  2). 
/'(f)  =  -32r  +  48  =  0 


t  =  -  seconds 


sec*  TTX  =  — 
77 


sec  TTX  =  ±- 


'77 


^1  1  \  Jtt 

X  =  ±—  arcsec  — ■;=  =  +—  arccos  -^^ — 

""■  V77  •"■  2 


«  ±0.1533  radian 
c  values:  ±0.1533  radian 


27. 


tangent  line     secant  line 


29.  fix)  =  ^^,  [0,  6] 

/has  a  discontinuity  at  jr  =  3. 


31.  fix)  =  x~  is  continuous  on  [-2,  1]  and  differentiable  on 

(-2,1). 


/(l)-/(-2)       1-4 
1  -  (-2)  3 


=  -1 


fix)  =  It  =  - 1  when  x  =  --.  Therefore. 


'=-2- 


33.  fix)  =  .r-'^  is  continuous  on  [0,  1]  and  differentiable  on 
(0,  1). 


/(l)-/(0) 


1  -  0 


=  1 


fix)  =  j.v-'/5  =  1 


27 


110       Chapters        Applications  of  Differentiation 


35.  fix)  =  V2  -  X  is  continuous  on  [—  7,  2]  and 
differentiable  on  (—7,  2). 

/(2)-/(-7)_0-3  _  _1 
2  -  (-7) 

f'(x)  = 


9 

3 

-1 

1 

272- 

X 

3 

272- 

X  = 

=  3 

72- 

X  - 

3 
"  2 

2  - 

X  - 

_  9 
"  4 

X  = 

1 

4 

37.  /(x)  =  sin  X  is  continuous  on  [0,  -ir]  and  differentiable  on 
(0,  tt). 


/(7r)-/(0)      0-0 


=  0 


77-0  V 

f'(x)  =  cos  X  =  0 

77 


/w  =  - 

X 

yon 

1 

2' 

2 

X  + 

(a) 

1 

:^ 

^,,v^^secant 

-1 

(b)  Secant  line: 

Slope  =^(^^^ 

-/(-1/2) 
-(-1/2) 

2/3 -(-1) 
5/2 

2 
3 

2 

=  f(;c-2) 

3.y  -  2  = 

=  2x  -  4      • 

, 

Sy- 

-  Ix 

f  2  = 

=  0 

(c)  f'{x)  = 


(x  +  1)^      3 

{x  +  1)^  =  1 

j:  =  -1  ±  ^ 

V  2 

-..f 

In  the  interval  [-  1/2,  2],  c  =  -  1  +  (76/2). 

-1  +  (76/2)       _  -2  +  76       -2 


f{c) 


[-1  +(76/2)]  +  1 
2 


76  76 


+  1 


1l  /f\ 

Tangent  line;  j  -  1  +  -^  =  -Ax +  1 

,  ^  76  2  76_^2 
y  —  1  -I — :::—  =  -x  — - — i-  - 
^  3        3  3        3 

33-  -  2;c  -  5  +  276  =  0 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem 


111 


41. /W  =  v^,  [1,9] 
(1,1),  (9.  3) 
3-1       I 


1 


(a) 


(b)  Secant  line:  >>  —  1  =  -(x  -  1) 


1     ^3 
y  =  ~x  +  — 


4         4 
0  =  X  -  4^  +  3 


(c) 


fix) 


ijk 


/(9)-/(l)       1 
9-1  4 

1     _  1 

2Vc"4 

7?  =  2 
c  =  4 
{c,/(c))  =  (4,  2) 


'^  =  /'(4)  =  4 


Tangent  line:  y  -  2  =  -(j:  -  4) 


V  =  -.X  +  I 
4 


0  =  .t  -  4>'  +  4 


43.  5(f)  =  -4.9f2  +  500 

5(3)  -  5(0)  _  455.9  -  500 


(a)  K, 


3-0 


14.7  m/sec 


(b)  5(f)  is  continuous  on  [0,  3]  and  differentiable  on  (0,  3). 
Therefore,  the  Mean  Value  Theorem  applies. 

v(f)  =  s\i)  =  -9.8r  =  -  14.7  m/sec 
-14.7 


-9.8 


1 .5  seconds 


45.  No.  Let/(.r)  =  .r=  on  [-  1,  2]. 

/'(.t)  =  Ix 

/'(O)  =  0  and  zero  is  in  the  inter\al  (—1,2)  but 
/(-l)^/(2). 


47.  Let  5(t)  be  the  position  function  of  the  plane.  If  f  =  0  corresponds  to  2  p.m.,  5(0)  =  0,  5(5.5)  =  2500  and  the  Mean  Value 
Theorem  says  that  there  exists  a  time  fg,  0  <  fg  <  5.5,  such  that 

S%)  =  v(ro)  =  ^ffy  »  454.54. 

Applying  the  Intermediate  Value  Theorem  to  the  velocity  function  on  the  intervals  [0.  fg]  and  \t^.  5.5],  you  see  that  there  are  at 
least  two  times  during  the  flight  when  the  speed  was  400  miles  per  hour.  (0  <  400  <  454.54) 


112       Chapters        Applications  of  Differentiation 


49.  (a)  /is  continuous  on  [—  10,  4]  and  changes  sign, 

(/(-8)  >  0, /(3)    <   0).  By  the  Intermediate  Value 
Theorem,  there  exists  at  least  one  value  of  x  in 
[- 10,  4]  satisfying/U)  =  0. 


(c) 


(b)  There  exist  real  numbers  a  and  b  such  that 

-\0  <  a  <  b  <  A  and /(a)  =  f(b)  =  2.  Therefore, 
by  Rolle's  Theorem  there  exists  at  least  one  number  c 
in  (-  10,  4)  such  that /'(c)  =  0.  This  is  called  a  criti- 
cal number. 


(d) 


8-- 


iX 


(e)  No,/'  did  not  have  to  be  continuous  on  [—10,  4]. 


51.  /is  continuous  on  [-5,  5]  and  does  not  satisfy 
the  conditions  of  the  Mean  Value  Theorem. 
=>/is  not  differentiable  on  (-5,  5). 
Example:  f{x)  =  |;c| 


M*-i 


53.  False. /U)  =  l/j:has  a  discontinuity  zlx  =  0. 


55.  True.  A  polynomial  is  continuous  and  differentiable  everywhere. 


57.  Suppose  that  p{x)  =  x^+ 1  +  ax  +  b  has  two  real  roots  Xj  and  X2.  Then  by  Rolle's  Theorem,  since  p{xy)  =  p{x-^  =  0,  there 
exists  c  in  (x,,  x^  such  that  p  '(c)  =  0.  But  p  '{x)  =  {In  +  l)x^  +  a  t^  0,  since  n  >  0,  a  >  0.  Therefore,  p(x)  cannot  have  two 
real  roots. 


59.  \fp{x)  =  Ax-  +  Bx  +  C,  then 

fib)  -  f{a)  _  (Ab-  +  Bb  +  C)  -  (Aa^  +  Ba  +  C) 


p  '(x)  =  2Ax  +  B 


b  —  a  b  —  a 

A{b^  -  a2)  +  B{b  -  a) 


b-  a 

{b  -  a)[A(b  +  a)  +  B] 
b-  a 


=  A(b  +  a)  +  B. 
Thus,  2Ax  =  A{b  +  a)  and  x  =  (b  +  a)/2  which  is  the  midpoint  of  [a,  b]. 


61.  fix)  =  2  cos  X  differentiable  on  (— oo,  oo). 
f'(x)  =  —  2  sin  X 

-5  ^  /'(x)  <  2  =>f'(x)  <  1  for  all  real  numbers. 
Thus,  from  Exercise  60, /has,  at  most,  one  fixed  point,  (x  ==  0.4502) 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test        113 

Section  3.3       Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test 


1.  fix)  =  X--  6x  +  i 
Increasing  on:  (3,  oo) 
Decreasing  on:  (—00,  3) 


3.  y  = 


}? 


'ix 


Increasing  on:  ( -  00,  -  2),  (2,  00) 
Decreasing  on:  (-2,2) 


5-  fix)  =  ^ 


fix) 


x' 


Discontinuity:  x  =  0 


Test  intervals: 

-00   <  JT  <   0 

0  <  .t  <  00 

Sign  of  fix): 

/'>o 

/'<  0 

Conclusion: 

Increasing 

Decreasing 

Increasing  on  (-  00,  0) 
Decreasing  on  (0,  00) 


7.    six) 


2x-  S 


g'ix)  =  Ix  -  2 
Critical  number:  x  =  1 


Test  intervals: 

-00  <  j:  <  1 

1  <  .r  <  cso 

Signof  g'W: 

g'  <Q 

g'  >o 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (l,oo) 
Decreasing  on:  (— 00,  1) 


9.    .v  = 

y'  = 


xVl6  —  x^ 
-2(;c2  -  8) 


Domain:  [-4,  4] 
-2 


V16  -  x"-    yi6 

Critical  numbers:  x  =  ±2^2 


=ix  -  2V2)(.v  +  272) 


Test  intervals: 

-4  <  X  <   -2V2 

-2v^  <  .t  <  2v^ 

2V2  <  X  <  4 

Sign  of  _v ': 

>-'  <  0 

v'  >  0 

y'  <  0 

Conclusion; 

Decreasing 

Increasing 

Decreasing 

Increasing  on  ( -  2  VI,  2  V2) 
Decreasing  on  (-4,  -2V5),  (2^2,  4) 


11-  fix)  =  x^ 


6x 


fix)  =  2x  -  6  =  0 
Critical  number:  x  =  3 


13.  fix)  =  -2x^  +  4x  +  ?, 
fix)  =  -4.V  +  4  =  0 
Critical  number:  .v  =  1 


Test  intervals: 

-00  <  j:  <  3 

3  <  j:  <  00 

Sign  of/'U): 

/'<  0 

/'>o 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (3,  00) 
Decreasing  on:  (-00,  3) 
Relative  minimum:  (3,  -  9) 


Test  intervals: 

-00  <  x  <  1 

1  <  .V  <  00 

Sign  of/'t.v)- 

/'>  0 

/'  <  0 

Conclusion: 

Increasing 

Decreasing 

Increasing  on:  {-00,1) 
Decreasing  on:  (1,  00) 
Relative  maximum:  (1.5) 


114       Chapters       Applications  of  Differentiation 


15.  fix)  =  2x3  +  3x2  -  12a: 

fix)  =  6x2  +  6x  -  12  =  6(;^  +  2)(x  -  1)  =  0 

Critical  numbers:  x  =  —2,  1 


Test  intervals: 

-oo  <  X  <   -2 

-2  <  X  <  1 

1  <  X  <  oo 

Sign  of/'(x): 

/'>o 

/'  <  0 

/'>0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on:  (— oo,  —2),  (1,  oo) 
Decreasing  on:  (-2,1) 
Relative  maximum:  (—2,20) 
Relative  minimum:  (1,-7) 


17.  fix)  =  x2(3  -  x) 


3x2 


fix)  =  6x  —  3x2  =  3^('2  _  J,) 
Critical  numbers:  x  =  0,  2 


Test  intervals: 

—  oo  <  X  <  0 

0  <  X  <  2 

2  <  X  <  oo 

Sign  of /'(x): 

/'<o 

/'>0 

/'<o 

Conclusion: 

Decreasing 

Increasing 

Decreasing 

Increasing  on:  (0,  2) 
Decreasing  on:  (-oo,  0),  (2,  oo) 
Relative  maximum:  (2,  4) 
Relative  minimum:  (0,  0) 


19.  /(^)  = 


x^  -  5x 


fix)  =  x^  -  1 

Critical  numbers:  x  =  —1,1 


Test  intervals: 

-oo  <  X  <   -1 

-  1    <  X  <   1 

1    <  X  <  oo 

Sign  of/'(x): 

/'>0 

f  <Q 

f>  0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on:  (— oo,  —  1),  (1,  oo) 
Decreasing  on:  (-1,1) 
Relative  maximum:  (—1,5) 
Relative  minimum:  (l,  -5) 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test       115 


21.  fix)  =  .r'/3  +  1 

fix)  =  -x'^/^  =  — ^ 
Critical  number:  x  =  0 


Test  intervals: 

-oo  <  j:  <  0 

0  <  j:  <  oo 

Sign  of/'(-t): 

r  >  0 

/'>0 

Conclusion: 

Increasing 

Increasing 

Increasing  on:  (-00,00) 
No  relative  extrema 


23.  /W  =  (x  -  1)2/3 
2 


/'W 


3U  -  1)'/' 
Critical  number:  x  =  1 


Test  intervals: 

-co  <  X  <   1 

1     <   .V    <    CO 

Sign  of/'U): 

/'<  0 

/'>0 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (l,oo) 
Decreasing  on:  (-00,  1) 
Relative  minimum:  (1,0) 


25.  fix)  =  5  -  |x  -  51 


fix)  = 


x 


|x-  5 
Critical  number:  x  =  5 


l-l,     X  > 


Test  intervals: 

-00  <  X  <  5 

5  <  jc  <  00 

Sign  off'ix): 

f'>0 

/'<o 

Conclusion: 

Increasing 

Decreasing 

Increasing  on:  (—00,  5) 
Decreasing  on:  (5,  00) 
Relative  maximum:  (5.  5) 


27 

fix)  =x  +  ^ 

fix)  =  1  -  A  = 

X--  1 
X- 

Critical  numbers: 

x=  -1, 

1 

Discontinuity:  x 

=  0 

Test  intervals: 

-  00  <  v  <  -  1 

-  1  <  .r  <  0 

0  <  .t  <  1 

1    <   JT    <    oo 

Sign  off'ix): 

/'>0 

/'<0 

/'<o 

/'>  0 

Conclusion: 

Increasing 

Decreasing 

Decreasing 

Increasing 

Increasing  on:  (-00,  -  1).  (1,  00) 
Decreasing  on:  (-1,  0),  (0,  1) 
Relative  maximum:  (-  1,  -2) 
Relative  minimum:  (1,2) 


116       Chapter  3       Applications  of  Dijferentiation 


29.  f{x) 


fix) 


{x^  -  9)(2.r)  -  (x'){2x)  _     -\8x 


ix^-  -  9r 

Critical  number:  x  =  0 
Discontinuities:  x  =  —3,  3 


(x^  -  9)2 


Test  intervals: 

-oo  <  jc  <  -3 

-3  <  JC  <  0 

0  <  X  <  3 

3  <  X  <  oo 

Sign  of/'U): 

/'  >  0 

/'  >  0 

/'  <  0 

/'<0 

Conclusion: 

Increasing 

Increasing 

Decreasing 

Decreasing 

Increasing  on:  (-oo,  -3),  (-3,  0) 
Decreasing  on:  (0,  3),  (3,  oo) 
Relative  maximum:  (0,  0) 


31.  fix)  = 


fix)  = 


X'  -  2a:  +  1 
X  +  \ 

(x  +  l)(2x  -  2)  -  (x^  -2x+  1)(1)  _  x^  +  2jc  -  3       (x  +  3)(x  -  1) 


ix  +  ir 
Critical  numbers:  x  =  —3,  1 
Discontinuity:  ;<:  =  —  1 


ix  +  IT' 


ix  +  ir 


Test  intervals: 

-oo  <  X  <   -3 

-3  <  X  <  -1 

- 1  <  .1  <  1 

1  <  ;c  <  oo 

Sign  of/'U): 

/'>  0 

/'<  0 

/'<o 

/'>  0 

Conclusion: 

Increasing 

Decreasing 

Decreasing 

Increasing 

Increasing  on:  (— oo,  -3),  (1,  oo) 
Decreasing  on:  (—3,  —  1),  (—  1,  1) 
Relative  maximum:  (-3,-8) 
Relative  minimum:  (1,0) 


33.  fix)  =  -  +  cosjc,  0  <  X  <  Itt 


fix)  =  -  -  sin  ;c  =  0 


Critical  numbers:  x  =  —,—r 

0       0 


Test  intervals: 

0<x<f 

0 

77                      577 

Sir 

-^   <   X    <    277 
0 

Sign  of  fix): 

f  >o 

/'<o 

/'>  0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on:  ( 0,  —  j,  ( — ,  277 


Decreasing  on: 


77    577 

6'T 


Relative  maximum: 


Relative  minimum: 


77    77  +   6v3 

6'        12 

577  577  —  6V3 
T'         12 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test       117 


35.  fix)  =  sin^  X  +  sin  X,  0  <  X  <  Itt 

fix)  =  2  sin  j:  cos  x  +  cos  x  =  cos  x(2  sin  a:  +  1 ) 

_  .  .    ,         ,  IT  7tt  37T  IItt 

Cntical  numbers:  x  =  —,  — -,  -r-.  — r— 
2     6      2       o 


Test  intervals: 

0<.<f 

TT                     777 

2<^<T 

777                     3t7 

377                      1177 

2    <  •'^  <     6 

1177 

•— -  <  .r  <  277 
6 

Sign  of/'(:t): 

/'>0 

/'<  0 

/'>0 

/'<0 

/'>  0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Decreasing 

Increasing 

I  ^  '''■\  /777  37r\  (IItt  ^ 
Increasing  on:  (  0,  -I,  I  — ,  —  I,  I  — ,  277 


Decreasing  on: 


Relative  minima: 


77    7t7\    /377    II77 


2'  6  y  V  2 


777         1\    /11t7         1 


6  '     4 


Relative  maxima:  I  — ,  2  I,  (  — ,  0 


37.  f(x)  =  2xV9  -  x\  [-3,  3] 
2(9  -  2x^-) 


,      2(9  -  2^2) 

Critical  numbers:  x  =  +— ^  =  + 

J2  2 


(d)  Intervals: 


-3, 


3^2 


fix)  <  0 
Decreasing 


3v^  372 
"    2    '     2 

/'(.x)  >  0 
Increasing 


/'(.r)  <  0 
Decreasina 


/is  increasing  when/'  is  positive  and  decreasing 
when/'  is  negative. 


39.  /(r)  =  t^  sin  f,  [0,  277] 

(a)  fit)  =  t^cost  +  2t  sin  t 
=  t(t  cos  t  +  2  sin  f) 

(b) 


(c)  t(t  cos  /  +  2  sin  t)  =  0 

t  =  OoT  t  =  - 2  tan  r 

f  cot  r  =  -  2 

t  =  2.2889.  5.0870  (graphing  utility) 
Critical  numbers:  r  =  2.2889.  t  =  5.0870 

(d)  Intervals: 

(0.2.2889)  (2.2889,5.0870)      (5.0870.277) 

/'(f)  >  0  /'(f)  <  0  /'(f)  >  0 

Increasing  Decreasing  Increasing 

/is  increasing  when/'  is  positive  and  decreasing  when 
/'  is  negative. 


118        Chapters       Applications  of  Differentiation 


41.       fix)  = 5 ; =  -^^ :r^ =  x^  -7,x,  x  +  ±1 

fix)  =  gix)  =x^  -  3xf0Tal\xit±i_ 

fix)   =   3a:2  -   3   =  3(JC2  -    1),  X  7t  ±1       /'(j;)   7t  0 

/symmetric  about  origin 
zeros  of/:  (0,  0),  (±  73,  o) 
No  relative  extrema 


Holes  at  (-1,2)  and  (1,-2) 


43.  fix)  =  c  is  constant  =*/'W  =  0 


45.  /is  quadratic  =>/'  is  a  line. 


I  I  I  I  I 


-2-- 
-4-- 


I     I     I     I     I  >    J 


47.  /has  positive,  but  decreasing  slope 


I   iTT 


-2- 
-4- 


In  Exercises  49-53,/'W  >  0  on  (-oo,  -4),f'(x)  <  0  on  (-4, 6)  and/'W  >  0  on  (6,  oo). 

51.        gix)  =  -fix)  S3,    gix)  =  fix-  W) 


49.    gix)  =  fix) +  5 
8'ix)=f'ix) 
g'(0)=/'(0)  <  0 


g'ix)  =  -fix) 
g'i-6)  =  -f'i-6)  <  0 


g'ix)  =  fix-  10) 
g'(0)=/'(-10)  >  0 


I>  0,  x  <  4  =>/ is  increasing  on  (-00,  4). 

undefined,    x  =  4 
<  0,  X  >  4  =»/is  decreasing  on  (4,  oo). 

Two  possibilities  for  fix)  are  given  below. 

(a) 


(b) 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test        119 


57.  The  critical  numbers  are  in  intervals  (-0.50,  -0.25)  and 
(0.25,  0.50)  since  the  sign  of/'  changes  in  these  intervals, 
/is  decreasing  on  approximately  (-1,  -0.40),  (0.48,  1), 
and  increasing  on  (-0.40,  0.48). 

Relative  minimum  when  x  ~  ~  0.40. 

Relative  maximum  when  x  =  0.48. 

59.  fix)  =  X,  g{x)  =  sin  x.  0  <  .v  <  tt 
(a) 


fix)  seems  greater  than  gix)  on  (0,  tt). 
(b) 


x  >  sin  j:  on  (0,  it) 


X 

0.5 

1 

1.5 

T 

2.5 

3 

fix) 

0.5 

1 

1.5 

2 

2.5 

3 

six) 

0.479 

0.841 

0.997 

0.909 

0.598 

0.141 

(c)  Let  hix)  =  fix)  —  gix)  =  X  -  sin  x 

h  'ix)  =  1  —  cos  ;c  >  0  on  (0,  tt). 

Therefore,  hix)  is  increasing  on  (0,  it).  Since 
hiQ)  =  0,  hix)  >  0  on  (0.  tt).  Thus. 

jr  —  sin^:  >  0 

X  >  sin.r 

fi.x)  >  gi.x)  on  (0,  tt). 


61.    V  =  kiR  -  r)r^  =  kiRr^  -  r^) 
v'  =  kilRr-  3r=) 

=  krilR  -  3r)  =  0 
r  =  0  or  f /? 
Maxmium  when  r  =  f /?. 


v/?  R 

63.      P  =  7— — '  p  ..,,  V  and  /?,  are  constant 

(a,    +  Kj)" 

rfP  _  (/?,  +  R.JHvR,)  -  vR,R.[2iR,  +  j?,)(l)] 
d/fj  (^,  +  /?,)*' 

^  v/;,(/?,  -  ^,)  ^  ^ 

Maximum  when  ^j  =  /?; . 


65.  (a)  S  =  0.1198t^  -  4.4879r^  +  56.9909F  -  223.0222r  +  579.9541 
(b)    1500 


(c)  S'  =  0  for  f  =  2.78.  or  1983,  (311.1  thousand  bankruptcies) 
Actual  minimum;   1984  (344.3  thousand  bankruptcies) 

67.  (a)  Use  a  cubic  polynomial 

fix)  =  fljx'  +  a2.x-  +  a,.v  +  a^. 

(b)  fix)  =  3aj.x'-  +  la^x  +  a, 

(0, 0):  0  =  ao  (/(O)  =  0) 

0  =  a,  (/'(O)  =  0) 

(2,2):  2  =  8a3  +  4fl,  (/(2)  =  2) 

0  =  12a3  +  4a,  (/'(2)  =  0) 


(c)  The  solution  is  Op  =  a,  =  0.  O;  =  -.  a, 


3    , 


fix)  =  -|.v-'  +  |.v 


(d) 


\ 

(2.  2) 

(0.  0) 

\ 

120       Chapters        Applications  of  Differentiation 


69.  (a)  Use  a  fourth  degree  polynomial /W  =  a^x'^  +  a^x^  +  a,^^  +  "i-*  +  "^o- 
(b)  fix)  =  4a^x^  +  3^3x2  +  2^2^  +  a, 

(0,  0):       0  =  Qo  (/(O)  =  0) 

0  =  a,  (/'(O)  =  0) 

(4,  0):       0  =  256^4  +  640,  +  IGa^  (/(4)  =  0) 

0  =  256a^  +  48a3  +  8^2  (/'(4)  =  0) 

(2,  4):       4  =  I6a^  +  Sa,  +  4^2 


0  =  32a.  +  12a,  +  4a, 


(/(2)  =  4) 
(/'(2)  =  0) 


(c)  The  solution  is  Oq  =  a,  =  0,  a,  =  4,  aj  =  —  2,  04  =  — 


fix)  =  -x"  -  2^  +  Ax- 
id) 


\ 

(2.4)               J 

A/ 

(0,0) 

(4.0) 

71.  True 


Let  h{x)  =  f{x)  +  g{x)  where /and  g  are  increasing.  Then 
h'ix)  =  fix)  +  g'ix)  >  0  since /'(x)  >  Oandg'U)  >  0. 


73.  False 


Let/(x)  =  x^,  then/'(x)  =  3x^  and/only  has  one 
critical  number.  Or.  let/U)  =  x^  +  3x  +  1,  then 
fix)  =  3(x'  +  1)  has  no  critical  numbers. 


75.  False.  For  example,  fix)  =  x^  does  not  have  a  relative  extrema 
at  the  critical  number  x  =  0. 


77.  Assume  that/'(x)  <  0  for  all  x  in  the  interval  (a,  b)  and  let  x^  <  x-^  be  any  two  points  in  the  interval.  By  the  Mean  Value 
ve  know  there  e 

fix.)  -fix,) 


Theorem,  we  know  there  exists  a  number  c  such  that  x^  <  c  <  x^,  and 


.     /'(c) 

Since/'(c)  <  0  and-nr,  -  x,  >  0,  then/(x2)  — /(x,)  <  0,  which  implies  that/Cxj)  <  fix).  Thus,/is  decreasing  on  the 

interval. 


79.  Let/U)  =  i\  +  x)"  -  ivn  -  1.  Then 
fix)  =  n(l  +  x)"-^  -  n 

=  «[(!  +j:)"~'  -  1]  >  Osincex  >  Oandn  >1. 
Thus./W  is  increasing  on  (0,  00).  Since /(O)  =  0  =^fix)  >  0  on  (0,  00) 
i\  +  x)"  -  nx  -  I  >  0  =>  (1  +  jc)"  >  I  +  nx. 


Section  3.4        Concavity  and  the  Second  Derivative  Test        111 


Section  3.4       Concavity  and  the  Second  Derivative  Test 


1.  y  =  x'-  -  X  —  1,  y"  —  2 
Concave  upward:  (-00,00) 


3.  fix)  = 


24 


^  ^  -  144(4  -  x'^) 
x~+  12'-'    ~     (;c2  +  12)3 

Concave  upward:  (-00,  -2),  (2,  00) 

Concave  downward:  (—2,2) 


5.  fix)  =  J^,  y 


4(3x^  +  1) 


r  ■'      (x2  -  1)3 

Concave  upward:  (-00,  -  1),  (1,  00) 
Concave  downward:  (-1,1) 


7.  fix)  =  3x^  -  x^ 
fix)  =  6x-  3x2 
fix)  =  6  -  6x 
Concave  upward:  (-00.  1) 
Concave  downward:  (1,  00) 


9.    v  =  2x-  tanx,  (-^.7 


y'  =  2  —  sec-x 
>'"=  —2  sec-x  tanx 


Concave  upward:  (  -  — ,  0 


Concave  downward:    0, 


11.   fix)  =  x>  -  6x-  +  \2x 

fix)  =  3x-  -  12x  +  12 

fix)  =  6(x  -  2)  =  0  when  x  =  2. 

The  concavity  changes  at  x  =  2.  (2,  8)  is  a  f)oint  of 
inflection. 

Concave  upward:  (2,  cc) 
Concave  downward:  (—00,  2) 


13. 


fix) 


1 


2x2 


fix)  =  x3  -  4x 
fix)  =  3x2-4 

fix)  =  3x2  _  4  =  Owhenx 


2 

^73- 


Test  interval: 

2 

CO   <  X  <            r- 

J3 

2                   "^ 

~~r^   <  X   <   -7= 

J3               V3 

2 
^  <  X  <   00 

73 

Sign  of/"(x): 

fix)  >  0 

/"(-v)  <  0 

fix)  >  0 

Conclusion: 

Concave  upward 

Concave  downward 

Concave  upward 

Points  of  inflection: 


20 


'■V3' 


122       Chapter  3       Applications  of  Differentiation 


15.    /(;c)  =  x(x  -  4)3 

fXx)  =  x[3{x  -  4)2]  +  U  -  4)3 

=  U  -  4)^(4x  -  4) 
f"(x)  =  4{x  -  \)[2{x  -  4)]  +  4(x  -  4)2 

=  4(a:  -  4)[2U  -  1)  +  (x  -  4)] 
=  4(x  -  4)(3x  -  6)  =  \2{x  -  4){x  -  2) 
f"{x)  =  12(jc  -  4)(jc  -  2)  =  0  when  j;  =  2,  4. 


Test  interval: 

-oo   <  X  <1 

2  <  j:  <  4 

4  <  jt  <  oo 

Sign  of /"W: 

fix)  >  0 

fix)  <  0 

/"(x)  >  0 

Conclusion: 

Concave  upward 

Concave  downward 

Concave  upward 

Points  of  inflection:  (2,  -  16),  (4,  0) 


17.   f(x)  =  xjx  +  3,  Domain:  [-3,  oo) 


/'W=.(tj(-.3)-./2.vm^|^ 


/"W 


6v<m  -  3U-  +  l){x  +  3)-'/2  _    3(x  +  4) 


4U  +  3)  4{x  +  3)3/2 

/"(jc)  >  0  on  the  entire  domain  of/ (except  for  x  =  -  3,  for  which/"(x)  is  undefined).  There  are  no  points  of  inflection. 
Concave  upward  on  (-3,  oo) 


19.  /W  =  - 

f\x)  = 
/"W  = 


;c2+  1 

1  -;c2 
(;c2  +  1)2 

2x(x2  -  3) 

(x2   +    1)3 


=  0  when  a:  =  0,  ±V3 


Test  intervals: 

—  oo  <  X  <  —  V3 

-73  <;c  <  0 

0  <  ;c  <  73 

73  <  X  <  oo 

Sign  of/'W: 

/"<o 

/">0 

/"<0 

/">0 

Conclusion: 

Concave  downward 

Concave  upward 

Concave  downward 

Concave  upward 

Points  of  inflection: 


■73,-^1  (0,0),  (73,^ 


21.   fix)  =  sin(  -  1,  0  <  a:  <  47r 


fix)  =  icos(f 


/"W  =  -^sini  2 


/"(;c)  =  0  when  x  =  Q,  Itt,  4t7. 
Point  of  inflection:  (27r,  0) 


Test  interval: 

0  <  .^r  <  277 

277  <  j:  <  477 

Sign  of/"W: 

/"  <  0 

/">0 

Conclusion: 

Concave  downward 

Concave  upward 

Section  3.4        Concavity  and  the  Second  Derivative  Test       123 


23.  f(x)  =  sec(;<:  -  -\,Q  <  x  <  Att 


fix)  =  secfjr  -  -j  tanix  -  - 


f"(x)  =  sec^l  X  -  —\  +  seel  x  -  —\  tan^j  x  -  —\  i=  Q  for  any  x  in  the  domain  of/. 

Concave  upward:  (0,  tt),  {Itt,  Ztt) 
Concave  downward:  (tt,  2tt),  (Stt,  47r) 
No  points  of  inflection 


25.   f{x)  =  2  sin;<:  +  sin  2;c,  0  <  j:  <  277 
fix)  =  2  cos  j:  +  2  cos  2x 
f"{x)  =  —  2  sin  j:  -  4  sin  2x  =  —  2  sin  ;c(l  +4  cos  x) 

f"{x)  =  0  when  x  =  0,  1 .823,  tt,  4.460. 


Test  interval: 

0  <  A-  <  1.823 

1.823  <  .X  <  TT 

77  <  ,x:  <  4.460 

4.460  <  .V  <  277 

Sign  of /"(a): 

/"<  0 

/">  0 

/"<  0 

/">0 

Conclusion: 

Concave  downward 

Concave  upward 

Concave  downward 

Concave  upward 

Points  of  inflection:  (1.823,  1.452),  {77,  0),  (4.46,  -  1.452) 

27.   /(a)  =  A^  -  4x3  +  2 

/'(a)  =  4a3  -  12a'  =  Ax-{x  -  3) 

/"(a)  =  12a'  -  24a  =  12a(a  -  2) 

Critical  numbers:  a  =  0,  a  =  3 

However,  /"(O)  =  0,  so  we  must  use  the  First  Derivative 
Test. /'(a)  <  0  on  the  intervals  (-00,  0)  and  (0,  3);  hence, 
(0,  2)  is  not  an  extremum./"(3)  >  0  so  (3,  -25)  is  a 
relative  minimum. 


29.   fix)  =  (a  -  5)2 
/'(a)  =  2(a-5) 
f"{x)  =  2 
Critical  number:  a  =  5 

/"(5)  >  0 
Therefore,  (5,  0)  is  a  relative  minimum. 


31.    /(a)  =  a3  -  3a2  +  3 

fix)  =  3a2  -  6a  =  3a(a  -  2) 
/"(a)  =  6a  -  6  =  6(a  -  1) 

Critical  numbers:  a  =  0,  a  =  2 

/"(O)  =  -6  <  0 
Therefore,  (0,  3)  is  a  relative  maximum. 

/"(2)  =  6  >  0 
Therefore,  (2,  —  1)  is  a  relative  minimum. 


33.    g{x)=x\6-xy 

g\x)  =  x{x  -  6)2(12  -  5.r) 

g"(x)  =  4(6  -  x)(5x~  -  24a  +  18) 

Critical  numbers:  x  =  0,  -f ,  6 

^"(0)  =  432  >  0 
Therefore,  (0,  0)  is  a  relative  minimum. 

g"{fj  =  -  155.52  <  0 
Therefore,  \-f,  268.7)  is  a  relative  minimum. 

g"(6)  =  0 

Test  fails  by  the  First  Derivative  Test.  (6.  0)  is  not 
an  extremum. 


124        Chapters        Applications  of  Differentiation 


35.   f(x)  =  .x2/3  -  3 
2 


fix)  = 
fix)  = 


-2 


Critical  number:  a;  =  0 

However,  /"(O)  is  undefined,  so  we  must  use  the  First 
Derivative  Test.  Since /'(x)  <  0  on  (— oo,  0)  and 
f'(x)  >  0  on  (0,  oo),  (0,  -3)  is  a  relative  minimum. 


37.   f(x)  =x  +  - 
■'  X 


fix)  =  1  - 

Critical  numbers:  x  =  ±2 

f'i-2)  <  0 
Therefore,  (—2,  —4)  is  a  relative  maximum. 

/"(2)  >  0 
Therefore,  (2, 4)  is  a  relative  minimum. 


39.  fix)  =  cosx  -  X,  0  <  x  <  417 
fix)  =  -  sin  ;c  -  1  <  0 
Therefore,  /  is  non-increasing  and  there  are  no  relative  extrema. 


41.  fix)  =  O.lx^ix  -  3)3,  [- 1,  4] 

(a)  fix)  =  0.2;c(5;c  -  6)U  -  3)^ 
/"W  =  U  -  3)(4;c2  -  9.6a:  +  3.6) 

=  OAix  -  3)(10.x2  _  24.x  +  9) 

(b)  /"(O)  <  0  =»  (0,  0)  is  a  relative  maximum. 

/"(f)  >  0  =*•  (1.2,  -  1.6796)  is  a  relative  minimum. 

Points  of  inflection: 

(3,  0),  (0.4652,  -0.7049),  (1.9348,  -0.9049) 


/is  increasing  when/'  >  0  and  decreasing  when 
/'  <  O./is  concave  upward  when/"  >  0  and  con- 
cave downward  when/"  <  0. 


43.  fix)  =  sin  jc  -  -sin  3x  +  -sin  5x,  [0,  n] 

(a)  fix)  =  cos  X  -  cos  3x  +  cos  5x 

fix)  =  0  when  x  =  T-  ^  =  T'  ^  =  "g"- 

fix)  =  —  sin  X  +  3  sin  3a:  —  5  sin  5x 

fix)  =  0  when  x  =  ^,  x  =  ^,  x  =  1.1731.  .t  ==  1.9685 
6  6 

(b)  /"( —  1  <  0  =>  ( — ,  1 .53333  1  is  a  relative  maximum. 


Points  of  inflection:  I -,  0.2667],  (1.1731,  0.9638), 

(1.9685,0.9637),  [y"' 0-2667 

Note:  (0,  0)  and  (ir,  0)  are  not  points  of  inflection 
since  they  are  endpoints. 


(c) 


The  graph  of/ is  increasing  when/'  >  0  and  decreas- 
ing when/'  <  O./is  concave  upward  when/"  >  0 
and  concave  downward  when/"  <  0. 


Section  3.4        Concavity  and  the  Second  Derivative  Test       125 


45.  (a) 


/'  <  0  means/decreasing 

/'  increasing  means 
concave  upward 


(b) 


/'  >  0  means/ increasing 

/'  increasing  means 
concave  upward 


47.    Let/U)  =  ;d. 
f"(x)  =  Ux^ 
/"(O)  =  0,  but  (0,  0)  is  not  a  point  of  inflection. 


49. 


51. 


53.      > 


55.      y 


57. 


/"is  linear. 

/'  is  quadratic. 

/is  cubic. 

/concave  upwards  on  (— oo.  3),  downward  on  (3.  oo). 


126       Chapters        Applications  of  Differentiation 


59.  (a)  n  =  1: 

fix)  =  1 
fix)  =  0 
No  inflection  points 


n  =  2: 

/W  =  (;c  -  2)2 

/'W  =  2U  -  2) 

/"W  =  2 

No  inflection  points 

Relative  minimum: 
(2,0) 


n  =  3: 

fix)  =  (x-  ly 

fix)  =  3{x  -  If 
fix)  =  6{x  -  2) 
Inflection  point:  (2,  0) 


,/ 

Point  of 
inflection 

n  =  4: 

/W  =  {x-  ly 

fix)  =  4(;c  -  2)3 

/W  =  12(;c  -  2)2 

No  inflection  points: 

Relative  minimum: 
(2,0) 


J. 


Conclusion:  If  n  >  3  and  n  is  odd,  then  (2,  0)  is  an  inflection  point.  If  n  >  2  and  n  is  even,  then  (2,  0)  is  a  relative  minimum. 
(b)  Let  fix)  =  ix-  2)",  fix)  =  nix  -  2)"~\  fix)  =  n(«  -  \)ix  -  2)"-\ 
For  n  >  3  and  odd,  «  —  2  is  also  odd  and  the  concavity  changes  at  x  =  2. 
For  n  >  4  and  even,  n  —  2  is  also  even  and  the  concavity  does  not  change  at  j:  =  2. 
Thus,  j:  =  2  is  an  inflection  point  if  and  only  if  «  >  3  is  odd. 

61.  fix)  =  ax^  +  bx^  +  ex  +  d 
Relative  maximum:  (3,  3) 
Relative  minimum:  (5,  1) 
Point  of  inflection:  (4,  2) 

fix)  =  3ax^  +  2bx  +  cf'ix)  =  6ax  +  2b 

/(3)  =  27.  +  %  +  3c  +  rf=3   ,„._,..^..__._49^^8,^^^_1 


/(5)  =  125a  +  25b  +  5c  +  d=   1 
/'(3)  =  27a  +  6fc  +  c  =  0,  /"(4)  =  24a  +  2fc  =  0 
-   49a  +  8fc  +  c  =  -  1    24a  +  2*  =   0 
27a  +  6fc  +  c  =   0    22a  +  2fc  =  - 1 


22a  +  2b  =  - 1  2a 
a  =  ii)=  -6,c  =  f,rf=  -24 
fix)  =  \x^  -  6x^  +  f ;c  -  24 


=   1 


Section  3.4        Concavity  and  the  Second  Derivative  Test       127 


63.  f(x)  =  ax^  +  bx^  +  ex  +  d 

Maximum:  (-4,  1) 

Minimum:  (0,  0) 

(a)  f'(x)  =  3ax-  +  2bx  +  c,     f"{x)  =  6ax  +  2b 
m  =  0=^d  =  0 

/(-4)  =  1  = 
/'(-4)  =  0  = 

/'(0)  =  0  = 

Solving  this  system  yields  a  =  j^  3"^  i>  =  6a  =  ^. 
fix)  =  j,x^  +  ^,x^- 


-64a  +  16fc  -  4c  =  1 
48a  -     8b  +    c  =  0 

c  =  0 


(b)  The  plane  would  be  descending  at  the  greatest  rate  at 
the  point  of  inflection. 


fix)  =  6ax  +  2b  =  j^x  +  ^ 
Two  miles  from  touchdown. 


0 


x  =  -2. 


65.    D  =  2x'  -  5Lx^  +  3L-x^ 

D'  =  8.r3  -  \5Lx^  +  6L~x  =  .r(8.x-  -  151.x  +  6L-)  =  0 

15L±  733Z.      /l5  ±  733  V 
,  =  0or..  = =(^_^^JZ. 

By  the  Second  Derivative  Test,  the  deflection  is 
maximum  when 


15 


16 


L  =  0.578L. 


67.     C  =  0.5.V-  +  15.r  +  5000 
C^^  =  0.5..-.15^^ 

X  X 

C  =  average  cost  per  unit 

^.0.5-^  =  0when.v=100 
dx  X- 

By  the  First  Derivative  Test,  C  is  minimized  when 
X  =  100  units. 


69. 


sXt)  = 

S"(t)  = 


5000P 

8  +  ^2 

80,000f 


(8  +  t^r 
80,000(8  -  it-) 


(8  +  a' 
S"(t)  =  0  for  r  =  ^/873  «  1.633. 
Sales  are  increasing  at  the  greatest  rate  at  f  =  1.633  years. 


71.  /(;c)  =  2(sin.r  +  cos;c), 
f'(x)  =  2(cos  X  —  sin  .r), 
f"{x)  =  2{-sin.v  -  cos.t), 


P,(jc)  =  2v^  +  o(x  -  Jj  =  2V^ 


/(  -  I  =  272 


0 


/"(f)  =  -^ 


Pi'{x)  =  0 
P,(x)  =  272  +  o(.v  -  fl  +  ^(-272)(.v  -  f  )^  =  2  V2  -  .^(.v  -  ^ 

PAx)  =  -272(.r  -  fl 

P^x)  =-lJl 

The  values  of/,  P,,  Z'^,  and  their  first  derivatives  are  equal  at  .r  =  ttJA.  The  values  of  the  second  derivatives  of/ and  P,  are 
equal  at  x  =  Tr/4.  The  approximations  worsen  as  you  move  away  from  x  =  7r/4. 


128        Chapters       Applications  of  Differentiation 


73.     /U)  =  Vl  -X, 
1 


/'W  =  - 

fix)  =  - 


2Vl  -  X 
1 

4(1    -  .t)3/2' 


/(O)  =  1 

/'(o)  =  4 


/"(O) 


p,W  =  i  +  (-|)u-o)  =  i-| 


PAx)  =  -i- 


^ 

s^.  . 

/. 

N 

/>.'(.)  =  4- J  •    . 

P.'U)  =  -| 

The  values  of/,  Pj,  P,'  ^°d  their  first  derivatives  are  equal  at  x  =  0.  The  values  of  the  second  derivatives  of/ and  P2  are  equal 
at  j:  =  0.  The  approximations  worsen  as  you  move  away  from  x  =  0. 


75.   fix)  =  X  sin 


fix) 


r  COSi 

x^        \x 


1    n\     .  n 

--cos  -    +  sm  - 
X        \xl  \x 


fix)  =  -- 
x 


i  ^'"(i 


+  sin 


+  -^  cos ^  cos  -    =  — T  sm  - 

X         \xl      X-        \xj  x'       \x. 


\\       1 


A 

./^ 

V 

^(J..) 

Point  of  inflection:  |  — ,  0 


When  X  >  I/tt,/'  <  0,  so  the  graph  is  concave  downward. 

77.  Assume  the  zeros  of/ are  all  real.  Then  express  the  function  as/W  =  a(x  —  r^)ix  —  r-^ix  —  r^)  where  r^,  r^,  and  rj  are  the 
distinct  zeros  of/.  From  the  Product  Rule  for  a  function  involving  three  factors,  we  have 

fix)  =  a[ix  -  r,)(x  -  r^  +  ix  -  r,)(jf  -  r^)  +  (x  -  r^ix  -  r^)] 

fix)  =  a[ix  -  r,)  +  ix-r,J  +  ix-  r,)  +  (x  -  r^)  +  (x  -  r^)  +  (x  -  r^)] 

■  =  a[6x  —  2(ri  +  rj  +  rj)]. 

Consequently,  fix)  =  0  if 

2(''i  +  ''2  +  '"3)       '"1  +  '"•'  +  '"3       / 
jc  = 7 = f =  (Average  of  r,,  r,,  a«d  rj). 


79.  True.  Lety  =  ax^  +  bx^  +  ex  +  d.  a  ¥=  0.  Then  y"  =  6(Xt  +  2fe  =  0  when  x=  -  ib/3a) 
and  the  concavity  changes  at  this  point. 


Section  3.5        Limits  at  Infinity        129 


81.  False. 

fix)  =  3  sin  Jt  +  2  cos  x 
fix)  =  3  cos  j:  -  2  sin  X 
3  cos  .V  —  2  sin  X  =  0 

3  cos  j:  =  2  sin  x 
2  =  tan.r 
Critical  number:  x  =  tan  '(2) 

/(tan"'  2)  ~  3.60555  is  the  maximum  value  of  .v. 

Section  3.5      Limits  at  Infinity 


83.  False.  Concavity  is  determined  by  /". 


1.  f(x)  = 


3x2 


.t2  +  2 
No  vertical  asymptotes 
Horizontal  asymptote:  v  =  3 
Matches  (f) 


3.  fix. 


X-  +  2 
No  vertical  asymptotes 
Horizontal  asymptote:  y  =  0 
Matches  (d) 


5.  fix) 


4sin  j: 


X-  +  1 
No  vertical  asymptotes 
Horizontal  asymptotes:  y  =  0 
Matches  (b) 


7.  f(x)  = 


4x  +  3 


/  \-^l 

2x-  1 

X 

10° 

10' 

102 

103 

lO-* 

10^ 

10^ 

fix) 

7 

2.26 

2.025 

2.0025 

2.0003 

2 

2 

lim  fix)  =  2 


9.  fix) 


-6x 


V4?  +  5 


X 

10" 

10' 

10- 

103 

10" 

10-^ 

10« 

fix) 

-2 

-2.98 

-2.9998 

-3 

-3 

-3 

-3 

lim/W  =  -3 


11.  fix)  =  5  -  - 


1 


.V2+    1 


x 

10" 

10' 

10- 

103 

10* 

10^ 

10^ 

fix) 

4.5 

4.99 

4.9999 

4.999999 

5 

5 

5 

lim  fix)  =  5 


130        Chapters        Applications  of  Dijferentiation 


13.  (a)    Mx)  =  — -r-  = ; =  5a  -  3  H — 7 

x-^  x^  x^ 

lim  h(x)  —  00    (Limit  does  not  exist) 

-r— ♦00 

lim  h(x)  =  5 


f{x)  ^  5x3  -  3;c^+  10  _  5       3    ^    iQ 


lim  /lU)  =  0 


.      ^2  +  2 


Jr^ooX"  —    1 
^2  +  2 


15.  (a)    lim    , 

...       I   v^ 

(b)  lim 

J:~*o: 

(c)  lim 


Jr'-»oo  X^  —    \ 

x^  +  2 


X  -   1 


=  0 
=  1 
=  00    (Limit  does  not  exist) 


5  -  2x3^2 
17.  (a)   lim    -  ,      ,    =  0 


(b)  lim 

(c)  lim 


5  -  2t3/2  _  _2 
3x3/2  -  4  3 

5  -2x^/2 
3x-4 


=  —  00     (Limit  does  not  exist) 


10     r      ^-  1        ,•      2  -  (1/x)       2-0       2 
19.   lim =  lim -^  ,  .  =  r r  =  r 

i-^00  3x  +  2      x->c^  3  +  (2/x)       3+0      3 


2L    lim 


X  — >oD  X~  ~    1 


lim 


lA      _o     ^ 


1  -  (1A2)     1 


23.     lim 


5x2 


lim 


5x 


x  +  3      x'-X-a=  1  +  (3/x) 
Limit  does  not  exist. 


25.     lim    —r^= 

j:->-oo  ^x'^  —  X 


lim       ^ 


(  forx  <  0  we  have  x  =  —  J]?) 


=    lim 


-1 


x^-x^i  -d/x) 


=  -1 


2x  +  1 
27.      Iim   — ,  ..  =    lim 


2  + 


*-=<=  Vx2  —  X         Jr->-oo  /  .Jx^ 


(for  X  <  0,  X  =  -  7?) 


lim  — ,  ,=  =  —  2 

^^°o  Vx  +  O/x) 


29.  Since  (-  1/x)  <  (sin(2x))/x  <  (1/x)  for  all  x  =5^  0,  we 
have  by  the  Squeeze  Theorem, 

,.          1        ,.      sin(2x)  ^    ,.      1 
lim  —  <    lim  <    lim  - 

X  -*co       X  X  -*oo         X  X  -*oo  X 

0  <    lim  ^^^^  <  0. 

Jr-»oo         X 

sin(2x) 
Therefore,  lim  =  0. 

X  -*oc         X 


3L    lim 


1 


X  ->oo  2x  +  sin  X 


Section  3.5        Limits  at  Infinity        131 


33.  (a)  fix) 


x+  1 


lim  — V— 

x->aoX  +    1 


lim 


=  -1 


>x+  1 
Therefore,  y  =  1  and  y  = 


1  are  both  horizontal  asymptotes. 


.^M 


,,    ,.          .1       ,.      smt 
35.    lim  jr  sm  —  =  lim =  1 

x^ac  X  (-»0*        t 

(Let  a:  =  1/r.) 


37.     lim    (a:  +  V;c=  +  s)  =     lim 


=     lim 


^-»-°=a:  -  Va:2  +  3 


39.    lim  {x  -  Vat  +  x) 


lim 


-  v?  + 


+  vVT: 


=   lim 


X  +  Vx^  +  X 
-1 


t  ^°°  a:  +  V-t-  +  X       X-.00  1  +  Vl  +  (lA) 


41. 


JC 

10" 

10' 

102 

103 

10^ 

10^ 

10« 

/w 

1 

0.513 

0.501 

0.500 

0.500 

0.500 

0.500 

lim  (x  —  ^x(x  -  1))  =   lim 


—  Vj^  —  X    X  +  V-t-  —  x 


=  lim 


x+  v^ 


^=»x  +  Vx^  -  X 

1 


'™  —      / 7—r 

■<  ^=°  1  +  Vl  -  (1/x 

2 


^ 


43. 


X 

10« 

10' 

10- 

10-' 

10^ 

10^ 

10* 

/(x) 

0.479 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

Letx  =  1/f. 
lim  X  sin  r- 


,.      sin(f/2)  1  sin(f/2)       1 

=   lim  =   hm  — 7- —  =  - 

,  -,0*       f  r  ^0*  2      f/2  2 


ri^/:: 


132       Chapters        Applications  of  Differentiation 


45.  (a) 


(b)  lim  fix)  =  3  lim  f'(x)  =  0 

(c)  Since  lim  f{x)  =  3,  the  graph  approaches  that  of  a 
horizontal  line,  lim  f'{x)  =  0. 


47.  Yes.  For  example,  let/(x)  = 


6U  -  21 


j(x  -  2)2  +  r 


49.  >-  = 


2  +x 


1  -;c 

Intercepts:  (-2,0),  (0,2) 
Symmetry:  none 
Horizontal  asymptote:  y  =  —  1  since 


lim 


2+  X 


1  =   lim . 

X  ->oo  \   —  X 


»-oo   1    —  X 

Discontinuity:  x  =  1  (Vertical  asymptote) 


x^  -  4 
Intercept:  (0,0) 
Symmetry:  origin 
Horizontal  asymptote:  y  =  0 
Vertical  asymptote:  x  =  +2 


53.  y 


x^  +  9 
Intercept:  (0,0) 
Symmetry:  y-axis 
Horizontal  asymptote:  y  =  1  since 


lim 


=  1  =   lim 


Relative  minimum:  (0,  0) 


4- 
3-- 
2 
1 


1        2       3 


Section  3.5        Limits  at  Infinity 


133 


55.  y  = 


2x2 


Intercept:  (0,0) 
Symmetry:  y-axis 
Horizontal  asymptote:  y  =  2 
Vertical  asymptote:  x  =  ±2 


57.  xy-  =  4 

Domain:  a:  >  0 

Intercepts:  none 

Symmetry:  x-axis 

Horizontal  asymptote:  y  =  0  since 


lim  -^  =  0 


lim   — 


Vx- 


Discontinuity:  x  =  0  (Vertical  asymptote) 


59.  V  = 


2x 


1  -  X 
Intercept:  (0,  0) 
Symmetry:  none 
Horizontal  asymptote:  y  =  —2  since 

1-  2r  .        ,.         2x 

urn =  — 2  =   lim . 

j:-»-oo  I   —  X  .r->oo  i    —  X 

Discontinuity:  x  =  1  (Vertical  asymptote) 


H — I — I — l-»-i 
2     3     4     5 


61.  V 


Intercepts:  (±v'^.  O) 

Symmetry:  y-axis 

Horizontal  asymptote:  y  =  2  since 

lim    (2  -  4j )  =  2  =   lim  (2  -  V\- 

x->-ooV  X-/  x^oo\  X-j 

Discontinuity:  .r  =  0  (Vertical  asymptote) 


63.  V  =  3  +  - 

X 

2        2 
Intercept:  v  =  0  =  3  H —  ^-  = 

XX 

Symmetry:  none 
Horizontal  asymptote:  y  =  3 
Vertical  asymptote:  x  =  0 


.,.-|-|o 


134        Chapters        Applications  of  Differentiation 


65.  y  = 


Domain:  (—00,  —2),  (2,  00) 

Intercepts:  none 

Symmetry:  origin 

Horizontal  asymptote:  none 

Vertical  asymptotes:  x  =  ±2  (discontinuities) 


I  -° 

I     16 
1     12 


11/ 


I     I     I 


-5-4-3-2-1 


A 


-12 

-16-- 

-20-- 


67.  /W  =  5  -  A  =  ^^^ 
X-  x'- 

Domain:  (— 00, 0),  (0,  00) 


f'(x)  =  3  =>  No  relative  extrema 


/"W 


''"'"^  =  ---J  =i.  No  points  of  inflection 


Vertical  asymptote:  ;c  =  0 
Horizontal  asymptote:  y  =  S 


|y  =  5| 

V  =  o| 

6 

\ 

r~ 

69.   f{x)  = 
/'W  = 

/"U)  = 


x^  -  ^ 

U^  -  4)  -  ;t(2jc) 
{x^  -  4)2 

-U2-H4) 


=i^  0  for  any  x  in  the  domain  of/. 

+  (;c2  +  4] 
(x^  -  4)2 


{x^  -  4)2 
(;c2  -  4)2(-2;c)  +  (x^  +  4)(2)(x2  -  4)(2;c) 


lx{x^  +  12) 


=  0  when  ;t  =  0. 


L 


r^-'?!-^    ^" 


(a:2  -  4)3 

Since/"(;c)  >  0  on  (-2,  0)  and/"(;«:)  <  0  on  (0,  2),  then  (0,  0)  is  a  point  of  inflection. 
Vertical  asymptotes:  x  =  ±2 
Horizontal  asymptote:  y  =  Q 


71.    /U) 


.X  -  2 


x-2 


;c2  -  4;c  +  3       U  -  1)(a:  -  3) 


^  (x2  -  4x  +  3)  -  (;c  -  2)(2;c  -  4)  ^  -x^  -h  4j:  -  5 
■^  ^""^  (x2  -  4x  +  3)2  (x2  -  4x  +  3)2  "^  " 


/"W 


(x2  -  4jc  -t-  3)2(-2x  +  4)  -  (-^2  +  4x  -  5)(2)(j:2  -  4x  +  3)(2x  -  4) 


i^^ 

"^ 

^Mi^ 

2(^3  -  6^2  -F  15x  -  14) 


(jc2  -  Ax  +  3)* 


=  0  when  x  =  1. 


(x2  -  4x  +  3)3 

Since/"U)  >  0  on  (1,  2)  and/"U)  <  0  on  (2,  3),  then  (2,  0)  is  a  point  of  inflection. 
Vertical  asymptote:  x  =  l,x  =  3 
Horizontal  asymptote:  >>  =  0 


Section  3.5        Limits  at  Infinity        135 


73.   /W  = 
fix)  = 

fix)  = 


3;c 


jAx'^  +  1 
3 

(4x2  +    1)3/2 

-36x 


=>  No  relative  extrema 


(4^2  +  1)V2 
Point  of  inflection:  (0,0) 
Horizontal  asymptotes:  y  — 
No  vertical  asymptotes 


0  when  jc  =  0. 


'^  I 


nS 


75.    g(x)  =  sin 


X-  2 


3  <  X  <  oo 


-2  cos 


g\x) 


X-  2 


(^  -  2? 
Horizontal  asymptote:  y  =  \ 

„    ,      .  .  X  77 

Relative  maximum: =  — 

X  -  2       2 

No  vertical  asymptotes 


277 
77-   2 


5.5039 


77.  /(x) 
(a) 


x^  -  3x-  +  2 
x(x  —  3) 


^(x)  =  X  + 


x(x  -  3) 


■M 


/= 


(b)  /(x)  = 


t^  -  3x-  +  2 
x(x  -  3) 


xKx  -  3)   ^         2 
x(x  —  3)       x(x  —  3) 

9 


=  X  + 


x(x  -  3) 


g{x) 


(c) 


fT?T-') 


/ 

/          r^^ 1 

■J                    1  V  =  sm(  1 )  1 
■ — ' — ' — ■ — ' — ■ — ■ — ' — ' — ■ 

The  graph  appears  as  the  slant  asymptote  v  =  x. 


79.  C  =  0.5x  +  500 
C  =  ^ 

X 


C  =  0.5  + 
lim  10.5  + 


500 

X 

500 


=  0.5 


136        Chapters        Applications  of  Differentiation 


81.  line:  inx  -  y  +  4  -  0 


12       3       4 


(a)  d  = 


|Ati  +  B,vi  +  C\  _  \m{3)  -  1(1)  +  4| 


|3m  +  3 1 


Vm2  +  1 


V"r  +  1 


(b) 


(c)    lim  (f(m)  =  3  =     lim    dim) 

The  line  approaches  the  vertical  Une  x  =  0.  Hence,  the 
distance  approaches  3. 


83.  (a)  TiU)  =  -0.003/2  +  o.677;  +  26.564 
(b) 


(c) 


r,  = 


1451  +  86r 


58  +  / 

(d)  r,(0)  =  26.6 

TjCO)  »  25.0 
86 


(e)   lim  r. 


1 


86 


(f)  The  limiting  temperature  is  86. 
r,  has  no  horizontal  asymptote. 


85.  Answers  wiU  vary.  See  page  195. 


87.  False.  Let/U)  = 


Vx^  +  2 


(See  Exercise  2.) 


Section  3.6       A  Summary  of  Curve  Sketching 


1.  /has  constant  negative  slof>e.  Matches  (D) 


3.  The  slope  is  periodic,  and  zero  at  j:  =  0.  Matches  (A) 


5.  (a)  fix)  =  OfoTx  =  -2  and^;  =  2 

/'  is  negative  for  —  2  <  ,t  <  2  (decreasing  function). 

/'  is  positive  for  x  >  2  and  x  <  —  2 
(increasing  function). 

n?)  fix)  =  0  at  X  =  0  (Inflection  point). 

/"is  positive  for  x  >  0  (Concave  upwards). 
/"  is  negative  for  X  <  0  (Concave  downward). 


(c)  /'  is  increasing  on  (0,  oo).      (/"  >  0) 


(d)  /'(x)  is  minimum  at  x  =  0.  The  rate  of  change  of/ at 
X  =  0  is  less  than  the  rate  of  change  of /for  all  other 
values  of  x. 


Section  3.6        A  Summary  of  Curve  Sketching        137 


7.    y  = 


y  = 


X-  +  3 

6x 

{x^  +  3)2 

18(1  -  .Q 


=  0  when  x  =  0. 


=  0  when  x  =  ±  1 . 


Horizontal  asymptote:  y  =  1 


i—h-x 


V 

v' 

y" 

Conclusion 

-oo  <  X  <   -\ 

- 

- 

Decreasing,  concave  down 

x=  -I 

1 

4 

- 

0 

Point  of  inflection 

-1  <  X  <  0 

- 

+ 

Decreasing,  concave  up 

x  =  0 

0 

0 

+ 

Relative  minimum 

0  <  X  <  \ 

+ 

+ 

Increasing,  concave  up 

x=  1 

1 

4 

+ 

0 

Point  of  inflection 

1   <  X  <  oo 

+ 

- 

Increasing,  concave  down 

9.    y  = 


-  3 


1 


:j  <  0  when  x  ^  2. 


U  -  2) 

^        U  -  2)3 

No  relative  extrema,  no  points  of  inflection 


Intercepts:  (-,  o),  (o,-y 


Vertical  asymptote:  x  =  1 
Horizontal  asymptote:  v  =  —  3 


11.    y  = 


Ix 


<  Oifxifc  ±1. 


X-  -  1 

,      -2ix-  +  1) 

„      4x(x-  +  3) 

Inflection  point:  (0,  0) 
Intercept:  (0,  0) 
Vertical  asymptote:  a  =  ±  1 
Horizontal  asymptote:  y  =  0 
Symmetry  with  respect  to  the  origin 


138        Chapters        Applications  of  Differentiation 


13.       g(;c)=.,  +  - 

g'(x)  =  1  - 


.V2+    1 


{x^  +  1)2 


{X^  +    1)2 

V3 


Owhenx  =  0.1292,  1.6085 


„,  ,      8(3x2  _  1) 
^  W  =   (^  +  1)3   =  0  when  X  =  ±  2 

g"(0.1292)  <  0,  therefore,  (0.1292, 4.064)  is  relative  maximum. 
^"(1.6085)  >  0,  therefore,  (1.6085,  2.724)  is  a  relative  minimum. 


Points  of  inflection: 


2  ,2.423j,(^^,  3.577 


Intercepts:  (0,4),  (- 1.3788,  0) 
Slant  asymptote:  y  =  x 


(0.1292.  4.064) 


(-f .  2,423) 


y 

(1.6085.  2.724) 


(-1.3788. 
H — f-<4 


15.   /(x)  =  ^^  =  X  +  - 
.r  X 


/'(x)  =  1  -  -r  =  0  when  x  =  ±  1. 

x^ 

fix)  =4^0 
x' 

Relative  maximum;  (—1,  —2) 

Relative  minimum:  (1,2) 

Vertical  asymptote:  x  =  0 

Slant  asymptote:  y  =  x 


-4         -2        ' 


(1,2) 


2 
(-1.-2) 


x2  -  6x  +  12  4 

17.    y  = : =  X  —  2  + 


y'=  1 


x-4 

4 


x-4 


{x  -  4)2 

(x  -  2)(x  -  6) 
ix  -  4)2 


0  when  x  =  2,  6. 


y 


ix  -  4)3 
j"  <  0  when  x  =  2. 

Therefore,  (2,  —2)  is  a  relative  maximum. 
y"  >  0  when  x  =  6. 
Therefore,  (6,  6)  is  a  relative  minimum. 
Vertical  asymptote:  x  =  4 
Slant  asymptote:  y  =  x  -  2 


(0,-3)  J, 


A'     y  =  ^ 


(6.6) 


■7^ — I 1 1 h-^' 


6      8      10 

(2,-2) 


Section  3.6        A  Summary  of  Curve  Sketching        139 


19.    .y  =  xjx  -  4, 
Domain;  (-oo,  4] 

y '  =  — ,  =  0  when  x  =  -  and  undefined  when  x  =  4. 


Bx  -  16 


16 


J   -  .,.        M ;->  =  0  when x  =  ^-  and  undefined  when x  =  4. 
4(4  —  x)^'^  3 

Note:  X  =  y  is  not  in  the  domain. 


y 

y ' 

y" 

Conclusion 

8 
-oo  <  X  <  - 

+ 

- 

Increasing,  concave  down 

8 
"=3 

16 

3V3 

0 

- 

Relative  maximum 

8 

-  <  X  <  4 

- 

- 

Decreasing,  concave  down 

x  =  4 

0 

Undefined 

Undefined 

Endpoint 

21.    hix)  =  xV9  -  x=     Domain: 


9  -  2x- 
/!  '(x)  =      ,  =  0  when  x  =  ± 

V9  -  X' 


3  <  X  <  3 

3  372 


72 


h"{x)  =  1^'    ..^?  =  0  when  x  =  0 


(9  -  x2)3/: 


Relative  maximum: 


3V^  9 


Relative  minimum:     — 


2    '2 
372      9 


2    '     2; 
Intercepts:  (0,  0),  (±3,  0) 
Symmetric  with  respect  to  the  origin 
Point  of  inflection:  (0,  0) 


23.    y  =  3x2/3  _  2x 
y'  =  2x-'/3  -  2  = 


2(1  -  x'/3) 


_l/3 


=  0  when  x  =  1  and  undefined  when  x  =  0. 

-2 


y  = 


3x^/3 


<  0  when  x  ^  0. 


y 

y' 

y" 

Conclusion 

-oo   <  X  <  0 

- 

- 

Decreasing,  concave  down 

X  =  0 

0 

Undefined 

Undefined 

Relative  minimum 

0  <  X  <  1 

+ 

- 

Increasing,  concave  down 

X  =  1 

1 

0 

- 

Relative  maximum 

1   <  X  <  oo 

- 

- 

Decreasing,  concave  down 

140       Chapters        Applications  of  Differentiation 


25.    y  =  x^-3x-  +  3 

y '  =  3x-  —  6x  =  3x{x  -  2)  =  0  when  x  =  Q,  x  =  1 
y"  =  6j:  -  6  =  6(a-  -  1)  =  0  when  x  =  1 


y 

y' 

y" 

Conclusion 

-CXD    <    .T    <    0 

+ 

- 

Increasing,  concave  down 

;c  =  0 

3 

0 

- 

Relative  maximum 

0  <  X  <  \ 

- 

- 

Decreasing,  concave  down 

x=  1 

1 

- 

0 

Point  of  inflection 

1  <  ;c  <  2 

- 

+ 

Decreasing,  concave  up 

x  =  2 

-1 

0 

+ 

Relative  minimum 

1    <   X    <    CO 

+ 

+ 

Increasing,  concave  up 

(-0.879, 0) 


(2,  -1) 
-(1.347.0) 


27.    y  =  l-  X-  x^ 

y'=  -\-3x'^ 

No  critical  numbers 

y"  =  —  6x  =  0  when  x  =  Q. 


y 

y ' 

y" 

Conclusion 

-oo  <  X  <  Q 

- 

+ 

Decreasing,  concave  up 

x  =  Q 

2 

- 

0 

Point  of  inflection 

0<  j:  <  oo 

- 

- 

Decreasing,  concave  down 

29.    f{x)  =  3.r3  -  9;c  +  1 

fix)  =  9;c2  -  9  =  9(;c2  -  i)  =  o  whenx  =  ±1 
f"{x)  =  \%x  =  Owhenjc  =  0 


fix) 

fXx) 

/"(-t) 

Conclusion 

-oo  <  Jf  <    —  1 

+ 

- 

Increasing,  concave  down 

.X  =  -1 

7 

0 

- 

Relative  maximum 

-1  <  ;t  <  0 

- 

- 

Decreasing,  concave  down 

x  =  Q 

1 

- 

0 

Point  of  inflection 

0  <  X  <  1 

- 

+ 

Decreasing,  concave  up 

X  =  1 

-5 

0 

+ 

Relative  minimum 

1    <  .)C   <   oo 

+ 

+ 

Increasing,  concave  up 

(0.112,0) 


Section  3.6        A  Summary  of  Curve  Sketching        141 


31.    y  =  3y  +  4^3 

y'  =  12r^  +  llx'  =  \2x-(x  +  1)  =  0  when.r  =  0,  jc  =  -  1. 
y"=  36x2  +  24.t  =  12.t(3.r  +  2)  =  0  whenx  =  0,  jr  =  -f. 


y 

y ' 

y" 

Conclusion 

-  OO   <  .V  <    -  1 

- 

+ 

Decreasing,  concave  up 

x=  -1 

-1 

0 

+ 

Relative  minimum 

-1   <  X  <   -f 

+ 

+ 

Increasing,  concave  up 

1 

X  =  -f 

16 

21 

+ 

0 

Point  of  inflection 

-|  <  X  <  0 

+ 

- 

Increasing,  concave  down 

x  =  0 

0 

0 

0 

Point  of  inflection 

0  <  X  <  OO 

+ 

+ 

Increasing,  concave  up 

33.   fix)  =  x^  -  4x3  +  16x 

fix)  =  4.r3  -  12t2  +  16  =  4(x  +  l)(x  -  2)=  =  0  whenx  =  -  l,x  =  2. 
fix)  =  \Zx-  -  24x  =  12r{x  -  2)  =  0  when  x  =  0,  x  =  2. 


/(-v) 

/'W 

fix) 

Conclusion 

-  OO    <   X    <    -  1 

- 

+ 

Decreasing,  concave  up 

x=  -1 

-11 

0 

+ 

Relative  minimum 

- 1  <  X    <  0 

+ 

+ 

Increasing,  concave  up 

x  =  0 

0 

+ 

0 

Point  of  inflection 

0  <  X  <  2 

- 

- 

Increasing,  concave  down 

X  =  2 

16 

0 

0 

Point  of  inflection 

2  <  X  <  OO 

+ 

+ 

Increasing,  concave  up 

(-1.679.  0) 


35.    y  =  x5  -  5x 

y'=  5x*  -  5  =  Six*  -  1)  = 
y"  =  20x3  =  0  when  x  =  0. 


0  whenx  =  ±1. 


y 

y' 

y" 

Conclusion 

-OO   <  X   <    -1 

+ 

- 

Increasing,  concave  down 

x=  -1 

4 

0 

- 

Relative  ma.ximum 

- 1  <  X  <  0 

- 

- 

Decreasing,  concave  down 

x  =  0 

0 

- 

0 

Point  of  inflection 

0  <  X  <  1 

- 

+ 

Decreasing,  concave  up 

x=  1 

-4 

0 

+ 

Relative  minimum 

1    <   X    <    OO 

+ 

+ 

Increasing,  concave  up 

142        Chapters        Applications  of  Differentiation 


37.    y  =  \lx  -  3| 

,      2(2x  -  3)       .  .      .   ^         3 
y  —  t; TT  undefined  aXx  =  -. 

^        \lx  -  3|  2 

)>"=  0 


y 

y' 

Conclusion 

-OO    <   X   <    2 

- 

Decreasing 

3 
X  =  2 

0 

Undefined 

Relative  minimum 

5  <  .V  <  OO 

+ 

Increasing 

39.    y  =  sin  X  —  —  sin  'ix,  Q  <  x  <  2tt 
18 

1  ,  „       ,  77    3-77 

>>   =  COS  x  —  -  COS  3j:  =  0  when  x  =  —,  -^. 
0  2    i 

,,  .  1    .    -         .     ,  ^  TT  Stt       Itt  IItt 

>>  =  -  sm  j:  +  -  sin  3x  =  0  when  a:  =  0,  — ,  —-,  tt,  — -,  — — . 
2  6     6  6       6 


Relative  maximum 


\2'18/ 


Relative  minimum: 


377   _29 
2  '      18 


Inflection  points:  ( -^,  -  j,  ( ^,  ^  ),  (tt,  0), 


TT  4\  /Stt  4 
6'9/'V  6'9 


7tt  _4\  /JJjr  _4 
6'     9M   6  ■     9 


_,^  _  TT  TT 

41.    y  =  2x  —  tan  .r,  — —  <  j:  <  — 

^  2  2 


43.    y  —  2(cscjc  +  sect),  0  <  jr  < 


y '  =  2  -  sec-  x  =  0  when  x  =  ±— . 

4 

y "  =  —  2sec^  j:  tan :«:  =  0  when  j:  =  0. 


Relative  maximum:  \—,—  —  1 
\4'  2 


Relative  minimum:     ——,1  —  x 
\     4'  2 

Inflection  point:  (0,  0) 
Vertical  asymptotes:  x  =  +— 


y '  =  2(sec  j:  tan  j:  —  esc  x  cot  a:)  =  0  =>  jc  =  7r/4 


Relative  minimum:  I  — ,  A^Jl 


Vertical  asymptotes:  x  =  0,  x  =  — 


Section  3.6        A  Summary  of  Curve  Sketching        143 


__  ,    .  377  377 

45.    g{x)  =  x\.znx,  — —  <  ^  <  ^ 

„  .      X  +  smx  cos  X      ^     , 
g  W  = ; =  0  when  x  =  0 


g"W 


cos^x 
2(cosa:  +  jr  sin;c) 


Vertical  asymptotes:  x  =  - 


BtT         it    TT    377 


2  '      2'  2'  2 
Intercepts:  (-  77,  0),  (0,  0),  (77,  0) 
Symmetric  with  respect  to  y-axis. 


Increasing  on  (  0,  —  j  and  ( — ,  — 
Points  of  inflection:  (±2.80,  0) 


47.  f(x) 


2Qx         1       \9x^  -  1 


;c2  +  1       X      x{x-  +  1) 


X  =  0  vertical  asymptote 

y  =  0  horizontal  asymptote 
Minimum:  (-1.10,  -9.05) 

Maximum:  (1.10,9.05) 

Points  of  inflection:  (-1.84,  -7.86).  (1.84,  7.86) 


49.   y 


Vjc2  +  7 
2 

^^^^ 

(0,  0)  point  of  inflection 

y  =  ±1  horizontal  asymptotes 


51.  /is  cubic. 
/'  is  quadratic, 
/"is  linear. 


S3. 


(any  vertical  translate  of/ will  do) 


144       Chapters        Applications  of  Differentiation 


55. 


(any  vertical  translate  of/ will  do) 


57.  Since  the  slope  is  negative,  the  function  is  decreasing  on 
(2,  8),  and  hence/(3)  >  /(5). 


59.  fix 


4{x  -  1)2 


jc2  -  4jt  +  5 
Vertical  asymptote:  none 
Horizontal  asymptote:  y  =  4 


^ 


The  graph  crosses  the  horizontal  asymptote  >»  =  4.  If  a 
function  has  a  vertical  asymptote  six  =  c,  the  graph 
would  not  cross  it  since /(c)  is  undefined. 


61.  h(x)  = 


6  - 

2x 

3  - 

■  X 

2(3 

-x) 

2,  if  jc  ^  3 

Undefined,    if  a:  =  3 


3  -X 
The  rational  function  is  not  reduced  to  lowest  terms. 


j;2  -  3r  -  1  3 

63.  fix)  = ^^^  =  -X+1  + 


x-2 


x-2 


\ 

\ 

\ 

i  \ 

The  graph  appears  to  approach  the  slant  asymptote 
y  =  -.V+  1. 


hole  at  (3,  2) 


65.  fix)  =      .  ■        ■  (0, 4) 


vGc^+T' 


(a) 


\. 


'J\/x 


^^ 


On  (0, 4)  there  seem  to  be  7  critical  numbers: 
0.5,  1.0,  1.5,2.0,2.5,3.0,3.5 


,,  >  _  —cos  Tr<:(xcos  TTX  +  lirix^  +  l)sin  ttx)  _ 

(t>)    /  W  -  (^2  _^    jp/2  -  " 

Critical  numbers  =  ^,  0.97,  |,  1.98.  |,  2.98,  |. 

The  critical  numbers  where  maxima  occur  appear  to 
be  integers  in  part  (a),  but  approximating  them  using 
/'  shows  that  they  are  not  integers. 


Section  3.7        Optimization  Problems        145 


67.  Vertical  asymptote:  x  =  5 
Horizontal  asymptote:  v  =  0 
1 

y  =  z — ? 


69.  Vertical  asymptote:  x  =  5 
Slant  asymptote:  y  =  3jc  +  2 

1  3x~  -  13x  -  9 


y  =  3x  +  2  + 


x-5 


X-  5 


71.  fix)  = 


(.V  -  bV 


(a)  The  graph  has  a  vertical  asymptote  at  x  =  b.  If 
a  >  0,  the  graph  approaches  oo  as  x-^b.\i a  <  0, 
the  graph  approaches  —  oo  as  x  — >  Z?.  The  graph 
approaches  its  vertical  asymptote  faster  as  \a\  — >0. 


(b)  As  b  varies,  the  position  of  the  vertical  asymptote 
changes:  x  =  b.  Also,  the  coordinates  of  the 
minimum  [a  >  0)  or  maximum  [a  <  0)  are  changed. 


73.  fix)  = 


3y 
.r^  +  1 


(a)  For  n  even, /is  symmetric  about  the  y-axis.  For  n  odd, 
/is  symmetric  about  the  origin. 

(b)  The  A-axis  will  be  the  horizontal  asymptote  if  the 
degree  of  the  numerator  is  less  than  4.  That  is, 

n  =  0,  1,2,3. 

(c)  «  =  4  gives  y  =  3  as  the  horizontal  asymptote. 


(d)  There  is  a  slant  asymptote  y  =  3j:  if  n  =  5: 


3;c^ 
X*  +  1 


=  3.r 


3.r 


(e) 


X*  + 


n 

0 

1 

2 

3 

4 

5 

M 

1 

O 

3 

2 

1 

0 

N 

2 

3 

4 

5 

2 

3 

75.  (a)   2750 


(b)  When  t=  10,  MlO)  =  2434  bacteria. 

(c)  N  is  a  maximum  when  t  ~  7.2  (seventh  day). 

(d)  N%t)  =  0  for  f  -  3.2  . 

13  250 

(e)  lim  Nit)  =  -^ —  =  1892.86 

(-►oo  7 

Section  3.7       Optimization  Problems 


1.  (a) 


First  Number,  x 

Second  Number 

Product,  P 

10 

110  -  10 

10(110-  10)  =  1000 

20 

110-20 

20(110  -  20)  =  1800 

30 

110-  30 

30(110  -  30)  =  2400 

40 

1 10  -  40 

40(110  -  40)  =  2800 

50 

1 10  -  50 

50(110  -  50)  =  3000 

60 

110-60 

60(110  -  60)  =  3000 

—CONTINUED— 


146        Chapters        Applications  of  Differentiation 


1.  — CONTEWED— 

(b) 


First  Number,  x 

Second  Number 

Product,  P 

10 

110  -  10 

10(110  -  10)  =  1000 

20 

110  -  20 

20(110-  20)  =  1800 

30 

110-  30 

30(110  -  30)  =  2400 

40 

110-40 

40(110-40)  =  2800 

50 

110-  50 

50(110-  50)  =  3000 

60 

110-  60 

60(110  -  60)  =  3000 

70 

110-  70 

70(110  -  70)  =  2800 

80 

1 10  -  80 

80(110  -  80)  =  2400 

90 

1 10  -  90 

90(110-  90)  =  1800 

100 

110  -  100 

100(110  -  100)  =  1000 

The  maximum  is  attained  near  jc  =  50  and  60. 
(c)  P  =  41 10  -  x)  =  llOx  -  ;c^ 


(d)     MOO 


(e)  ^  =  1 10  -  2;c  =  0  when  x  =  55. 
ax 


dx'- 


=  -2  <  0 


The  solution  appears  to  be  x  =  55. 


P  is  a  maximum  when  x  =  1 10  —  jf  =  55. 
The  two  numbers  are  55  and  55. 


3.  Let  X  and  y  be  two  positive  numbers  such  that  xy  =  192. 

S  =  x+y  =  x-\ 

■  X 


dx 

d^S      384 


192 


=  Owhen.1  =  V192. 


>  0  when  x  =  V192. 


dx~        x^ 
5  is  a  minimum  when  x  =  y  =  Vl92. 


5.  Let  X  be  a  positive  number. 
S  =  x  +  - 


-r-  =  I ?  =  0  whenx  =  1. 

dx  x'- 

-pr  =  -J  >  0  when x=  \. 
dx-      j^ 


The  sum  is  a  minimum  when  jc  =  1  and  l/;t  =  1. 


7.  Let  X  be  the  length  and  y  the  width  of  the  rectaiigle. 

lx  +  ly=  100 

y  =  50  -  X 

A  =  xy  =  .)c(50  —  x) 

dA 

^-  =  50  -  2a:  =  0  when  x  =  25. 

dx 


d^-A 
dx^ 


=  -2  <  Owhen^;  =  25. 


A  is  maximum  when  j:  =  _y  =  25  meters. 


9.  Let  x  be  the  length  and  y  the  width  of  the  rectangle, 
xy  =  64 
64 


P  =  Zx  +  2y  =  2x  +  2(^)  =  2x  +  ^ 

£/P      ,       128      „    ^ 

-—  =  2 —  —  0  when  x  =  8. 

dx  X- 


d^P      256 


>  0  when  x  =  8. 


dx'^       x3 
P  is  minimum  when  x  =  y  =  2>  feet. 


Section  3.7        Optimization  Problems        147 


11.    d  =   J{X  -  4)2  +   (v^  -  0)2 


^ 


7x+  16 


Since  d  is  smallest  when  the  expression  inside  the  radical 
is  smallest,  you  need  only  find  the  critical  numbers  of 

fix)  =  3^  -lx+  \6. 
fix)  =  2x-l  =  0 


By  the  First  Derivative  Test,  the  point  nearest  to  (4,  0)  is 

(7/2,  7772). 


y 

4 

3- 


te^/x) 


13.  d  =  V(x  -  If  +  [x-^  -  (1/2)P 
=  Jx*  -  Ax  +  (17/4) 

Since  d  is  smallest  when  the  expression  inside  the  radical 
is  smallest,  you  need  only  find  the  critical  numbers  of 

f{x)  =x^-4x  +  T- 

f'(x)  =  4;c3  -  4  =  0 

X  =  1 

By  the  First  Derivative  Test,  the  point  nearest  to  (2.  ^)  is 
(1,  1). 


3     (4,0) 


15.    ^  =  fcr((2o  -x)  =  kQoK  -  kx^ 

d^Q 

-^  =  fcgo  -  2kx 

=  k{Qo  -  2x)  =  0  when  ;c  =  % 


^=-2k  <  Owhen.r  =  % 
dx>  2 

dQ/dx  is  maximum  when  x  =  Qq/2. 


17.  xy  =  180,000  (see  figure) 

360.000\ 


S  =  X  +  2y  =  \x  +  ■ 
of  fence  needed. 


where  5  is  the  length 


dS 


=  1 


360,000 


dx  X- 

d-S      720.000 


0  when  x  =  600. 


dx- 


x^ 


>  0  when  x  =  600. 


5  is  a  minimum  when  .r  =  600  meters  and  v  =  300 
meters. 


19.  (a)  A  =  4(area  of  side)  +  2(areaofTop) 

(a)  A  =  4(3)(11)  +  2(3)(3)  =  150  square  inches 

(b)  A  =  4(5)(5)  +  2(5)(5)  =  150  square  inches 

(c)  A  =  4(3.25)(6)  +  2(6)(6)  =  150  square  inches 

150  -  2x2 


(c)  S  =  Axy  +  Zx'  =  150: 


4x 


,^        ,          4\5Q-2x^\      75  1    , 

V  =  x-y  =  x'\ =  ^r  A'  ~  :t  •'^ 

V       4.x:       /       2  2 

r  =  y-|.r2  =  0^.r  =  ±5 


(b)  V  =  (length)(width)(height) 

(a)  V  =  (3)(3)(I1)  =  99  cubic  inches 

(b)  V  =  (5)(5)(5)  =  125  cubic  inches 

(c)  V  =  (6)(6)(3.25)  =  117  cubic  inches 


\^\ 

^ 

,' 

y^ 

By  the  First  Derivative  Test,  .r  =  5  yields  the  maximum  volume.  Dimensions:  5  x  5  x  5.  (A  cube!) 


148        Chapters        Applications  of  Differentiation 


21.  (a)        V  =  x{s  -  Ixf,  Q  <  X  <  - 


dV 

dx  ' 


ItU  -  2x)(-l)  +  {s-  2xY 


=  (s  —  2x)(s  —  6x)  =  Q  when  x  =  —,-  {s/2  is  not  in  the  domain). 

2  6 

d'^V 

^  =  24x  -  85 

dir 

—-^  <  0  when  x  =  —. 
dx-  6 

2s^  5 

V  =  — —  is  maximum  when  x  =  — . 

27  6 

(b)  If  the  length  is  doubled,  V  =  27  (25)'  =  8(575').  Volume  is  increased  by  a  factor  of  8. 


23.     16  =  2y  +  ;c  + 


'(f) 


12  =  Ay  +  2x  +  TTX 

Zl  -'  Ix  ~   TTX 


A=^+2U 


t^l  x\2         (32  —  2x  —   TTX 


\x  + 


(       ) 

r 

r 

^r* 

;;:::;::;:;::;::;:;:;;f:dii 

2  4  8 

^  =  8-x-f;c  +  ^;c  =  8- 
ctc  2  4 


0  when  x 


8 


xll.f 
32 


1  +  (77/4)      4  +  77' 


_=_^l+_j<Owhenx  =  ^^ 

_  32  -  2[32/(4  +  tt)]  -  77(32/(4  +  tt)] 


16 


4   +    TT 


16  32 

The  area  is  maximum  when  y  =  -:; — ; —  feet  and  x  =  - — ; —  feet. 


4+77 


4+77 


25.  (a) 


y  -  2  _^  0  -  2 
0  -  1  ~  .r  -  1 


y  =  2  + 


x-  1 


L=  Jx^  +  y2 


=  /^ 


+    2  + 


;c  -  1 


;c^  +  4  + 


X  -  1       (x  -  1) 


;,    X  >   1 


Z,  is  minimum  when  x  =  2.587  and  L  ==  4.162. 


—CONTINUED- 


Section  3. 7        Optimization  Problems        149 


25.  —CONTINUED— 

(c)  Area  =  A{x)  =  -xy  =  -x\l  +  ^— -^ 


X  +  ■ 


X  -  1 


U  -  1)2  =  1 
X-  1  =  ±1 

;c  =  0,  2  (select  x  =  2) 
Then  y  =  4  and  A  =  4. 
Vertices:  (0,  0),  (2,  0),  (0,  4) 

27.     A  =  2x>'  =  2xV25  -  x^     (see  figure) 

J  25  -  2r-  \      „    ,  572       ... 

=  21     ,      _      1  =  0  whenx  =  y  =  ^-  =  3.54. 

By  the  First  Derivative  Test,  the  inscribed  rectangle  of  maximum  area  has  vertices 

,572     \/    572  5^ 
~    2    '    /'V~    2         2 

5  /5 
Width:  ^^;  Length:  572 


29.  xy  =  30  =^  y  =  — 


A  =  {x  +  2)[—  +  l]     (see  figure) 


dA 
dx 


=  (x  + 2)1-^1  +  I— +  2)  =  ^^^^^-T-^  =  0whenx  =  730. 


-W\   ,   /30 

v2 


.  =  ^=V30 


730 

By  the  First  Derivative  Test,  the  dimensions  (x  +  2)  by  {y  +  2)  are  (2  + 
7.411).  These  dimensions  yield  a  minimum  area 


30)  by  (2  +  730)  (approximately  7.477  by 


31.  V  =  Trr^h  =  22  cubic  inches  or  h  = 


22 


(a) 


Radius,  r 

Height 

Surface  Area 

0.2 

22 

2-7HO.2) 

.^•^ "  .Ha2)  J 

=  220.3 

77(0.2)2 

0.4 

22 
tHO.4)- 

2t7(0.4) 

01 
f\   1     1 

«  111.0 

_°-'   '    M0.4)=J 

0.6 

22 

277<0.6) 

->0 

=  75.6 

7t{0.6)- 

L°-^     '     77<0.6)2. 

0.8 

22 

7T<0.8)2 

27t(0.8) 

11 

=  59.0 

L°-^     '     7710.8)  = 

—CONTINUED— 


150        Chapters       Applications  of  Differentiation 


31.  —CONTINUED— 

(b) 


Radius,  r 

Height 

Surface  Area 

0.2 

22 

277(0.2)[0.2  +  J^^  J 

==  220.3 

0.4 

22 

277(0.4) 

n^  1       22    1 

-  111.0 

7T<0.4)2 

°-^    '     77(0.4)2] 

0.6 

22 

277(0.6)[0.6  +  ^2^2^^, 

-75.6 

77{0.6)2 

0.8 

22 

77(0.8)2 

277(0.8)[0.8  .  ^^^^, 

=  59.0 

1.0 

22 

277(1.0) 

'lO  1       22     " 

=  50.3 

77(1.0)2 

.'•°    '     77(1.0)2_ 

1.2 

22 

277(1.2) 

['■2  ^77(0)2] -45.7 

41.2)2 

1.4 

22 

277(1.4) 

['■4  ^77(14)2] -43.7 

77(1.4)2 

1.6 

22 

277(1.6) 

[^■^^77(iy-43.6 

77(1.6)2 

1.8 

22 

277(1.8) 

b'uf.^K 

=  44.8 

77(1.8)2 

2.0 

22 

77(2.0)2 

27K2.0) 

b-'  ^  4?0)2_ 

=  47.1 

The  minimum  seems  to  be  about  43.6  for  r  =  1.6. 


33.  Let  X  be  the  sides  of  the  square  ends  and  y  the  length  of  the  package. 


P  =  4;c  +  y  =  108  ^.  .V  =  108  -  4x 
V  =  ;c2y  =  ;c2(108  -  4a:)  =  108^2  -  4x^ 
dV 


dx 


=  216.x  -  12a:2 


12a:(18  -  x)  =  Owhenx  =  18. 


22]      ^     ,      44 
r  +  — r    =  277r2  +  — 


The  minimum  seems  to  be  43.46  for  r  ~  1.52. 

(K  AA  

(e)  —  =  47rr  -  ^  =  0  when  r  =  yil/77  «=  1.52  in. 
dr  r^ 


22 
h=  — r  =  3.04  in. 
7rr2 

Note:  Notice  that 

22 


22 


77r2       77(11/77)2/3         Vir' 


=  ^|i^)-^'. 


d^V 

dx"- 


=  216  -  2Ax  =  -216  <  Owhenx  =  18. 


The  volume  is  maximum  when  x  =  18  inches  and  y  =  108  —  4(18)  =  36  inches. 


Section  3.7        Optimization  Problems        151 


35.     V  =  -TTX^h  =  -Trx^{r  +  Vr^  -  x^}  (see  figure) 


3 
cix~  3'' 


2r^  +  2rVr2  -  x^  -  3;c2  =  0 


2rV/-2  -  ;c2  =  3x^  -  2r^ 

0  =  9x^  -  8x-r2  =  x\9x^  -  Sr^) 
2V2r 

■     ^  =  0,^- 

By  the  First  Derivative  Test,  the  volume  is  a  maximum  when 

-.      4/- 


X  =  — - —  and  h  =  r 


(O.r) 


■..-V7^) 


+  Vr2  -  x~ 


Thus,  the  maximum  volume  is 

3277r3 


-Hm 


81 


cubic  units. 


37.  No,  there  is  no  minimum  area.  If  the  sides  are  x  and  y,  then  Ix  -¥  2y  =  20  =>  y  =  10  —  .x. 
The  area  is  A{x)  =  jc(10  —  x)  =  \Qx  —  x^.  This  can  be  made  arbitrarily  small  by  selecting  x  ~  0. 


39.      V=  12  =-T7-7-3  +  nr-h 


12  -  {4/3)T7r3        12        4 

h  = ^ =  — J  -  -r 

7rr-  Trr'^       3 


12       4 
S  =  Atrr-  +  lirrh  =  Airr^  +  IttA  — n  -  z;r 

\Trr~       3 


24       8 


-TTr~  + 


24 


— -  =  -irr T  =  0  when  r  =  IJ^Itt  =  1.42  cm. 

dr      3  r-^ 

— -r  =  -TT  H — r  >  0  when  r  =  </9/Trcm. 
dr-       i  r" 

The  surface  area  is  minimum  when  r  =  1/9/tt  cm 
and  /!  =  0.  The  resulting  solid  is  a  sphere  of  radius 
r  «  1.42  cm. 


41.  Let  X  be  the  length  of  a  side  of  the  square  and  y  the  length 
of  a  side  of  the  triangle. 

4x  +  3>'  =  10 

A         2^1 (^ 
A  =  x'-  +  -y\—y 

(10  -  3v)'   ,    V3    , 

•     ■■  .•■;  =     16     +— ^" 

■•■  ■  |  =  i(io_3v)(-3)+^y^O 


-30  +  9y  +  4y3y  =  0 


30 

■^  "  9  +  4v^ 

d-A      9  +  4^3 


dy~ 


>  0 


A  is  minimum  when 
30 


y  = 7=  and  .r  = ~. 

9  +  473  9  +  4V3 


152        Chapters        Applications  of  Differentiation 


43.  Let  5  be  the  strength  and  k  the  constant  of  proportionality. 
Given  /z^  +  w-  =  24^  h^  =  24^  -  w^, 

S  =  kwh^ 

S  =  kw(576  -  w^)  =  k(576w  -  w^) 

dS 


dw 
d'-S 


=  k(576  -  3w^)  =  0  when  w  =  8^3,  /i  =  8V6. 
=  -6kw  <  Owhenw  =  SVS. 


dw^ 
These  values  yield  a  maximum. 


45.      R  =  —  sin  2d 
8 

dR      2v^  tt  TiTT 

—-  =  — ^cos  29  =  0  when  0  =  — ,  —r- 
dd        g  4    4 

^  =  -^sin  29  <  0  when  6  =  ^. 
dd^  g  4 

By  the  Second  Derivative  Test,  R  is  maximum 
when  8  =  n/A. 


47.  sin  a  =  -  =>  i 

s 


,  0  <  a  <  - 

sm  a  2 


h        ,       ^  2  tan  a      ^ 

tano  =  -=>«  =  2tana=>i  =  — : =  2  sec  a 

2  sm  a 

k  sin  a       ksma       k   . 

I  = ;:; —  = ; —  =  -  sm  a  cos-  a 

s-  4  sec  -  a       4 

-r-  =  T[sin  a(—2  sin  a  cos  a)  +  cos-  a(cos  a)] 
da      4 


=  -rcos  afcos^a  -  2  sin-  a] 
4 


=  -  cos  a[l  -  3  sin^  a] 

„      ,  IT  377  ,  .  1 

=  0  when  a  =  —,  -r-,  or  when  sm  a  =  ±—7= . 
2'  2'  V3 


Since  a  is  acute,  we  have 
1 


sm  a 


A  =  2  tan  a  =  2  -7=    =  v^  feet. 


73  \^l 

Since  (cm)/{doP)  =  {k/4)  sin  a(9  sin^a  -  7)  <  0  when  sin  a  =  1/V3,  this  yields  a  maximum. 


49. 


s  = 

Jx'^  +  4,L 

=  7i 

+  (3  -  .v)2 

ne  =  ?-  = 
dT 

y.x-2  +  4      Vx'~  - 
2 

-  6x  -1-  10 
4 

;c-  3 

dx 

x^ 

2Vx2  +  4 
9  -  6;c  -^ 

4Vx- 
x^ 

■  -  6a-  +  10 

ii:;t^ 


jc2  +  4      4(^2  -  6a  -I-  10) 
A^  -  6^3  -t-  9x2  +  8a  -  12  =  0 

You  need  to  find  the  roots  of  this  equation  in  the  interval  [0,  3].  By  using  a  computer  or  graphics  calculator,  you  can  determine 
that  this  equation  has  only  one  root  in  this  interval  (a  =  1).  Testing  at  this  value  and  at  the  endpoints,  you  see  that  a  =  1  yields 
the  minimum  time.  Thus,  the  man  should  row  to  a  point  1  mile  from  the  nearest  point  on  the  coast. 


Section  3.7        Optimization  Problems        153 


51      7-  =  v^tM^  ^  V.r"  -  6;c  +  10 


0^       ViV;c2  +  4       v.Va:^  -  6j:  +  10 
Since 

X  X  —  3 

=  sin  0,  and     .  ^  =  —  sin 


V^^  +  4 
we  have 


Vj:2  -  6x  +  10 


sin  9^       sin  62  sin  6,       sin  62 


Vi  V2 

Since 

d^T  4 


=  0  = 


a[i2       v,U2  +  4)3/2      ^,^(^2  _  5^  +  10)3/: 
this  condition  yields  a  minimum  time. 


>  0 


I 


t   ^ 
*  £^ 


53. /W  =  2  -  2sinx 


3 
2 
I-- 


(a)  Distance  from  origin  to  y-intercept  is  2. 

Distance  from  origin  to  j:-intercept  is  tt/2  ~  1.57. 


(b)  d: 


ix-  +  r 
3 


'x-  +  (2 


:  sin  x)- 


^ 

(0.7967. 0.9795) 

Minimum  distance  =  0.9795  at.v  =  0.7967. 

(c)  Let/U)  =  d\x)  =  ;c=  +  (2  -  2  sin.r)-. 

f\x)  =  2a:  +  2(2  -  2sin;c)(-2cos.r) 

Setting/'W  =  0,  you  obtain  .v  ==  0.7967,  which 
corresponds  to  d  =  0.9795. 


55.  Fcose=  k(W-  Fsine) 

^  kW 

cos  6  +  k  sin  6 

dF  _  -kW{k  cose-  sine) 


0 


de  (cos  e  +  k  sin  6)- 

k  cos  e=sinfl=>A:  =  tane=>0  =  arctan  ^■ 
Since 

1  k- 


cos  fl  +  ^-  sin  0 

the  minimum  force  is 
kW 


Jk^+  1       v//t=  +  1 


ftW 


=  Jk~  +  1, 


cos  e  +  /t  sine      Vit^  +  1' 


1 «-J 


154        Chapters        Applications  of  Differentiation 


57.  (a) 


Base  1 

Base  2 

Altitude 

Area 

8 

8+16  cos  10° 

8  sin  10° 

-22.1 

8 

8+16  cos  20° 

8  sin  20° 

=  42.5 

8 

8  +  16  cos  30° 

8  sin  30° 

=  59.7 

8 

8  +  16  cos  40° 

8  sin  40° 

=  72.7 

8 

8  +  16  cos  50° 

8  sin  50° 

=  80.5 

8 

8+16  cos  60° 

8  sin  60° 

=  83.1 

(b) 


(c)  A  =  {a  +  b)- 


,  8  sin  e 


[8  +  (8  +  16  cos  e)]-    ^ 

64(1  +  cos  e)sin  e,  0°  <  9  <  90° 


(e)    100 


Base  1 

Base  2 

Altitude 

Area 

8 

8  +  16  cos  10° 

8  sin  10° 

=  22.1 

8 

8  +  16  cos  20° 

8  sin  20° 

=  42.5 

8 

8  +  16  cos  30° 

8  sin  30° 

=  59.7 

8 

8  +  16  cos  40° 

8  sin  40° 

=  72.7 

8 

8  +  16  cos  50° 

8  sin  50° 

=  80.5 

8 

8  +  16  cos  60° 

8  sin  60° 

=  83.1 

8 

8+16  cos  70° 

8  sin  70° 

=  80.7 

8 

8  +  16  cos  80° 

8  sin  80° 

=  74.0 

8 

8  +  16  cos  90° 

8  sin  90° 

=  64.0 

The  maximum  cross-sectional  area  is  approximately 
83.1  square  feet. 

dA 
(d)  —  =  64(1  +  cos  e)cos  e  +  (-64  sin  e)sin  6 
du 

=  64(cos  e  +  cos^  d  -  sitP-  6) 
=  64(2cos2e  +  cos  e-  1) 
=  64(2  cose-  l)(cose+  1) 
=  0  when  e  =  60M80°,  300°. 
The  maximum  occurs  when  6  =  60°. 


59.    C  =  1001 


C'=  100' 


200 


x  +  30 


1    <  X 


400 


30 


(x  +  30)2 


Approximation:  x  ~  40.45  units,  or  4045  units 


61.     5,  =  {Am  -  1)2  +  (5m  -  6)^  +  (10m  -  3)^ 


-  =  2(4m  -  1)(4)  +  2(5m  -  6)(5)  +  2(10m  -  3)(10)  =  282m  -  128  =  0  whenm  =  -^. 


dS__ 
dm 

Line:  y 
S  = 


64 

i4r 

/^ 

\141 
256 


141 


-  1 


+ 

320 
141 


m 


-  6 


-  6 

640 
141 


10 


64 
141 

858 
141 


6.1  mi 


^,    o        |4m  -  11        |5m  -  61        1 10m  -  3 
63.  5,  =  I  ,   ,       '  +  '  ,   _       '  + 


Vm2+  1        Vm2+  1 


m2+  1 

Using  a  graphing  utility,  you  can  see  that  the  minimum  occurs  when  x  =  0.3. 
Line:  y  =  0.3jc 

|4(0.3)  -  1|  +  |5(0.3)  -  6|  +  1 10(0.3)  -  3| 


^3  = 


7(0.3)2  +  1 


=  4.5  mi. 


Section  3.8        Newton's  Method 


155 


Section  3.8      Newton's  Method 


1.  fix)  =x^-3 
fix)  =  2x 
X,  =  1.7 


n 

x„ 

fiXn) 

f'ixj 

f'W) 

X  f^'^y 

"   nx„) 

1 

1.7000 

-0.1100 

3.4000 

-0.0324 

1.7324 

2 

1.7324 

0.0012 

3.4648 

0.0003 

1.7321 

3.  f(x)  =  sinj; 

f'(x)  =  COS.X 


;cj  =  3 


n 

Xn 

n^n) 

/'UJ 

■"     /'UJ 

1 

3.0000 

0.1411 

-0.9900 

-0.1425 

3.1425 

2 

3.1425 

-0.0009 

-1.0000 

0.0009 

3.1416 

5.  f{x)=x^  +x-  1 
fix)  =  3x2+1 

Approximation  of  the  zero  of/ is  0.682. 


n 

Xn 

fi^n) 

n\) 

,fUJ 

X         ^^'"^ 
"      f'(-\) 

1 

0.5000 

-0.3750 

1.7500 

-0.2143 

0.7143 

2 

0.7143 

0.0788 

2.5307 

0.0311 

0.6832 

3 

0.6832 

0.0021 

2.4003 

0.0009 

0.6823 

/U)  = 
/'U)  = 


3Vx  —  1  —  X 
3 


2v^ 


Approximation  of  the  zero  of/ is  1.146. 
Similarly,  the  other  zero  is  approximately  7.854. 
,  /W  =  A^  +  3 
fix)  =  3.t2 
Approximation  of  the  zero  of/ is  -  1.442. 


11.  fix)  =  x'  -  3.9^2  +  4.79x  -  1.881 
/'W  =  3x'  -  7.8x  +  4.79 


n 

.r„ 

/UJ 

n\) 

/UJ 

X        ^^-'"^ 
"      /'UJ 

1 

1.2000 

0.1416 

2.3541 

0.0602 

1.1398 

2 

1.1398 

-0.0181 

3.0118 

-0.0060 

1.1458 

3 

1.1458 

-0.0003 

2.9284 

-0.0001 

1.1459 

n 

•^„ 

fi^J 

n^n) 

/UJ 
/'UJ 

'"     /'UJ 

1 

-1.5000 

-0.3750 

6.7500 

-0.0556 

-1.4444 

2 

-1.4444 

-0.0134 

6.2589 

-0.0021 

-1.4423 

3 

-1.4423 

-0.0003 

6.2407 

-0.0001 

-1.4422 

n 

■^n 

/UJ 

/'UJ 

/UJ 
/'UJ 

,      /UJ 
"     /'UJ 

1 

0.5000 

-0.3360 

1.6400 

-0.2049 

0.7049 

2 

0.7049 

-0.0921 

0.7824 

-0.1177 

0.8226 

3 

0.8226 

-0.0231 

0.4037 

-0.0573 

0.8799 

4 

0.8799 

-0.0045 

0.2495 

-0.0181 

0.8980 

5 

0.8980 

-0.0004 

0.2048 

-0.0020 

0.9000 

6 

0.9000 

0.0000 

0.2000 

0.0000 

0.9000 

Approximation  of  the  zero  of/ is  0.900. 
-CONTINUED— 


156        Chapters        Applications  of  Differentiation 


11.  —CONTINUED— 


n 

x„ 

no 

/'UJ 

nx„) 

/'UJ 

X        f^'"^ 

"  nx„) 

1 

1.1 

0.0000 

-0.1600 

-0.0000 

1.1000 

Approximation  of  the  zero  of/ is  1.100. 


n 

Xn 

nxj 

/'UJ 

/'UJ 

"     /'UJ 

1 

1.9 

0.0000 

0.8000 

0.0000 

1.9000 

Approximation  of  the  zero  of/ is  1.900. 


13.  /W  =  .r  +  sin(.x  +  1) 
f'(x)  =  1  +  cos(;c  +  1) 
Approximation  of  the  zero  of/ is  -0.489. 


n 

^. 

nxj 

/'UJ 

nx,} 

fixj 

X            ^^'"^ 

"      fixj 

1 

-0.5000 

-0.0206 

1.8776 

-0.0110 

-0.4890 

2 

-0.4890 

0.0000 

1.8723 

0.0000 

-0.4890 

15.    h(x)  =  fix)  -  g(x)  =  2;c  +  1  -  ^x  +  4 
1 


h'(x)  =  2 


Ijx  +  4 


Point  of  intersection  of  the  graphs  of /and  g  occurs 
when  X  =  0.569. 


« 

^„ 

h{x„) 

hXx^) 

X        ^^'"^ 

1 

0.6000 

0.0552 

1.7669 

0.0313 

0.5687 

2 

0.5687 

-0.0001 

1.7661 

0.0000 

0.5687 

17.    /zU)  =  /(j:)  -  g(x)  =  jc  -  tan  X  , 

h'{x)  =  1  —  sec-^jc 

Point  of  intersection  of  the  graphs  of/ and  g  occurs 
when  X  =  4.493. 


n 

Xr, 

h(xj 

k'(x„) 

hix,} 
h'ixj 

X        ^^'"^ 
"      h'ixj 

1 

4.5000 

-0.1373 

-21.5048 

0.0064 

4.4936 

2 

4.4936 

-0.0039 

-20.2271 

0.0002 

4.4934 

19.  f(x)  =  x^  -  a  =  0 
fix)  =  2x 

v2  _  „ 


2x,.^  -  x,^  +  a  _  Xj^  +  a  _  x,-       a 

2x,  2Xi  2       2x: 


i 

1 

2 

3 

4 

5 

X! 

2.0000 

2.7500 

2.6477 

2.6458 

2.6458 

77  =  2.646 


23   ,       ^  3.,^  +  6 


i 

1 

2 

3 

4 

Xl 

1.5000 

1.5694 

1.5651 

1.5651 

76" «  1.565 


Section  3.8        Newton's  Method        157 


25.  fix)  =  1  +  cos  X 
f'(x)  =  -sinx 

Approximation  of  the  zero:  3.141 


n 

^n 

/UJ 

/'UJ 

"  fix  J 

1 

3.0000 

0.0100 

-0.1411 

-0.0709 

3.0709 

2 

3.0709 

0.0025 

-0.0706 

-0.0354 

3.1063 

3 

3.1063 

0.0006 

-0.0353 

-0.0176 

3.1239 

4 

3.1239 

0.0002 

-0.0177 

-0.0088 

3.1327 

5 

3.1327 

0.0000 

-0.0089 

-0.0044 

3.1371 

6 

3.1371 

0.0000 

-0.0045 

-0.0022 

3.1393 

7 

3.1393 

0.0000 

-0.0023 

-0.0011 

3.1404 

8 

3.1404 

0.0000 

-0.0012 

-0.0006 

3.1410 

27.    y  =  2jc3  -  6x2  +  6;c  -  1  =  f(^^) 
y'  =  6x^  -  12x  +  6  =f'{x) 
x,  =  l 
fix)  =  0;  tlierefore,  the  method  fails. 


n 

Xn 

/UJ 

/'UJ 

1 

1 

1 

0 

29.  y  =  -x^  +  6x2  -  10^  +  6  =  /(x) 
y'=  -3x2  +  lit  -  10  =/'(x) 


^1 

=  2 

Xj 

=  1 

X3 

=  2 

X4 

=  1 

and  so  on 

Fails  to 

converge 

31.  Answers  will  vary.  See  page  222. 

Newton's  Method  uses  tangent  lines  to  approximate  c  such  that  /(c)  =  0. 
First,  estimate  an  initial  x,  close  to  c  (see  graph). 


Then  determine  Xj  by  Xj  =  x. 


/u. 


fW 


Calculate  a  third  estimate  by  Xj  =  Xj 


fix,) 


Continue  this  process  until  \x„  -  x„  + 1 1  is  within  the  desired  accuracy. 
Let  x„  + 1  be  the  final  approximation  of  c. 


W) 


33.  Let  g(x)  =  fix)  —  X  =  cos  x  —  x 
g  'ix)  =  —  sin  X  —  1 . 
The  fixed  point  is  approximately  0.74. 


n 

x„ 

8ix„) 

sXx„) 

S^x„) 
g\x„) 

"      S\x„) 

1 

1.0000 

-0.4597 

-1.8415 

0.2496 

0.7504 

2 

0.7504 

-0.0190 

-1.6819 

0.0113 

0.7391 

3 

0.7391 

0.0000 

-1.6736 

0.0000 

0.7391 

158        Chapters        Applications  of  Differentiation 


35.  fix)  =  jc3  -  3;t2  +  3,  f'{x)  =  3;c2  -  6x 
(a) 


(c)  .^i  = 


1 


Continuing,  the  zero  is  2.532. 

(e)  If  the  initial  guess  jc,  is  not  "close  to"  the  desired  zero 
of  the  function,  the  x-intercept  of  the  tangent  line  may 
approximate  another  zero  of  the  function. 


(b)  X,  =  1 


#4  «  1.333 

f(Xl) 


Continuing,  the  zero  is  1.347. 


(d) 


The  j:-intercepts  correspond  to  the  values  resulting 
from  the  first  iteration  of  Newton's  Method. 


37.  /U)  =  -  -  a  =  0 

X 


fix)  =  -3 


_^l"/^  2"  =  x„+  x„'^[y  -  a]=x„+x„'  x/a  =  2x„-  x^a  =  x„{2  -  oxj 


39.  fix)  =  X  cos  X,  (0,  tt) 

fix)  =  —X  sin  x  +  cos  X  =  0 

Letting  F{x)  =  fix),  we  can  use  Newton's  Method  as  follows. 

[F'{x)  =  —  2  sin  X  +  X  cos  x] 


n 

Xn 

F(x„) 

nx„) 

Fix„) 
Fix,) 

"  F\x„) 

1 

0.9000 

-0.0834 

-2.1261 

0.0392 

0.8608 

2 

0.8608 

-0.0010 

-2.0778 

0.0005 

0.8603 

Approximation  to  the  critical  number:  0.860 


Section  3.8        Newton's  Method 


159 


41.  >'=/U)  =  4-^2,  (1,0) 


d^-  7U  -iy  +  (y-  0)2  =  VU  -  D'  +  (4  -  x-r-  =  ^x*-lx--2x  +  17 

li  is  minimized  when  D  =  x*  —  7x-  -  Zx  +  17  is  a  minimum. 
gix)  =  D'  =  4x^  -  Hx  -  2 
g'ix)  =  12r=  -  14 


n 

•'^n 

gix„) 

sK) 

1 

2.0000 

2.0000 

34.0000 

0.0588 

1.9412 

2 
3 

1.9412 
1.9385 

0.0830 
-0.0012 

31.2191 
31.0934 

0.0027 
0.0000 

1.9385 
1.9385 

x-  1.939 
Point  closest  to  (1.  0)  is  =  (1.939,  0.240). 


43. 


, ,.  .    .       ^     Distance  rowed      Distance  walked 
Minimize:  T  =  — z ^ 1- 


Rate  rowed 


Rate  walked 


_      vU2  +  4       V.T-  -  6.x: 


10 


4 
x-3 


1.939.0.240) 


3jx-  +  4      4jx-  -  6x  +  10 

4xjx-  -  6x  +  10  =  -3U  -  3)7.^2  +  4 

16x2(^2  -  6x  +  10)  =  9U  -  3Hx^  +  4) 

7.r^  -  421^  +  43a"  +  216a-  -  324  =  0 

Let /(a)  =  7x*  -  41v3  +  43^2  +  216x  -  324  and /'(a)  =  28.r3  -  126^2  +  86.1;  +  216.  Since /(I)  =  - 100  and/(2)  =  56,  the 
solution  is  in  the  interval  (1,  2). 


n 

Xn 

fi^n) 

n^) 

/(■vj 

,   /K) 
"   /'(-^J 

I 

1.7000 

19.5887 

135.6240 

0.1444 

1.5556 

2 

1.5556 

-1.0480 

150.2780 

-0.0070 

1.5626 

3 

1.5626 

0.0014 

49.5591 

0.0000 

1.5626 

Approximation:  x  ==  1.563  miles 


45.  2,500,000  =  -76.x^  +  4830.x~  -  320,000 

76x^  -  4S30x-  +  2,820,000  =  0 
Let/(x)  =  16x^  -  4830.r2  +  2,820,000 

f'(x)  =  ll%x~  -  966aT. 
From  the  graph,  choose  .t,  =  40. 


n 

^n 

/(.vj 

/'(•v„ ) 

/UJ 

,   /UJ 
"  /'UJ 

1 

40.0000 

-44000.0000 

-21600.0000 

2.0370 

37.9630 

2 

37.9630 

17157.6209 

-38131.4039 

-0.4500 

38.4130 

3 

38.4130 

780.0914 

-34642.2263 

-0.0225 

38.4355 

4 

38.4355 

2.6308 

-34465.3435 

-0.0001 

38.4356 

The  zero  occurs  when  x  ==  38.4356  which  corresponds  to  $384,356. 


160        Chapters        Applications  of  Differentiation 


47.  False.  Let/W  =  (jr  -  \)/{x  —  1).  .r  =  1  is  a  discontinuity.  It  is  not  a  zero  oif{x).  This  statement  would  be  true  if 
fix)  =  pix)/qix)  is  given  in  reduced  form. 


49.  True 


51.  fix)  =\^  -  3.t2  +  \x 


fix) 


3    2 
1=    —  v^ 


6x  +  : 


Let .»:[  =  12. 


Approximation:  a;  =  11.803 


Section  3.9       Differentials 


n 

-^. 

/UJ 

fK) 

/'UJ 

"  /'UJ 

1 

12.0000 

7.0000 

36.7500 

0.1905 

11.8095 

2 

11.8095 

0.2151 

34.4912 

0.0062 

11.8033 

3 

11.8033 

0.0015 

34.4186 

0.0000 

11.8033 

1.   fix)  =X' 
fix)  =  2x 

Tangent  line  at  (2,  4):  >-  -  /(2)  =  /'(2)(x  -  2) 
y  -  4  =  4ix-  2) 
y  =  4x  —  4 


X 

1.9 

1.99 

2 

2.01 

2.1 

fix)  =  X- 

3.6100 

3.9601 

4 

4.0401 

4.4100 

rU)  =  4a:  -  4 

3.6000 

3.9600 

4 

4.0400 

4.4000 

3.  fix)  =  ;c=  -.       . 

fix)  =  5x^ 

Tangent  line  at  (2,  32):  y  -  /(2)  =  f'il)ix  -  2) 
y  -  32  =  80U  -  2) 

>>  =  80.x  -  128 


.r 

1.9 

1.99 

2 

2.01 

2.1 

/U)  =  ^ 

24.7610 

31.2080 

32 

32.8080 

40.8410 

rU)  =  80.x:  -  128 

24.0000 

31.2000 

32 

32.8000 

40.0000 

5.  fix)  =  s\nx 
fix)  =  cos  X 

Tangent  line  at  (2,  sin  2): 

y-/(2)=/'(2)(;c-2) 
3;  -  sin  2  =  (cos  2)ix  -  2) 

y  =  (cos  2)(x  -  2)  +  sin  2 


X 

1.9 

1.99 

2 

2.01 

2.1 

fix)  =  sin  a: 

0.9463 

0.9134 

0.9093 

0.9051 

0.8632 

Tix)  =  (cos  2)(.x  - 

-  2)  +  sin  2 

0.9509 

0.9135 

0.9093 

0.9051 

0.8677 

3    2 

1  j:  ,  X 


l.y=fix)  =  Wj'ix 

Ay=fix  +  ^x)  -fix, 
=  /(2.1)-/(2) 
=  0.6305 


2,Ax  =  dx  =  0.1 


flfy=/'(.x)a!x 
=  /'(2)(0.1) 
=  6(0.1)  =  0.6 


Section  3.9        Differentials        161 


9.  y  =  fix)  =  x^  +  \,f'{x)  =  4x\  x=  -  1,  Ax  =  A  =  0.01 

Ay  =  f(x  +  Ax)-  f(x)  dy  =  f'(x)  dx 
=  /(-0.99)-/(-l)  =/'(-l)(0.01) 

=  [(-0.99)"  +  1]  -  [(-  ir  +  1]  «  -0.0394  =  (-4)(0.01)  =  -0.04 


11.    y  =  3x^  -  4 

dy  =  6.t  dx 


15.    y  =  xj\  -  .v2 


dy  =  \x 


vr 


+  Vl  -  -v-    dx 


Zx- 


vT^^ 


iv 


.r  +  1 


13. 

>'  = 

2x- 

1 

dy-- 

- 

3        . 

(2;c- 

-l)^'^ 

17. 

y  -- 

=  2x~ 

•  cot-x 

dy-- 

--(2  + 

2  cot  X  csc- 

.t)di: 

= 

=  (2  +  2  cot  ;c  +  2 

cot^. 

x)dx 

,o  1       /677nr-  1 

19.     y  =  -C0s(-^- 


dy  =  —  IT  sin  — ^7: |  tic 


\       2 


21.  (a)/(1.9)  =/(2  -  0.1)  -/(2)  +/'(2)(-0.1) 

=  1  +  (1)(-0.1)  =  0.9 
(b)  /(2.04)  =/(2  +  0.04)  «/(2)  +/'(2)(0.04) 

==  1  +  (1)(0.04)  =  1.04 


23.  (a)  /(1.9)  =/(2  -  0.1)  «/(2)  +/'(2)(-0.1) 

«  1  +  (-jK-O.l)  =  1.05 
(b)  /(2.04)  =/(2  +  0.04)  «/(2)  +/'(2)(0.04) 

=  1  +  (-5)(0.04)  =  0.98 


25.  (a)  g(2.93)  =  ^(3  -  0.07)  «  ^(3)  +  ^'(3)(-0.07)  27.  (a)  ^(2.93)  =  ^(3  -  0.07)  «  ^(3)  +  ^'(3)(-0.07) 

-  8  +  (-5)(-0.07)  =  8.035  .  =  8  +  0{-0.07)  =  8 

(b)  g(3.1)  =  ^(3  +  0.1)  «  g(3)  +  g'{3){0.\)  .  (b)  g{2.\)  =  g{3  +  0.1)  »  ^(3)  +  g'(3)(0.1) 

=  8  +  (-5)(0.1)  =  7.95  =  8  +  0(0.1)  =  8 


29.     A=x- 

x=\l 

Ax  =  dx  =  ±^ 
dA  =  Ixdx 

AA  -  (M  =  2(12)(±^) 
=  ±f  square  inches 


31.     A  =  7rr2  : 

r=  14 
Ar  =  dr  =  ±\ 

AA -^  dA  =  iTTr  dr  =  7r(28)(±5) 
=  ±777 square  inches 


162        Chapters        Applications  of  Differentiation 


33.  (a)     X  =  15  centimeter 

Ax  =  dx  =  ±0.05  centimeters 

A=x^ 
dA  =  2xdx  =  2{15)(±0.05) . 

=  ±  1.5  square  centimeters 
Percentage  error: 

T  =  Bi  =  »■"«'■  ■  =  ;' 

W'^-^--^  0.025 
A  x^  X 

dx    ,  0.025 


< 

X    '      1 


=  0.0125  =  1.25% 


35.     r  =  6  inches 

Ar  =  dr  =  ±0.02  inclies 

4 

dV  =  Anr'^dr  =  477<6)2(±0.02)  =  ±2.887r cubic  inches 

(b)  5  =  4irr2 

dS  =  87rrrfr=  8i7<6)(±0.02)  =  ±0.967r  square  inches 

dV  ^   Airr^  dr  ^  3dr 

(c)  Relative  error:    y  ~  (4/T,)Trr^  ~    r 


=  7(0.02)  =  0.01  =  1% 
0 


Relative  error: 


dS      Sirrdr      2dr 


Airr^ 
2(0.02) 


=  0.000666 . 


37.  V  =  TTrVi  =  407rr2,  r  =  5  cm,  /z  =  40  cm,  dr  =  0.2  cm 
AV  «  rfV  =  SOTrrrfr  =  80tt<5)(0.2)  =  SOwcm^ 

39.  (a)     T  =  Ittjm 


ai   — 

/Ug 

Relative 

error: 

dT 

(ndD/i 

gjL/g) 

:      T 

27rv 

'L/g 

dL 

IL 

=  —  (relative  error  in  L) 


=  -(0.005)  =  0.0025 


jnn  1 

Percentage  error:  —(100)  =  0.25%  =  -% 


(b)  (0.0025)(3600)(24)  =  216  seconds 
=  3.6  minutes 


41.    e  = 

--  26°45'=  26.75° 

de  =  ±15' =  ±0.25° 

(a)       h  =  9.5  CSC  6 

dh  =  -9.5  CSC  e cot  Odd 

^= -cotede     . 

h 

dh 

h 

=  (cot  26.75°)(0.25°) 

Converting  to  radians,  (cot  0.4669)(0.0044) 
==  0.0087  =  0.87%  (in  radians). 


(b) 


=  cotede  <  0.02 

0.02  tan  e 


de  ^     0.02 

d  ~  e(cot0) 


de  _^  0.02  tan  26.75° 
e   ~         26.75° 


0 

_  0.02  tan  0.4669 
0.4669 

=  0.0216  =  2.16%  (in  radians) 


Review  Exercises  for  Chapter  3        163 


43.    r  =  ^(sin2e) 

Vo  =  2200  ft/sec 
0  changes  from  10°  to  11° 
(2200)2 


dr  = 


»='«(il 


16 

Tso 


{cos  28)  d6 


de={\\  -  10) 


180 


_  (2200)2        /'20irV  it 


16      '^°Tl80/Vl80 


4961  feet 


=  4961  feet 
47.  Let/(x)  =  ifx,x  =  625,  dx=  -\. 

fix  +  At)  -/(x)  +  f'(x)  dx=  i/i  + 


A-'J? 


dx 


fix  +  A.r)  =  t/624  =  ^625  + 


4(4/625} 


j(-l) 


=  5--  =  4.998 
Using  a  calculator,  ^624  =  4.9980. 


51.  In  general,  when  Ax  -^  0,  dy  approaches  Ay. 


45.  Let/(;c)  =  ^,x=  I00,dx=  -0.6. 
fix  +  Ax)^fix)+f'{x)dx 

=  Vx  H -pdx 


l-fx 


fix  +  Ax)  =  7995 


=  VTOO  +  — ^(-0.6)  =  9.97 
2V100 

Using  a  calculator:  7994  =  9.96995 


49.  Let/(x)  =  Vx,x  =  4.ir  =  0.02,/'(x)  =  l/(2v^). 
Thffli 

/(4.02)-/(4)+/'(4)di 

74^02  -  V4  +  ^^(0.02)  =  2  +  ^(0.02). 


53.  True 


55.  True 


Review  Exercises  for  Chapter  3 


1.  A  number  c  in  the  domain  of/ is  a  critical  number  if /'(c)  =  0  or/' 
is  undefined  at  c. 


/'Wis      3..     /V)=o 

undefined.  ' 


3.    g(x)  =  2x  +  5  cos  X.  [0,  2-77] 
^'(.r)  =  2  -  5  sin  X 

=  0  when  sinx  =  |. 

Critical  numbers:  x  ==  0.41,  x  =  2.73 
Left  endpoint:  (0,  5) 
Critical  number:  (0.41,5.41) 
Critical  number:  (2.73,  0.88)  Minimum 
Right  endpoint:  (277,17.57)  Maximum 


18 

V 

/ 

16.28.  17j7y 
_^.73, 0.881/ 

4 

164       Chapters        Applications  of  Differentiation 


5.  Yes.  /(- 3)  =  /(2)  =  0.  /is  continuous  on  [-  3, 2], 
differentiable  on  (—  3,  2). 

f'(x)  =  (x  +  3)0x  -  1)  =  0  for  X  =  |. 
c  =  3  satisfies  /'(c)  —  0. 


/(l)=/(7)  =  0 
(b)  /is  not  differentiable  atx  =  4. 


9.  /(x)  =  x2/3, 1  <  X  <  8 

/'W  =  |x-'/3 

/(fc)-/(a)      4-  1  _3 
b- a  8-1       7 

/'(c)  =  |c-/3  =  I 


'14\3      2744      ^^^, 


11.  /(x)  —  X  —  COS  X,  — —  <  X  <  — 

J  V  /  '2  2 


/'(x)  =  1  +  sinx 

/(fc)-/(a)_  (77/2)  -(-77/2) 

fc-a  (77/2)  -  (-77/2) 

/'(c)  =  1  +  sin  c  =  1 
c  =  0 


=  1 


13.  /(x)  =  Ar2  +  Sx  +  C 

/'(x)  =  2Ax:  +  B 
/(xj)  -  /(x,)       /l(x/  -  x,2)  +  S(x3  -  X,) 


=  A(xi  +  Xj)  +  S 
/'(c)  =  2Ac  +  B  =  A(xi  +  Xj)  +  B 
2Ac  =  A(xj  +  Xj) 

Xj  +  X2 

c  =  - — r —  =  Midpoint  of  [x,,  XjJ 


15.  /(x)  =  (x  -  l)2(x  -  3) 

/'(x)  =  (x  -  1)2(1)  +  (x  -  3)(2)(x  -  1) 

=  (x  -  l)(3x  -  7) 
Critical  numbers:  x  =  1  and  x  =  t 


Interval: 

-00  ~<  X  <   1 

1    <  X  <  1 

3   <  X  <  00 

Sign  oif'(x): 

fix)  >  0 

fix)  <  0 

fix)  >  0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

17.  h{x)  =  v^(x  -  3)  =  x3/2  -  Sx'/^ 
Domain:  (0,  00) 


;!'(x)=|xl/2-|x-'/2 

=  3     V2(^  _    .      3(x  -  1) 
2"^       ^        ^         2v^ 


Interval: 

0  <  X  <  1 

1  <  X  <  00 

Sign  of  h  '(x): 

h'{x)  <  0 

h'{x)  >  0 

Conclusion: 

Decreasing 

Increasing 

Critical  number:  x  =  1 


Review  Exercises  for  Chapter  3        165 


19.    h{t) 

h'[t) 


i,4 


-  8f 
8  =  0  when  t  =  2. 


Relative  minimum:  (2,  -  12) 


Test  Interval : - 

oo  <  f  <  2 

2  <  t  <  oo 

Signof/j'W: 

h'(t)  <  0 

h  '(t)  >  0 

Conclusion: 

Decreasing 

Increasing 

21.  y  =  -  cos(12r)  -  -  sin(12/) 

V  =  y'=  -4sin(12f)  -  3cos(120 

77  1 

(a)  When  t  =  '^,y  =  'z  inch  and  v  =  >> '  =  4  inches/second. 


(b)  y'  =  -4sin(12f)  -  3cos(12r)  =  Owhen 


sm(12r)  3  ,,^,  3 

— TTTTT  =  -7  =>  tan(12r)  =  --. 
cos(12r)         4  4 


3  4 

Therefore,  sin(12r)  =  -—  and  cos(12i)  =  -.  The  maximum  displacement  is 


I    I)-K-|)=^'"^*^■ 


(c)  Period:  ^  =  f 


Frequency: 


1     _  6 

77/6       77 


23.   f{x)  =  X  +  cosx,  G  <  X  <  2tt 
f\x)  =  1  -  sin.r 

77    377 


f"{x)  =  -  cos  .r  =  0  when  x 


r  2 


^    .  ^.    „        ■  (tT    77\    /377    377 

Pomts  of  mflection:  I  — ,  —  I,  I  — ,  — 


Test  Interval: 

0  <  .V  <  ^ 

77              377 

3-  <  -t  <  Y 

377 

—  <  .r  <  277 

Sign  of /"(.v): 

f"{x)  <  0 

f"(x)  >  0 

fix)  <  0 

Conclusion: 

Concave  downward 

Concave  upward 

Concave  downward 

V2 


25.    g(x)  =  2x2(1  -  x^) 

g'ix)  =  -4x{2x^  —  1)     Critical  numbers:  x  =  0,  ± 

g"(x)  =  4  -  24x2 

g"(0)  =  4  >  0    Relative  minimum  at  (0.  0) 

g'i  +—/=    =  —  8  <  0    Relative  maximums  at    ±^7=,  — 

V  V2;  V  V^  2 


27. 


(5.^5)) 


29.  The  first  derivative  is  positive  and  the  second  derivative  is 
negative.  The  graph  is  increasing  and  is  concave  down. 


166       Chapter  3        Applications  of  Differentiation 


31.  (a)  D  =  0.0034r*  -  0.2352/3  +  4.9423/2  -  20.8641/  +  94.4025 
(b)     3«9 


(c)  Maximum  at  (21.9,  319.5)     (=1992) 
Minimum  at  (2.6,  69.6)     (« 1972) 

(d)  Outlays  increasing  at  greatest  rate  at  the  point  of  inflection  (9.8,  173.7)     (=  1979) 


33.    lim 


2r2 


=   lim 


X  ->oo  3jc2  +  5      JT  -»o=i  3  +  5/x^      3 


5  cos  X 
35.    lim  =  0,  since  |5  cos  j-l  <  5. 


JT^OO  X 


37.  /!(x)  = 


2x  +  3 


X-  4 

Discontinuity:  x  =  4 

,      2x  +  3 
lim  — — 

.X  -»oo   X  —  4 


nml±m  =  2 


.CO  1  -  {4/x 

Vertical  asymptote:  x  =  4 
Horizontal  asymptote:  y  =  2 


39.  f(x) 


-  2 


Discontinuity:  x  =  0 


lim  I 2|  =  -2 

J— »oo  \X 


Vertical  asymptote:  x  =  0 
Horizontal  asymptote:  3;  =  —  2 


41.  fix)  =x^  + 


243 


Relative  minimum:  (3,  108) 
Relative  maximum:  (—3,  —  108) 
200 


Vertical  asymptote:  x  =  0 


43.  fix)  = 


1 


1  +  3x^ 

Relative  minimum:  (-0.155,-1.077) 
Relative  maximum:  (2.155, 0.077) 


Horizontal  asymptote:  y  =  0 


45.  fix)  =  4x-x'^  =  xi4  -  x) 

Domain:  (-00,  00);  Range:  (-00,4) 
fix)  =  4  -  2x  =  0when;<:  =  2. 
fix)  =  -2 

Therefore,  (2,  4)  is  a  relative  maximum. 
Intercepts:  (0,  0),  (4,  0) 


Review  Exercises  for  Chapter  3        167 


47.  f(x)  =  xVl6  -  x2.  Domain:  [-4,  4],  Range:  [-8,8] 
Domain:  [-4,4];  Range:  [-8,8] 

f'(x)  =     1^^        ^  =  0  when x  =  ±2 V2  and  undefined  when x 


f"i 


Vie -X- 

2x{x^  -  24) 


±4. 


(16  -  x=p/2 

/'(-2V2)  >  0 

Therefore,  (-2^2,  —8)  is  a  relative  minimum. 

/"(272)  <  0 
Therefore,  [2^,  8)  is  a  relative  maximum. 

Point  of  inflection:  (0,  0) 
Intercepts:  (-4,  0),  (0,  0),  (4,  0) 
Symmetry  with  respect  to  origin 


.  hVz  i) 


2V1,  -8 


(-4.0)         J         1(4.0) 

I      I     t     I     f    I     *     I — H^-t 
i  -6     I  -2    i  \ 2     4     6     8 

^    (0. 0) 


49.  fix)  =  U  -  D^U  -  3)2 

Domain:  (—00,  00);  Range:  (  —  00,00) 


11 


f'(x)  =  (x  -  iy{x  -  3)(5x  -  11)  =  0  whenjt  =  1,  y,  3. 


ii+ye 


f"{x)  =  4(x  -  l)(5x2  -  22.x  +  23)  =  Owhen.r  =  1, 

/"(3)  >  0 
Therefore,  (3,  0)  is  a  relative  minimum. 

4t)  <" 


Therefore,  (  — ,  1  is  a  relative  maximum. 

Pomts  of  inflection:  (1,  0),  (  '  ^  ~  ^^,  0.60  ),  (  "  t  0.46 


Intercepts:  (0,  -9),  (1,  0),  (3,  0) 


51.  fix)  =  .r'/5(.v  +  3)2/3 

Domain:  (—00,  00);  Range:  (—00,  00 
x+  1 


/W  = 


(X  +  3)'/3;c2/3 

-2 
x^'Hx  +  3)^/3 


=  0  when  x  =  —I  and  undefined  when  x  =  —3,0. 
is  undefined  when  .x  =  0,-3. 


By  the  First  Derivative  Test  (-3,  0)  is  a  relative  maximum  and  (-  1.  -  v'^)  is 
a  relative  minimum.  (0,  0)  is  a  point  of  inflection. 

Intercepts:  (-3,0),  (0,0) 


168        Chapters        Applications  of  Differentiation 


53.  fix) 


x+  1 

X  -  1 


Domain:  (-oo,  1),  (1,  oo);  Range:  (-oo,  1),  (1,  oo) 
fix)  =  -r—^-  <  0  if  j:  ^  1. 

f'Xx)  = 


ix  -  ly 

Horizontal  asymptote:  y  =  I 
Vertical  asymptote:  x  =  I 
Intercepts:  (-  1,  0),  (0,  -  1) 


55.  fix) 


1  +  x^ 


Domain:  (-oo,  oo);  Range:  (0,  4] 


fix)  = 


-8x 


(1  +  x^-y- 


=  0  when  jc  =  0. 


/W=     (i+,2)3     =Owhen.  =  ±— . 

/"(O)  <  0 

Tlierefore,  (0,  4)  is  a  relative  maximum. 

Points  of  inflection:  (±V3/3,  3) 
Intercept:  (0,  4) 
Symmetric  to  the  y-axis 
Horizontal  asymptote:  >>  =  0 


57.  fix)  =  x^  +  x  +  - 
■'  X 

Domain:  (— oo,  0),  (0,  oo);  Range:  (— oo,  —  6],  [6,  oo) 

.„  ^      ^  n       .       4       3xf*  +  x^  -  4      ^    , 
/ ix)  =  ix-  +1 2  = ^ =  0  when x  =  ±\. 


8       6;c^  + 


fix)  =  6x  +  ^  3 


7t  0 


/"(- 1)  <  0 
Therefore,  (- 1,  -6)  is  a  relative  maximum. 

/"(I)  >  0 

Therefore,  (I,  6)  is  a  relative  minimum. 

Vertical  asymptote:  x  =  0 
Symmetric  with  respect  to  origin 


(-I.-6) 


r\\ 


(1.6) 


Review  Exercises  for  Chapter  3 


169 


59.  fix)  =\x^-9\ 

Domain:  (-00,  oo);  Range:  [0,  oo) 

2x(jip-  -  9) 
f'(x)  =  — p^ — -j—  =  0  when  jc  =  0  and  is  undefined  when  x  = 

2(x^  -  9) 
fix)  =  -r^ — TTT  is  undefined  at  x  =  ±3. 

F   -  9| 

/"(O)  <  0 
Therefore,  (0,  9)  is  a  relative  maximum. 

Relative  minima:  (+3,  0) 
Points  of  inflection:  (±3,0) 
Intercepts:  (±3,  0),  (0,  9) 
Symmetric  to  the  )'-axis 

61.  fix)  =  X  +  cos  JC 

Domain:  [0,  lir];  Range:  [1,  \  +  2tt] 
fix)  =  1  —  sin.T  >  0,  /is  increasing. 

fix)  =  -  cos  j:  =  0  when  x  =  —,  -r-. 
J  \  J  2'  2 

Points  of  inflection:    — >  TT 1 1  ^;~'  ~;~ 

\2   2/  \ 2      2 

Intercept:  (0,  1) 


±3. 


(2ir,  2ir  +  l).    ^ 

2ir- 

Z'' 

.  (f.f)/ 

" 

v 

</ 

(0,   t)' 

^•f) 

1     '     i     '    21  " 

63.  x-  +  4r  -  2v  -  16v  +  13  =  0 

(a)  (.x:=  -  2jc  +  1)  +  4(v=  -  4>'  +  4)  =  - 13  +  1  +  16 

ix  -  1)2  +  4Cy  -  2)2  =  4 
ix  -  1)2  ,  (y-2)2 


1 


The  graph  is  an  ellipse: 
Maximum:  (1,3) 
Minimum:  (1,  1) 
(b)  X'  +  4f  -Ix-  16y  +  13 


0 


2;c  +  8v 


dx 


i4  =  o 

dx 


^i%y  -  16)  =  2  -  2x 


2  -  2jc 


1  -X 


dl_ 

dx      8y  -  16      4v  -  8 

The  critical  numbers  are  .r  =  1  and  y  =  2.  These  correspond  to  the  points  (1,  1),  (1.  3),  (2,  -  1),  and  (2,  3). 
Hence,  the  maximum  is  (1,  3)  and  the  minimum  is  (1,  1). 


170       Chapters        Applications  of  Differentiation 


65.  Let  r  =  0  at  noon. 

L  =  rf-  =  (100  -  12/)2  +  (-  lOt)-  =  10,000  -  2400t  +  244?^ 

^  =  -2400  +  488f  =  0  when  r  =  ^  -  4.92  hr. 
dt  61 

Ship  A  at  (40.98,  0);  Ship  B  at  (0,  -49.18) 

d^  =  10,000  -  2400f  +  244t^ 

=»  4098.36  when  t  «  4.92  «  4:55  p.m.. 
d  »  64  km 


(0,0) 


(100-12(.0) 

; 


^'-4  (100,0) 


(0,  -100 


67.  We  have  points  (0,  v),  {x,  0),  and  (1,  8).  Thus, 

y  -  8       0-8  Sx 

m  = =  ■ 7  or  y 


0-1       X  -  1      '      X-  V 

8.t    V 


Let/(j:)  =  L^  =  x-  + 


X-  1 


f\x)  =  2x+  128' 


X  -  1 


U-1) 


U  -  1)2    J 


=  0 


64x  . 

Jf  ~  7 TTT  =  0 


x\(x  —  1)'  —  64]  =  0  when  jc  =  0,  5  (minimum). 
Vertices  of  triangle:  (0,  0),  (5,  0),  (0,  10) 


2        4        6        8       10 


69.    A  =  (Average  of  bases)(Height) 


v 

-  +  ^^35^  +  2sx  -x\       ^        , 

j                             (.see  iigurej 

dA_}_ 
dx      4 

;  ,  '''^'      ""'  ,  +  73.2  +  2sx  -  x^ 
L  V3s2  +  2sx  -  x^ 

l{ls-x)(s  +  x)        ^    , 
=  — ,    ,                      =  0  when  x  =  2s. 
4j3s^  +  2sx  -  X- 

A  is  a  m 

aximum  when  x  =  2s. 

|V3i^  +  2j: 


71.  You  can  form  a  right  triangle  with  vertices  (0,  0),  {x,  0)  and  (0,  y). 
Assume  that  the  hypotenuse  of  length  L  passes  through  (4,  6). 

y  -  6      6-0  6x 

m  = 7  =  -: or  J 


0-4      A- x 
Let/(x)  =  l2  =  Jc2  +  >>2  =  ;c2  + 


-x  -  4 
6.t 


f'(x)  =  2x  +  12 


,x-  4 

X 


ix  -  4)2 


=  0 


\x  -  4/ 

jr[(j:  -  4)3  -  144]  =  0  when  .t  =  0or;c  =  4+   ^144. 
L  ==  14.05  feet 


Review  Exercises  for  Chapter  3        171 


73. 


i-, 


CSC  e  =  —  or  L,  =6  CSC  6  (see  figure) 

6 


csci ^-0j  =  -^otU  =  9 csc(y  -  e 


L  =  L,  +  L,  =  6  CSC  e  +  9  CSC 


e    =  6  CSC  e  +  9  sec  e 


cf0 


-6csc  ecot  e  +  9  sec  dlan  6  =  0 


tan'  0  =  -  =>  tan 


j/2 
1/2 


seed  =  Vl  +  tan=  6  =  ,  /  1  + 


/ 


2\2/3  V32/3  +  22/3 


CSC  6  = 


:  e        V3-/3  +  2-' 


/3 


Z.  =  6 


tan  e  2'/3 

(32/3 +  22^^      „  (32/3  +  22/3)'/^ 


L  y 

X        6 

UyC 

Xe    ' 

\ 

/{e    _ 

(!-«) 

9 

21/3 


+  9- 


31/3 


3'/3 


=  3(32/3  +  22/3)3/2  ft  ==  21.07  ft  (Compare  to  Exercise  72  using  a  =  9  and  fc  =  6.; 


75.  Total  cost  =  (Cost  f)er  hour)  (Number  of  hours) 
^      /v2        ^VllO\       llv   ,   550 

^=ii_  550  ^  llv-  -  33,000 
dv  ~  60        V'  60v- 

=  0  when  v  =  ^3000  =  10^30  =  54.8  mph. 


dv-  ~    v3 


>  0  when  v  =  lOv^  so  this  value  yields  a  minimum. 


77.  fix)  =  .v3  -  3x  -  1 

From  the  graph  you  can  see  that/(.r)  has  three  real  zeros. 
f\x)  =  3.x2  -  3 


n 

K 

/(^„) 

/'(^J 

1 

-1.5000 

0.1250 

3.7500 

0.0333 

-1.5333 

2 

-1.5333 

-0.0049 

4.0530 

-0.0012 

-1.5321 

n 

^n 

/(■^J 

/'(-^J 

/(-T„) 

X        ^^'"^ 
"      f'ix„) 

1 

-0.5000 

0.3750 

-2.2500 

-0.1667 

-0.3333 

2 

-0.3333 

-0.0371 

-2.6667 

0.0139 

-0.3472 

3 

-0.3472 

-0.0003 

-2.6384 

0.0001 

-0.3473 

n 

Xn 

fix„) 

/'(■vj 

1 

-1.9000 

0.1590 

7.8300 

0,0203 

1.8797 

2 

1.8797 

0.0024 

7.5998 

0.0003 

1.8794 

The  three  real  zeros  of/(j:)  are  .r  =  -  1.532,  x  =  -0.347,  and  x  =  1.879. 


172        Chapters        Applications  of  Differentiation 


79.  Find  the  zeros  of/(;c)  =  X*  —  x  —  3. 
fix)  =  4;t^  -  1 
From  the  graph  you  can  see  that/(j:)  has  two  real  zeros. 
/changes  sign  in  [—2,  —  l]. 


n 

Xn 

/UJ 

f'iXn) 

1 

- 1.2000 

0.2736 

-7.9120 

-0.0346 

-1.1654 

2 

-1.1654 

0.0100 

-7.3312 

-0.0014 

-1.1640 

On  the  interval  [-2,  -l]:x~  -1.164. 
/changes  sign  in  [1,  2]. 


n 

x„ 

/UJ 

/'UJ 

1 

1.5000 

0.5625 

12.5000 

0.0450 

1.4550 

2 

1.4550 

0.0268 

11.3211 

0.0024 

1.4526 

3 

1.4526 

-0.0003 

11.2602 

0.0000 

1.4526 

On  the  interval  [1,  2];  x  =  1.453. 


81.    y  =  x{\  -  cos  j:)  =  x  -  j:  cos  j: 


die 


1  +  j:  sin^:  —  cos;c 


dy  =  (1  +  ;c  sin  j:  —  cos  x)  dx 


83.  5  =  47rrl  rfr  =  Ar  =  ±0.025 

dS  =  S'nrdr=  877(9)(±0.025) 
=  ±  1. 8  TT  square  cm 

f(100)  =  ^(100)  =  ^(100) 


47rr 
2(±0.025) 


(100)  =  ±0.56% 


4 


dV  =  4Trr2  dr  =  47r(9)2(+0.025) 
=  ±8.1 77  cubic  cm 

3dr 


f'><»>  =  iJ^« 


3(±0.025) 


(100) 


(100) 


rO.83% 


Problem  Solving  for  Chapter  3 


1.  Assume  y^  <  d  <  y^.  Let  g{x)  =  f{x)  —  (/(jc  —  a),  g  is  continuous  on  [a,  b]  and  therefore 
has  a  minimum  (c,  g(c))  on  [a,  b].  The  point  c  cannot  be  an  endpoint  of  [a,  b]  because 

g'{a)=f'(a}  -d  =  y^-d<Q 

g'ib)  =f'{b)  -d  =  y^~d>Q 

Hence,  a  <  c  <  b  and  g'{c)  =  0  =>  f'{c)  =  d. 


Problem  Solving  for  Chapter  3        173 


3.  (a)  For  a  =  —3,  —2,  —\,0,  p  has  a  relative  maximum  at  (0,  0). 

For  a  =  1,  2,  3,  p  has  a  relative  maximum  at  (0,  0)  and  2  relative  minima. 


(b)  p'{x)  =  Aax'  -  \lx  =  Ax{ax^  -  3)  =  0 


0.± 


p"{x)  =  \2ax-  -  12  =  12(a.v2  -  1) 

For  x  =  0,  p"(Q)  =  -12<0=>phasa  relative  maximum  at  (0,  0). 


(c)  If  a  >  0..r  =  ± 


P     ± 


-  are  the  remaining  critical  numbers. 


=  12(  —  I  —  12  =  24  >  0  =>  p  has  relative  minima  for  a  >  0. 

a  I  \a 


(d)  (0, 0)  lies  on y  =  -Ix-. 

^3 


Let.t  =  ± 


a 


.  Then 


^(^)="(!r-<i . . 


9  /         /3\ 

Thus,>'=  — =  -3  ±^/-      =  -3j:- is  satisfied  by  all  the  relative  extrema  of  p. 
a  \     \  a  I 


5.  p{x)  =  x"^  +  ax^  +  \ 

(a)  p  '(x)  =  4:^  +  lax  =  2x(2.c-  +  a) 
p"(x)  =  I6;c=  +  2a 

For  a  >  0,  there  is  one  relative  minimum  at  (0,  0). 

(b)  For  a  <    0,  there  is  a  relative  maximum  at  (0,  1). 

(c)  For  a  <  0,  there  are  two  relative  minima  at  .v  =  ± 


(d)  There  are  either  1  or  3  critical  points.  The  above  analysis 
shows  that  there  cannot  be  exactly  two  relative  extrema. 


7.   f(x}  =  -  +  .r2 

X 


fix)  =  — T  +  2j:  =  0  =>  -^  =  2v 
X-  x- 


2  \  X 


/"W  =  |  +  2 

If  c  =  0,f{x)  =  x-'^  has  a  relative  minimum,  but  no  relative  maximum. 

If  c  >  0, X  =    3/  -  is  a  relative  minimum,  because/"!  -V  -  J  >  0. 


c  . 


If  c  <  0,  .V  =  ..^V  r  is  a  relative  minimum  too. 


Answer:  all  c. 


174        Chapters        Applications  of  Differentiation 


9.  s./^'^-f^f-f'lf'-^^  =  k. 
(b  -  ay 

Define  F{x)  =  f{x)  -  f(a)  -  f'{a)ix  -  a)  -  kix  -  af. 

F{a)  =  0,  F{b)  =  fib)  -  f(a)  -  f'{a){b  -a)-  kib  -  a)^  =  0 

F  is  continuous  on  [a,  b]  and  differentiable  on  (a,  b). 
There  exists  c,,  a  <  c,  <  fc,  satisfying  F'(c,)  =  0. 

f  W  =  fix)  —  f'ia)  —  2kix  -  a)  satisfies  the  hypothesis  of  RoUe's  Theorem  on  [a,  c,]: 
F'ia)  =  0,  F'(ci)  =  0. 

There  exists  Cj,  a  <  C2  <  c,  satisfying  F"ic2)  =  0. 

Finally,  F"ix)  =  fix)  -  Ik  and  F'Xcj)  =  0  implies  that 

Ti,„o   ;      /(fe)  -  fia)  -  fia)ib  -  a)      f'jc^  _^ffu\       ft  \  j_  t'(  \(u        ^  _■_  ^  ft    \(u        \2 
Thus,  k  = _    .^ =  —7^  =^fib)  =  fia)  +fia)ib  -  a)  +  -f  (c,)!^  -  a)^. 


,   ,       tan  4>i\  -  0.1  tan  (/))       10  tan  </>  -  tan-  0 
■      ^'^'  ~         0.1  +  tan(/)         ~       1  +  10tan</) 

^,,  J,       (1  +  lOtan  (^)(10sec2<^  -  2tan<^sec2<^)  -  (lOtan  (^  -  tan2(^)lOsec-0      „ 
^^"^^^  (1  +  10  tan  4.) =  ° 

=>  (1  +  10  tan  (^)(10  sec-  0  -  2  tan  (^  sec^  <^)  =  ( 1 0  tan  <^  -  tan-  <^)10  sec^  0 

=*  10  sec-  (/)  -  2  tan  (^  sec-^  <^  +  100  tan  <^  sec-  (^  -  20  tan^  </>  sec-  <^ 

=  100  tan  (^  sec*  </>  -  10  tan^  <^  sec-  <^ 

=>   10  -  2  tan  <^=  10  tan- 0 

=>  10  tan^  (^  +  2  tan  (^  -  10  =  0 


—  2  -I-    /4  +  400 
tan  (^  = =^^^- =  0.90499,  -  1.10499 

Using  the  positive  value,  <f>  =  0.7356,  or  42.14°. 


13.    V  =  -2400irsine 
v'=  -2400iTCOse  =  0 

t*  =  —  +  2/jTr,  —  -(-  2«ir,  n  an  mteger 


Problem  Solving  for  Chapter  3        175 


X      y  4 

15.  The  line  has  equation  T  +  T  =  1  or  y  =  --x  +  4. 


Rectangle: 


Area  =  A  =  xy  =  x[  --x  +  4J  =  ~:;x-  +  4x. 


A  '{x)  =  -|.r  +  4  =  0=>|x  =  4 


Dimensions:  r  x  2    Calculus  was  helpful. 


X  V 

Circle:  The  distance  from  the  center  (r,  r)  to  the  line  T  "*"  J  ~  '  ~  ^  must  be  r. 


fn- 

-  1 

12 

7r-  12 

/l 

1 

5 

12 

|7r-  12 


5r  =  |7r  -  12|  =^  r  =  1  or  r  =  6. 

Clearly,  r  =1. 

X       y 
Semicircle:  The  center  lies  on  the  line  T  +  T  =  ^  ^^  satisfies  x  =  y  =  r. 


Thusf  +  ^=l=>^r=l 


r  =  —.  No  calculus  necessary. 


17.    >>  =  (1  +  j:')-' 

^     (1  +  x-y- 

"      2(3a-^  -  1)       .  _  ^1         ^V3 


/': 1 1 h- 

3  3 


The  tangent  line  has  greatest  slope  at  (  — — ,  -  I  and  least  slope  at .        , 


V3  3 


73  3 


19.  (a) 


.V 

0.1 

0.2 

0.3 

0.4 

0.5 

1.0 

sinj: 

0.09983 

0.19867 

0.29552 

0.38942 

0.47943 

0.84147 

sinj:  <  .r 

(b)  Let  f(x)  =  sin  x.  Then  f'(x)  -  cos  x  and  on  [0,  x]  you  have 
by  the  Mean  Value  Theorem, 

f,, .  fix) -no)  „ 

f(c)  =       ^_o     '  0  <  c  <.v 


cos(c) 


Hence, 


X 

sin.r 


|cos(c)|  <  1 


|sinA:|  <  |jc| 
sin.v  <  .V 


CHAPTER     4 
Integration 


Section  4.1       Antiderivatives  and  Indefinite  Integration    177 

Section  4.2      Area 182 

Section  4.3      Riemann  Sums  and  Definite  Integrals 188 

Section  4.4      The  Fundamental  Theorem  of  Calculus    192 

Section  4.5      Integration  by  Substitution 197 

Section  4.6      Numerical  Integration     204 

Review  Exercises      209 

Problem  Solving 214 


CHAPTER     4 
Integration 

Section  4.1       Antiderivatives  and  Indefinite  Integration 

Solutions  to  Odd-Numbered  Exercises 


1.  Ml  ^A=  Aj-x^-i  ^r\^  _Q.-4       -9 


M.^^^j^^^^"^^^  =  -^'" 


d  n 


3.  ^1 -x3  -  4x  +  C]  =  X-  -  4  =  {x  -  2)ix  +  2) 


5.f  =  3r^ 
dt 

7.$;  =  x3/2 

y  =  fi  +  C 

3'  =  \x?n  +  C 

Check:  -^^^ 
at 

+  C]  =  3/2 

Check:  £  Ir^/^  +  C 

Given 

Rewrite 

Inteerate 

Simplify 

9.      3/^aL^: 

x"^  dx 

_^4/3 

4 

11.      -^dx 
J  xwx 

x-^'^-dx 

^- 

~i*" 

13./i<i. 

-  ip"^ 

^S)- 

-i- 

15.      {x  +  3)dx  = 

y  +  3;t  +  C 

17.      (Zr  -  3.r-)ciT:  =  x' - 

Check: 


dx 


-  +  3.  +  C 


=    ;^/2 


=  .v  +  3 


Check:  —[;<:--  .r^  +  C]  =  2x  -  3.v= 


/< 


19.    I  (x'  +  2)  (ir  =  -r''  +  2jr  +  C 

Check:  jijx*  +  2.x  +  C|  =  .v^  +  2 


/' 


21.    I  (x3/2  +  2x  +  1)  a[r  =  t^v^''^  +  ,.;  +  ^  +  ^ 

Check:  M^''  +  x-  +  x  +  c\  =  x^'-  +  Iv  +  1 


23.    \l/^dx=  j.r 


jc^'''  3 


Check:  4(|^-'^'  +  C)  =  .x^/s  =  l/^- 


25.     3  ^^  =     -^^^  ^^  =  3T  +  C  = 


Check:  ^(--i^  +  C=^ 
dx\    Ix^         j      .r" 


-^  +  c 


177 


178        Chapter  4        Integration 


27.    {^^^j^dx  =  I  (;c3/2  +  x'/'-  +  x-'/2)  dx  =  '^x?'^  +  |jc3/2  +  2x'/2  +  C  =  -^;c'/2(3x2  +  5x  +  15)  +  C 


15 


Check:  -f  fl-^''  +  1^^'  +  2x"'  +  c)  =  i^'^  +  x'/^  +  ;c-'/2  =  ""'  "^  ^^"^  ' 
dx\5  3  /  y^ 


'■/ 


/< 


29.      U  +  l)(3x  -  2)  dlx  =      (3x2  +  ;c  -  2)  ^^ 


=  ^3  +  -x2  -  2x  +  C 
2 

Check:  4-\^  +  ~:^  -  2x  +  C]  =  3x^  +  x  -  2 


dx\ 


=  ix+  l)(3x  -  2) 


31.  J/vS^y  =  J; 


//2  dy    =    -yin    +    C 


Check: 


dj2 
dy 


±yin  +  cj  =  //2  =  y2^ 


33.    Uf  = 


\dx  =  x  +  C 


\ 


35.    I  (2  sin  X  +  3  cos  x)  dx  =  —  2  cos  x  +  3  sin  x  +  C 


Check:  — (x  +  C)  =  1 

OK 


Check:  -7-(— 2  cos  x  +  3  sin  x  +  C)  =  2  sin  x  +  3  cos  x 
ox 


/ 


37.      (1  -  CSC  t  cot  i)dt  =  t  -\-  esc  r  +  C 


\ 


39.      (sec^  e  -  sin  0)  dS  =  tan  e  +  cos  e  +  C 


Check:  —it  +  esc  r  +  C)  =  1  -  esc  r  cot  r 


Check:  —(tan  e  +  cos  6  +  C)  =  sec^  0  -  sin  0 
dv 


1.      (tan-y  +  \)dy  =   \. 


41.      (tan-  y  +  \)dy  =     sec'  >>  dy  =  tan  y  +  C 


Check:  —(tan  y  +  C)  =  sec-  y  =  tan-  y  +  \ 
dy 


43.  /(x)  =  cos  X 


C  =  -2 


45.  /'(x)  =  2 

/(x)  =  2x  +  C 


f(x)  =  It  +  2 


/W  =  Tx 


Answers  will  vary. 


49.  ^  =  2x  -  1,  (1,  1) 
dx 


-\ 


(Ix  -  \)dx  =  x^-x  +  C 

1  =  (1)2-  (1)  -t-  C  =>  C=  1 
>>  =  x^  —  X  -1-  1 


Answers  will  vary. 


Section  4.]        Antiderivatives  and  Indefinite  Integration        179 


51.  V-  =  cos  X,  (0,  4) 
dx 


53.  (a)  Answers  will  vary. 


^h 


y  =   I  cos X dx  =  s'mx  +  C 

4  =  smO  +  C=>  C  =  4 

y  =  sin.ic  +  4 


(b)J  =  4 -1,(4,2) 
dx       2 


y=--x+C 

42 
2  =  — -4  +  C 
4 

2  =  C 


55.  fix)  =  4x,f(0)  =  6 

f(x)  =     4r  ^  =  2i2  +  C 

y{0)  =  6  =  2(0)2  +  c  =>  C  =  6 
/(;c)  =  2;c2  +  6 


57.  h'{t)  =  8f3  +  5, /!(])  =  -4 

;i(f)  =     (8r3  +  5)dt  =  2r*  +  5f  +  C 


/!(1)  =-4  =  2  +  5  +  C^C  =  -11 
/!(?)  =  2f^  +  5f  -  11 


59.  f"{x)  =  2 
/'(2)  =  5 
/(2)  =  10 

/W  =  I  2  dx  =  2j:  +  Ci 

/'(2)  =  4  +  C,  =5=>C,  =  1 
/'(;t)  =  2x  +  1 

fix)=  \{2x+  l)dx  =  x-  +  x+  Cj 


/(2)  =  6  +  Q  =  10  =^  Q  =  4 
/(x)  =  jr  +  .r  +  4 


=  / 


63.  (a)   h(t)  =     {l.5t  +  5)dt  =  0.75r  +  5t  +  C 

h{0)  =  0  +  0  +  C=12=i.C=12 
/!(;)  =  0.75r  +  5f  +  12 
(b)  ;!(6)  =  0.75(6)2  +  5(6)  +  12  =  69  cm 


61.  f"(x)  =  x-3/2 
/'(4)  =  2 
/(O)  =  0 


fix 


\x~^/-dx  =  -2r-i/2  +  C,  =  -- %r  +  C, 


/'(4)  =  --  +  C,  =  2  ^  C,  =  3 


/'(x)  =  -^  +  3 


/(;c) 


(-2r-'/2  +  3)  iv  =  -4.v"-  +  3.r  +  C, 


/(O)  =  0  +  0  + C,  =  0=*  C,  =  0 
fix)  =  -4x^'-  +  3.T  =  -4^^  +  3.V 


180        Chapter  4        Integration 


65.  /(O)  =  -  4.  Graph  of/'  is  given. 
(a)/'(4)«-1.0 

(b)  No.  The  slopes  of  the  tangent  lines  are  greater  than  2 
on  [0,  2].  Therefore, /must  increase  more  than  4  units 
on  [0,  4]. 

(c)  No,/(5)  <  /(4)  because /is  decreasing  on  [4,  5]. 

(d)  /is  an  maximum  at  x  =  3.5  because /'(3. 5)  =  0  and 
the  first  derivative  test. 

(e)  /is  concave  upward  when/'  is  increasing  on  (-oo,  1) 
and  (5,  oo)./is  concave  downward  on  (1,  5).  Points 
of  inflection  at  j:  =  1,5. 

67.  ait)  =  -32ft/sec2 

v(f)  =   \ -32  dt  =  -32t+  Ci 

v(0)  =  60  =  C, 

s{t)  =     (-32f  +  60)dt  =  -  \6t-  +  60f  +  C^ 

5(0)  =  6  =  C. 

5(r)  =  -16r^  +  60f  +  6  Position  function 

The  ball  reaches  its  maximim  height  when 

v(t)  =  -32r  +  60  =  0 

32?  =  60  ■  '  ■ 

15 
t  =  —  seconds 

o  '        -  . 


15 


161 -^  I    +601 


(f 


+  6  =  62.26  feet 


asy 

71.  a(f)  =  -9.8 

v(r)  =     -9.8  ^f=  -9.8<+  C,      . 
v(0)  =  Vq  =  C,  ^  v(f)  =  -9.8r  +  vo 
/(/)  =     (-9.8r  +  Vo)  dt  =  -4.9t^  +  v^t  +  C^ 
m  =  5o  =  Q  ^  fit)  =  -4.9f2  +  v^t  +  So 


(f)  /"is  a  minimum  at  x  =  3. 
(g) 


69.  From  Exercise  68,  we  have: 

sit)  =  -16r2  +  V(,f 

s  '(f)  =  -  32f  +  Vji  =  0  when  r  =  —  =  time  to  reach 
maximum  height. 


it2)—''[f2r'it2)^''' 


'°'  +  ^  =  550 


64       32 


35,200 
187.617  ft/sec 


73.  From  Exercise  71,  /(f)  =  -4.9t^  +  lOf  +  2. 

V  (f)  =  -9.8f  +  10  =  0  (Maximum  height  when  v  =  0.) 
9.8f  =  10 
10 


t  = 


9.8 


/I 


©=■ 


7.1m 


75.         a  =  -1.6 

-    v(f)  =      —  1.6  (if  =  —  1 .6f  +  Vq  =  —  1.6f,  since  the  stone  was  dropped,  Vq  =  0. 

sit)  =     (-1.6f)rff  =  -0.8f2  +  5o 


j(20)  =  0  =>  -0.8(20)2  +  So  =  0 


5o  =  320 


Thus,  the  height  of  the  cliff  is  320  meters. 
v(f)=-1.6f 
v(20)  =  -32  m/sec 


Section  4.1        Antiderivatives  and  Indefinite  Integration 


181 


77.  x{t)  =  r3  -  6f2  +  9f  -  2  0  <  r  <  5 

(a)  vW  =  x'(t)  =  3f2-  12r  +  9 

=  3(r=  -  4f  +  3)  =  3(f  -  l)(f  -  3) 
a(t)  =  v'W  =  6f-  12  =  6(r-  2) 

(b)  v(f)  >  0  when  0  <  r  <  1  or  3  <  r  <  5. 

(c)  a(t)  =  6(r  -  2)  =  0  when  t  =  2. 
v(2)  =  3(l)(-l)  =  -3 


79.   v{t)  =  -^  =  r'/2 


f  >  0 


xit) 


=  /. 


(f)  dt  =  2f'/=  +  C 


x{\)  =  4  =  2(1)  +  C  =>  C=  2 
jc(r)  =  2t'^'  +  2  position  function 


a(r)  =  V  '(r)  =  -  r'  ^^^  =  TI72  acceleration 


81.  (a)     v(0)  =  25  km/hr  =  25  •  j^  =  —  m/sec 

v(13)  =  80km/hr  =  80-|^  =  ^m/sec 

a(f)  =  (3  (constant  acceleration) 
v{t)  =at+C 


v(0)  = 
v(13)  = 


250 
36 

800 
36 

550 
36 


250 

v(r)  =  «r  +  — 


13a  + 


13a 


250 
36 


550      275       ,  ,^^      ,      , 
''  =  468=l3i'='-''^'"/^^'^" 

(b)    ^W  =  aY  +  ^f     Wo)  =  o) 

275  (13)-      250 

„    (lmi/hr)(5280  ft/mi)      22 

**^-         (3600sec/hr)        "  15  "'^^'^ 


(a) 


83.  Truck:  v{t)  =  30 

.       s{t)  =  30f  (Let  5(0)  =  0.) 
Automobile:  a{t)  =  6 

v(/)  =  6f  (Let  v(0)  =  0.) 
5(f)  =  3/2  (Let  s(<S)  =  0.) 
At  the  point  where  the  automobile  overtakes  the  truck: 
30f  =  3r= 
0  =  3r  -  30r 
0  =  3r(r  -  10)  when  t  =  10  sec. 

(a)  410)  =  3(10)-  =  300  ft 

(b)  v(10)  =  6(10)  =  60  ft/sec  =  41  mph 


; 

0 

5 

10 

15 

20 

25 

30 

V,  (ft/sec) 

0 

3.67 

10.27 

23.47 

42.53 

66 

95.33 

V,(ft/sec) 

0 

30.8 

55.73 

74.8 

88 

93.87 

95.33 

,c)5,(,)./v,(,).,.5Jp^-!if^^  + 0,3679, 


=  / 


5,(f)  =     V,(f)  dt 


0.1208r3      6.7991/2 


(b)  V(f)  =  0.1068/2  -  0.0416/  +  0.3679 
VjCr)  =  -0.1208/2  4.  6.7991/  -  0.0707 


0.0707/ 


3  2 

[In  both  cases,  the  constant  of  integration  is  0  because  5,(0)  =  Sjfi)  =  0] 
5,(30)  =  953.5  feet 
52(30)  «=  1970.3  feet 
The  second  car  was  gomg  faster  than  the  first  until  the  end. 


182        Chapter  4        Integration 


87.  a(t)  =  k 
v{t)  =  kt 

s(t)  =  ^P  since  v(0)  =  s(0)  =  0. 

At  the  time  of  lift-off,  kt  =  160  and  {k/2)f  =  0.7.  Since  {k/l)fi  =  0.7, 


t  = 


¥-V¥=« 


\Ak  =  1602 


1602 


1.4 

^  18,285.714  mi/hr2 
=  7.45  ft/sec^. 


89.  True 


91.  True 


93.  False.  For  example,  Ix-xdxi'   Ixdx-   I. 


X  dx  because  —  +  C  ^t  ( y  +  C,  jfy  +  Cj 


95.  fix) 


1,     0  <  .r  <  2 
3x,    2  <  .x:  <  5 


I  .t  +  Ci,       0  <  .r  <  2 

ll"  "^  ''2' 
/(I)  =  3  =^  1  +  Ci  =  3  =i>  C,  =  2 
/  is  continuous;  Values  must  agree  ?&  x  =  2: 
4  =  6  +  C2=>C2  =  -2 

fjc  +  2,       0  <  ;r  <  2 

fix)  =    3a:2      ^     ^ 

—  -2,    2<x<5 

The  left  and  right  hand  derivatives  at  .t  =  2  do  not  agree.  Hence  /  is  not  differentiable  at  x  =  2. 


Section  4.2       Area 


5  5  5 

1.  ^(2/  +  1)  =  2^/  +^1=  2(1  +2  +  3  +  4  + 5) +  5  =  35 


i=\  i=\ 


3     Y        ' 

-1  +  1  +  1+1    +   1        158 

9    1 

"  '  ^  2  ^  5  ^  10  +  17 

8 

'■2. 

85 

15.f2,  =  2f,^2M=420 
1=1  /=i  L      -i     J 


5.   ^c  =  c  +  c  +  c  +  c  =  4c 


20                                19 

17.  ;^(i-i)2=2r- 
1=1           >=i 

'19(2( 

))(39) 

-iiK-fn 


L        6        J 


2470 


Section  4.2        Area        183 


15 

2 

;=1 


15 


19. 2 '■(/- 1)^  =  !:'■'- 21 ''  +  E 


=  1  i=l 


^  \5\\6Y  _  .15(16)(31)      15(16) 
4  6  2 

=  14,400  -  2.480  +  120 

=  12,040 


21.  sum  seqUB  2  +  3,  ;c,  1,  20,  1)  =  2930    (n-S2) 

2(r-  +  3)  =  20i2o±iM20LLi)^3,2o, 


20 
i=l 


(20)(21)(41) 


60  =  2930 


23.  5  =  [3  +  4  +  f  +  5](1)  =  f  =  16.5 
i  =  [1  +  3  +  4  +  f](l)  =  f  =  12.5 


25.  5  =  [3  +  3  +  5](1)  =  11 
.y  =  [2  +  2  +  3](1)  =  7 


-  «^) = J^  -  Vf  (^  M)  ^  4^ = '^-^;-^^^ = «-™ 


'<^.  -  G)*  VKa  -  VK^ 


3/l\       1  +  72+^/3 


4V4 


«  0.518 


M-M4— 


i.l.i.i.i»o.«. 


31.    lim 


8lV^(«+lFl      81. 

~r : =  ~r  lim 

/j''/        4        J       4n-»oo 


n"*  +  2n3  +  n- 


>-7 


33.    lim 

n— >oo 


18VH"  +  1) 


18,. 
—  hm 


n-  +  n 


>  =  9 


35.  ;^ii4^  =  -L2(2<  +  i)  =  A 

5(10)  =  ^  =  1.2 

-  5(100)  =  1.02 
5(1000)  =  1.002 
5(10,000)  =  1.0002 


.n{n  +  1) 

2 1-  n 


n  +  2 


■-Sin) 


37-1 


^6k(k  -  1)       6  ^ 


^^(k^-k) 


n{n  +  1)(2«  +  1)       n{n  +  1) 


2«-  +  3n  +  1  -  3«  -  3 


[2n-  -  2]  =  5(n) 


5(10)  =  1.98 

5(100)  =  1.9998 

5(1000)  =  1.999998 

5(10,000)  =  1.99999998 


,„    ,•      v^/16'\       ,.      16  ^.       ,.      16/r7(«  +  D' 
39.   hm  y  -T    =  lim  —  V/  =  lim  — P-r — -\  =   Urn 
n-><x>  l^^\  n'- 1       n->oo  n-  fr'^        n->Qo  n-\       2 


m 


8  lim    1  +-    =  8 

n^^ooV  /I/ 


184        Chapter  4        Integration 


41.   lim   >  -t(i  -  1)^  =  lim  ^  >  i^  =  lim  -^\ 

n->co  OL  «  J         n-'ooL  OV  1 

43.    lim  y{\+  -\{-\  =  2  lim  -[y  1  +  i  y  il  =  2  lim  - 


l/n(n+l) 


=  2  lim  [1+4:^ 

i-»oo  L  2n^ 


211+2 


45.  (a) 


(b)  Ax 


2-0       2 


n  n 

Endpoints: 

o<,g)<.g)<.^.<„-„g)<„g)  =  . 

(c)  Since  >>  =  j:  is  increasing, /(m,)  =  /U,._  J  on  [;c,-_  ,,  x,]. 
^(n)  =  J/U,_,)Ax 

(2\  ' 


(d)/(W,)=/(j:,-)on[A:,-_„x,] 


(<■  -  1) 


*.=|/«-=,|/(!M,[.M!) 

47.  >>  =  -2x  +  3  on  [0,  1].       (Note:  \x  =  ^-^^  =  - 

V  n  n 


=  3 


2  ^  .      ,       2(n  +  l)n      „       1 


lE'  =  3 


2«2 


=  2 


Area  =  lim  s{n)  =  2 


49.  3^  =  ^2  +  2  on  [0,  1].       (Note:  Ax  =  - 


-"Hm-t 


+  2 


[il' 


(e) 


X 

5 

10 

50 

100 

s{n) 

1.6 

1.8 

1.96 

1.98 

S{n) 

2,4 

2.2 

2.04 

2.02 

(f)    lim  2 


(<•  -  1) 


^^=  iim^|;a-i) 


«/  n^oo  n^ 


..    4r«(«+_i)     ] 

=  hm  — n 

n->OG  n\         2  J 

=   lim  r^(^l±il  -  i]  =  2 

/!->00    L  "  ''J 


4  \«(n  +  1) 


=   lim 


=  lim2i^±i)  =  2 


3        1 


^      n(n  +  1)(2«  +1)      ^         ,^       _        .  ,      , 

+  2  =  -5^ 7^\ ^  +  2  = -2+-  +  —    +2 

6n^  6\        n      n- 


H 1 — -^i 


Area  =  lim  S{n)  =  — 
n-»oo  3 


Section  4.2        Area        185 


51.  y  =  16  -  A-2  on  [l,  3].  ( Note:  Ax  =  - 


«(.)^|/(. -!)©  =  ,! 


9     " 

1 

r 

\t>n 

n 

, 

15 


4r       4i' 


16  -  I  1  +  — 


4  n{n  +  l)(2;i  +  1)       4  «(>;  +  1) 


«" 


30  -  -^(/!  +  l)(2n  +  1)  -  -(/I  +  1) 
6/r  /! 


53.  y  =  64  -  .x^  on  [1,  4].  (Note:  Ax 


^(«)  =  |/ii+7 


n  /\n 


64  -     1  + 


3( 


''  i=  1 


63 


27i-'       27r      9i 


63n 


27  n^n  +  lY       27  >;(>;  +  1)(2k  +  1)       9  n(n  +  1)' 


=  189-fi(.+  l)-fi,(n.l)(2..1)-?^i^ 
4n-  6/!-  2       /! 

81  27       513 

Area  =   lim  s{n)  =  189  -  ^  -  27  -  -^  =  — -  =  128.25 

n  ->ao  4  2  4 


55.  y  =  -t^  -  x3  on  [- 1.  1].         Note:  A.^ 


l-(-l) 


Again,  T{n)  is  neither  an  upper  nor  a  lower  sum, 

2i\/2 
1  =  1 


1=1 
n 

=  1 


1+^ 


■1    + 


7;\3' 


,       4(       4/- 

1  --  +  — 
n        n~ 


,       6i       12/2       8,-3 

■1  + -  +  — 

n         n-         n- 


=  2 

i=l 


20/    26i:  _  sii 

/I  H-  n' 


4^ 


20A  .       32,^ 


16^ 


nl       n 


-Si-^I'^^I^^-^Z'' 


n 


n  ; 


4,  ,       20     n[n  +1)       32     n("  +  lH2'!  +1)       16     ^!-(/i  +  1)- 

-(")  — -  ■  — ~ +  -J  •  7 T  ■  ; 

n  n-  2  If'  6  ;;*  4 


4-10|l+iUi^2  +  ^  +  A 


41  1  +  -  +  - 
;;       II- 


32  2 

Area  =  lim  T{ii)  =  4-  10  +  ^-4  =  - 

n— >cc  3  3 


186        Chapter  4        Integration 


2-0       2 


57.  /( v)  =  3y,  0  <  .V  <  2         Note:  ^y  = 


«.=i/w.,=|/(f)e)=|3(f)e 

12  A.      /12\     n(n  +  1)       6(n  +  1)       ^       6 
=  711'=    -I- -^—  = =  6  + 


Area  =  lim  S{n)  =  lim  ( 6  +  - 1  =  6 


59.  /(y)  =r,  0  <y  <  3       (Note:  Ay 


3-0       3 


«")vS/(!B  =  S(!)B=5i.- 


nj  \ni       n 

^  Tl     n(n  +  \){2n  +  1)  ^  9  l2n-  +  ^in  +  \\  ^27         9 
"  «3  ■  6  "  nA  2  /  2n       2n2 

Area  =   lim  S{n)  =  lim  ( 9  +  ^  +  -^ )  =  9 

n-»oo  'i-»oo  V  2«         2«^/ 


61.  gW 


/  3-12 

=  4y2  -  y3,  1  <  V  <  3.       Notc:  Ay  = =  - 

V  n  n 


sw  =  2^  1  + 


2i\/2 


=  E 


4  1  + 


n  /\n 

2[ 
n 


1  + 


-)1- 


2  "  r,  4i  API  r,  6(  12r  8/3 
-y41+  —  +  — r-  -1+  —  +  —z-  +  —r 
1 1^1  L         n       n^  ]       L         n        n-        n  _ 

2^r3,M^4._8.1 


10  n{n  +  1)   ^    4  n{n  +  l)(2n  +1)       8  n\n  +  IP] 


44 


Area  =   lim  5(n)  =  6+  10 +  --4 

n  — ♦cc  3  3 


63.  /W  =  a:2  +  3,  0  <  X  <  2,  «  =  4 
Let  c,.  =    '        '    '■ 


65.  /W  =  tan  ;c,  0  <  ;c  <  -.  n  =  4 


Letc, 


X,.  +  JC,._ 


Ax  =  -,  c,  =  -  c 


2         /f<^3  4-^4         4 


4'    ^      4 

4 


Area«X/('^,)Ax=2t,'  +  3]^ 


2 

69 
8 


^')-(^-)-(i-)-(^- 


.77  77  377  577  777 

Ax  =  — ,  Ci  =  — ,  C2  =  TT,  c,  =  T:r,  c^ 


Area  -  2/(0  ^=E(tanc,)h^ 


4 

I 

1=1  /=1 

77/  77 


377 

32 


—I  tan—  +  tan  :7:r  +  tan  XT  +  tan-:;:^!  «  0.345 


577 

32 


777 

32 


67.  /(xj  =  v^  on  [0,  4]. 


n 

4 

8 

12 

16 

20 

Approximate  area 

5.3838 

5.3523 

5.3439 

5.3403 

5.3384 

(Exact  value  is  16/3) 


Section  4.2        Area        187 


69./(;c)  =  tan(^)on[l,3]. 


n 

4 

8 

12 

16 

20 

Approximate  area 

2.2223 

2.2387 

2.2418 

2.2430 

2.2435 

71.  We  can  use  the  line  y  =  x  bounded  by  x  =  a  and  x  =  b. 
The  sum  of  the  areas  of  these  inscribed  rectangles  is  the 
lower  sum. 


The  sum  of  the  areas  of  these  circumscribed  rectangles  is  the 
upper  sum. 


a  b 


We  can  see  that  the  rectangles  do  not  contain  all  of  the  area  in 
the  first  graph  and  the  rectangles  in  the  second  graph  cover 
more  than  the  area  of  the  region. 

The  exact  value  of  the  area  lies  between  these  two  sums. 


73.  (a) 


8-- 

6-  ^^^ 

4-       /^^  H 

'  i  > 

_  [ }...     .If.        .i 

i  '  ■  - 


Lower  sum: 

5(4)  =  o  +  4  +  55+6=15|=f«  15.333 


(c) 


(b) 


Upper  sum: 

S(A)  =  4  +  5|  +  6  +  6f  =  21I7  =  ^  «  21.733 

(d)  In  each  case,  A.x  =  A/n.  The  lower  sum  uses  left  end- 
points,  (i  —  l)(4//i).  The  upper  sum  uses  right  endpoints, 
{i)(A/n).  The  Midpoint  Rule  uses  midpoints,  (/  -  ;)(4/n). 


Midpoint  Rule: 

M(4)  =  2f  +  45  +  5f  +  6f  =  fij  -  19.403 


(e) 


n 

A 

8 

20 

100 

200 

s{n) 

15.333 

17.368 

18.459 

18.995 

19.06 

S{n) 

21.733 

20.568 

19.739 

19.251 

19.188 

M{n) 

19.403 

19.201 

19.137 

19.125 

19.125 

(f)  s(n)  increases  because  the  lower  sum  approaches  the  exact  value  as  n  increases.  S(n)  decreases  because  the  upper  sum 
approaches  the  exact  value  as  n  increases.  Because  of  the  shape  of  the  graph,  the  lower  sum  is  always  smaller  than  the 
exact  value,  whereas  the  upper  sum  is  always  larger. 


188       Chapter  4        Differentiation 


75. 


77.  True.     (Theorem  4.2  (2)) 


I ■!     J     J     4i      > 


b.  A  =  6  square  units 


79.  f(x)  =  sin  X 


M 


Let  A,  =  area  bounded  by  f(x)  =  sin  x,  the  x-axis,  x  =  0  and  x  =  tt/I.  Let  Aj  =  area  of  the  rect- 
angle bounded  by  .v  =  L  y  =  0, .«:  =  0,  and  x  =  Tr/2.  Thus,  Aj  =  (7r/2)(l)  =  L570796. 
In  this  program,  the  computer  is  generating  N^  pairs  of  random  points  in  the  rectangle  whose 
area  is  represented  by  Aj.  It  is  keeping  track  of  how  many  of  these  points,  N,,  lie  in  the  region 
whose  area  is  represented  by  Aj.  Since  the  points  are  randomly  generated,  we  assume  that 


N., 


A, 


N. 


■A,. 


1 

fW  = 

sm(xy^   (f'l) 

0.75- 

/^/,  :,' 

0.5- 

/ 

/./,:/ " 

025- 

/ 

' 

Z.               JL 

The  larger  Afj  is  the  better  the  approximation  to  A,. 


81.  Suppose  there  are  n  rows  in  the  figure.  The  stars  on  the  left  total  1  +  2  +  • 
n{n  +  I)  stars  in  total,  hence 


+  «,  as  do  the  stars  on  the  right.  There  are 


2[1  +  2  +  • 
1  +  2  + 


+  «]  =  n{n  +  1) 
•  +  n  =  \(ri){n  +  I). 


83.  (a)  y  =  (-4.09  x  \Q-'^)x'  +  0.016.x2  _  2.67x  +  452.9 

(c)  Using  the  integration  capability  of  a  graphing  utility, 
you  obtain 

A  «  76,897.5  ft^. 


(b) 


Section  4.3       Riemann  Sums  and  Definite  Integrals 


-5  .-> 

1.  f{x)  =  ^x.y  =  0,a:  =  0,x  =  3,  c,  =  ^ 

n^ 

3^  _  3(i  -  1)^  _  3 , 


lim  J;/(c,)Ax,  =   lim   %  JK\{2i  "  D 
n  ->oc  /s'l  1  ->oc  ,^|  v    n~  n^ 

=  lim  ^2(2'^-') 


=   lim 


3V3 


n{n  +  l)(2n  +  1)       n{n  +  1) 


] 


-i'^j^K^^'^^-'-m 


=  373 


;i-o]. 


2v^  =  3.464 


I  '„    I..  '  ..,1    >  ' 


3       3(2)'       3(>.-l)^^ 


Section  4.3        Riemann  Sums  and  Definite  Integrals        189 


3.  V  =  6  on  [4,  10].       (Note:  Ax  =  — - —  =  -.  ||A|| -* 0  as  n ^ oo 


n  n 


|/w--|/(-!)(M<M:?-' 


f 


6dx=  lim  36  =  36 


5.  y  =  jc3on[-l,  1].       ( Note:  A.T  = —^  =  -  ||A||^0  as  h-»oo 

n^^,        n^  .4',  n^  .4', 


,       6/       12/-       8/3" 

■1  + ~  +  ^ 

n         n-         n' 


+  6(l+iU4(2+^  +  AU4fl+^  +  ^^      2 


n       n^        n 


r 


)^  dx  =  lim  -  =  0 


7.  >'  =  x2  +  1  on  [1,2].         Note:  At 


2-1       1 


>0  as  n—^oo 


2/(c,)A^.  =  i:/ 1  + 


/\/i 


1  +  -I  +  1 

n 


,       2/       /2        , 

1  +  —  +  — +  1 

n       n- 


n-,-^,        «^e'l  \        "/       6\        /!      n-l       3        2/!       6??- 


I 


10       3         1 


^^'^'^'^  =  }T^[-j^2;t^^-)= , 


10 


9.    lim    y  (3c,.  +  10)  At,  =        (3;c  +  10)  dx 
on  the  interval  [— 1,  S]. 


11.    lim    y  7c,-  +  4  At,  =       Jx^  +  4 
ti!-.o  ,-e, 


-dr 


on  the  interval  [0,  3]. 


13.       -idx 
Jo 


-f 


(4  -  Lxl)  dx 


17.        (4  -  r-)  dx 


I 


19.       smxdx 


Jo 


v^  dy 


23.  Rectangle 

A  =  W;  =  3(4) 


Jo 


Adx  =  12 


^^vsxx    -.N  sN  ^^  Rectangle 


^^f^ 


190        Chapter  4        Integration 


25.  Triangle 

A  =  ^bh  =  ^4)(4) 


-i 


xdx=% 


27.  Trapezoid 


A  = 


b,  +  b.        /5  +  9 


r 


^h 


{2x  +  5)dx=  14 


^4M 

''yj&i  Trapezoid 


^ 


^ — h 


1  2  3 


29.  Triangle 

A  =  ^M  =  ^(2)(1) 


/: 


(1  -  \x\)dx=  1 


31.  Semicircle 

A  =  ^■TTr^  =  |77<3)2 


£ 


V9^^A  =  ^ 


4-  -  Semicircle 


r4  ri  /•4 

In  Exercises  33-39,      x^dx  =  60,  Lcrfjc  =  6,      dx  =  2 


jfiix  =  —6 


33.    L<:dc=  - 

37.       U  -  8)  iic  =       ;c  ate  -  8     d:^  =  6 


8(2)  =  - 10 


41.  (a)      /U)  dx  =      fix)  dx+      /(;c)  etc  =  10  +  3  =  13 

(b)  I  /(;c)dx=  -j /(;c)<ic=  -10      • 

(c)  \f{x)dx  =  Q 

(d)  3/(x)  otc  =  3    /(jc)  (it  =  3(10)  =  30 
Jo  Jo 


35, 


39. 


.[4.^  =  4/; 


xdx  =  A{6)  =  24 


I  (ix3  -  3x  +  2J^  =  I     x^dc  -  3     xdr  +  2     dx 


=  -(60)  -  3(6)  +  2(2)  =  16 


43.  (a)   I  [fix)  +  gix)'\  dx=   \fix)dx+   \  gix)  dx 
=  10  +  (-2)  =  8 
(b)  J  [gix)  -  fix)]  dx=\  gix)  dx  -  yix)  dx 


=  -2  -  10  =  -12 


J  Igix)  dx  =  2\ 


(c)       Igix)  dx  =  2\  gix)dx=^  2(-2)  =  -4 


(d) 


I  3/(x)  dx^sl  fix)dx  =  3(10)  =  30 


45.  (a)  Quarter  circle  below  X-axis:  — jitt^  =  —-^tKX)^  =  —tt 

(b)  Triangle:  ^_bh  =  5(4)(2)  =  4 

(c)  Triangle  +  Semicircle  below  x-axis:  -2(2)(1)  -  5^2)^  =  -(1  +  27r) 

(d)  Sum  of  parts  (b)  and  (c):  4  -  (1  +  27r)  =  3  -  27r 

(e)  Sum  of  absolute  values  of  (b)  and  (c):  4  +  (1  +  27r)  =  5  +  2ir 

(f)  Answer  to  (d)  plus  2(10)  =  20:  (3  -  2ir)  +  20  =  23  -  2ir 


47,  The  left  endpoint  approximation  will  be  greater  than  the 
actual  area:  > 


49.  Because  the  curve  is  concave  upward,  the  midpoint 
approximation  will  be  less  than  the  actual  area:  < 


Section  4.3        Riemann  Sums  and  Definite  Integrals        191 


51.  /W 


x-4 


is  not  integrable  on  the  interval  [3,  5]  and /has  a 
discontinuity  at  ;c  =  4. 


^— :^ — ^' 


a.  A  =  5  square  units 


55.        y 


r-t-T' 


Jo 


d.    I  IsmiTxdx'-  2^1)(2)  «  1 


I 


57.       xjl  -  xdx 


n 

4 

8 

12 

16 

20 

L{n) 

3.6830 

3.9956 

4.0707 

4.1016 

4.1177 

M(n) 

4.3082 

4.2076 

4.1838 

4.1740 

4.1690 

R{n) 

3.6830 

3.9956 

4.0707 

4.1016 

4.1177 

59. 


Jo 


sin^  X  dx 


n 

4 

8 

12 

16 

20 

L(n) 

0.5890 

0.6872 

0.7199 

0.7363 

0.7461 

M{n) 

0.7854 

0.7854 

0.7854 

0.7854 

0.7854 

R{n) 

0.9817 

0.8836 

0.8508 

0.8345 

0.8247 

61.  True 


63.  True 


67.  fix)  =  ,v'  +  3,T,  [0,  8] 

j^o  =  0,  ,i:,  =  1,  X2  =  3,  -Xj  =  7,  .r4  =  8 
Ax,  =  1,  Ar,  =  2.  Axj  =  4,  zLv4  =  1 
c,  =  1,  Cj  =  2,  Cj  =  5,  c^  =  8 

X/(c,)  A.t  =  /(I)  A.V,  +  /(2)  Axj  +  /(5)  ^x,  +  /(8)  !^x^ 
1  =  1 

=  (4)(1)  +  (10)(2)  +  (40)(4)  +  (88)(1)  =  272 


65.  False 


\   (-x)±x  = 
Jo 


192        Chapter  4        Differentiation 


69.  f(x) 


1,       jc  is  rational 
0,       X  is  irrational 


is  not  integrable  on  the  interval  [0,  l].  As  ||A||  — >  0, /(c,)  =  1  or/(c,)  =  0  in  each  subinterval  since  there 
are  an  infinite  number  of  both  rational  and  irrational  numbers  in  any  interval,  no  matter  how  small. 


71.  Let/(x)  =  x~,0  <  X  <  1,  and  Ajc,  =  1/n.  The  appropriate  Riemann  Sum  is 

n  n    /  :  \  2  1  in 

1  r,-,       r,^       07  -,1        ,•       1      n{2n  +  l)(n  +  1) 

n->co  rj'  n->oc  n'  6 

,.      2«2  +  3w  +  l        ,.      /I        1  1 

=  hm  T-^ =  hm  {-  +  —  +  —2 


)4 


Section  4.4       The  Fundamental  Theorem  of  Calculus 


1.  fix)  = 


3.  fix)  =  xjx~  +  1 

xVjc^  +  1  cic  =  0 


J 

1-0=1 


f, 


7.         U  -  2)  (ic  = 


>(i-)-(4- 

1  \  - 


11.       ilt-  \Ydt=       (4f--4f 
Jo  Jo 


Ix 


«  /I 


+  1)  rf/ 


rr^  -  2f2  +  f 


1° 
3 


4-2+1=1 
0      3  3 


"    '-l-aUM-D-l 


"■/>' 


2  rf/  = 


l-"-^ir(l 


,3/2 


+  2  I  =  -4 

'  =  if  1  -  2 
0      3\2      3 


J_ 
18 


21.   I    (r'/3-f2/3)rf,= 


1,4/3   _  lf5/3 

4  5 


]>» 


|2j:-  3|  A:=  (3  -  2x)  d:x  +        (: 

Jo  Jo  J3/2 


3  3\       _27 

4  5)  20 


23.       |2j:  -  3|  (ir  =   I      (3  -  2x)  lic  +        (2j;  -  3)  a!^;     split  up  the  integral  at  the  zero  x  = 


=  [ 


3x-  x^ 


3/2 


_3.];^.f?-2)-0  +  (9-9)-f^-?U2f|-^Ul 


3/2       \2       4 


4      2/        \2      4/      2 


Section  4.4        The  Fundamental  Theorem  of  Calculus        193 


25.    I    |.r2  -  4|  <ir  =   I  (4  -  x'-)  dx  +   I   (.t^  -  4)  dx 


0 


-I 


f-1 


-|8-;U(9-12)-    ^3 


23 
3 


Jo 


27.        (1  +  sinx}dx  = 


X  —  cos  X 


(tT  +    1)   -   (0  -    1)   =  2  +  TT 


29. 

-77/6 

sec-  .t  dx  = 

.-77/6 

tan.x 

77/6 
-,7/6 

73       /     v^\       273 

r'7/3                              r           T^/^ 

31. 

4  sec  6  tan  0 

.    -77/3 

de  = 

4  sec  e 

=  4(2)  -  4(2)  =  0 

-V3 

10. 

Jo 


33.       10.000(r  -  6)di  =  10,000 


-  6t 


5135,000  35.  A  =       (.v  -  x-)  dx 


'  ^1 
0      6 


37.  A  =       (3  -  .v)7^a[t  =       (3.t'/2  -  .rV2)  j^.  = 
Jo  Jo 


2^-3/2   _   2,.5/2 


-(10  -  2v) 


1273 


I 


77/2 

39.  A  =   I      cos  X  dx  = 


sin.x 


77/2 


41.  Since  y  >  0  on  [0.  2], 

A  =       {3x-  +  1)  dx  = 


=  8  +  2  =  10. 


43.  Since  y  >  0  on  [0,  2], 


A  =       (.t^  +  x)  dx 
Jo 


x"      x'- 

4^2 


4  +  2  =  6. 


45.       (x  -  27^)rf.v  = 


X^         4^3/2- 


/(c)(2  -  0)  = 
c  -  27c  = 


.2  3 

6  -  8^2 
3 

3  -  4.-2 


872 


c-2V^+  1  =  -      .^"  -  +  1 


{Vc-l 


,2      6  -  4^'2 


./^-1  = 


/6  -  4x  2 


*V^] 


c«  0.4380  ore  =  1.7908 


194        Chapter  4        Integration 


Tr/4 

47.    I       2  sec^  xdx  = 


J—TTj 


■/4 

fic] 


J-7r/4 


2tanx  =  2(1)  -  2(-l)  =  4 


f)] 


2  sec-  c  =  — 


2         4 


sec  c  =  ±- 


c  =  ±arcsec(— ^ 


=  ±arccos  -—  «  ±0.4817 


49. 


1 


2  -  (-2) 
Average  value 


£'"-" 


)&  = 


4;t  -  -j:^ 


273 


4  —  jc-  =  r  when  jc-  =  4--orx  =  +    ^ 
3  3  3 


+  1.155. 


sin  x  ate 


Average  value  =  — 

TT 


sinx  =  — 

77 


=  1 

0  77 


(-¥•!)  3   (^-f) 


53.  If/  is  continuous  on  [a,  b]  and  F'U)  =  f{x)  on  [a,  fc], 


(0.690,  1) 

then     fix)  dx  =  F(b)  -  F{a). 


x«  0.690,  2.451 


Jo 


55.    I  f{x)dx  =  -  (area  of  region  A)  =  -1.5 


Jo 


/•6  (-6 

59.    I  [2  +  /(jc)]  dx=      2dx+   \  f(x)dx 
=  12  +  3.5  =  15.5 


61.  (a)  F{x)  =  ksec-^x 
F(0)  =  A:  =  500 
Fix)  =  500sec2x 


57. 


f  \fix)\  dx  =  -Ifix)  dx  +  Ifix)  dx  = 
Jo  Jo  Jl 


(b) 


1^/3 -oJo 


500  sec-  xdx  = 


1500r        l'^/^ 


1500, 


[tanx]^^' 

(v^-O) 


77 

=  826.99  newtons 
~  827  newtons 


63. 


-oJo 


(0.1729r  +  0. 1552^2  -  0.0374^3)  dt '^  ^ 


0.08645r2  +  0.05073?^  -  0.00935?^ 


0.5318  liter 


Section  4.4        The  Fundamental  Theorem  of  Calculus        195 


65.  (a) 


The  area  above  the  j:-axis  equals  the  area  below  the 
jf-axis.  Thus,  the  average  value  is  zero. 


The  average  value  of  S  appears  to  be  g. 


67.  (a)  V  =  -8.61  x  10"^  +  0.0782^  -  0.208r  +  0.0952 
(b)  ^ 


(c) 


69.  F(x) 


Jo 


-8.61  X  lO-V      0.0782r3      0.208^2 


+  0.0952f 


5r 


0         2 


F(2)=--5(2)=  -8 

f(5)=^-5(5)=-^ 

F(8)=y-5(8)=-8 


73.  F{.x)  =      I 


cos  ddd  =  sin  6 


sin  X  -  sin  1 


F{2)  =  sin  2  -  sin  1  =  0.0678 
F(5)  =  sin  5  -  sin  1  -=  - 1.8004 
f(8)  =  sin  8  -  sinl  =0.1479 


=  2476  meters 


71.FW  =  0^v  =  £lOv-.V=^]; 


i°+  10=10  1-1 

X  \  X 


F{2)  =  10(^-j  =  5 


f(5)  =  10^-j  =  8 


F(8)  =  101 


7\       35 


75.  (a)    \  {t  +  2)dt=  [l 


+  2t 


=  —X-  +  Zx 


77.  (a) 


3 

-,4/3 

4 


'   =  |(.^4/3  _    16)  =   3    ,/3  _    j2 

8       4  4 


(b)  4f^/3  -  12 


=   rl/3  =  3/ 


79.  (a)        sec^  r  A  =    tan  r 

J.r/4  L  Ax'A 


tan  .t  —  1 


(b)  — [tan.t  -  IJ  =  sec-.r 


81.    F(x)  =1    (f-  -  2t)  dt 
F'(x)  =  x^  -2x 


83. 


.    F{x)  =        Vr»  +  1  df 
F'(.v)  =  Vx^+  1 


=  1' 


85.    FU)  =  I  t  cos  tdt 

F'{x)  =  .TCOSX 


196        Chapter  4        Integration 


87.    Fix)  =  {4t  +  \)dt 


I 


=  [2(.r  +  2)2  +  (x  +  2)]  -  [2x2  +  x] 
=  8.V  +  10 
F'(x)  =  8 


rsi 

89.    f  U)  = 

Jo 


Jtdt 


23/2 

3 


=  f(sinx)V2 
0  3 


F'W  =  (sin  j:)'/2cosx  =  cos-tv/sinx 
Alternate  solution 


Fix) 


Jo 


^tdt 


F'ix)  =  Vsin  JT -p  (sin  x)  =  Vsin  j:(cos  x) 
ax 


Jo 


93.  g{x)=  \fit)dt 


giO)  =  0,  gH)  =  ^,  g(2)  -  1,  gi3)  »  ^,  g(4)  =  0 


Alternate  solution: 

Fix)  =  (4f+  l)rff 


ro  rx 

=      (4r  +  1)  rff  + 

(4f+  1)A  + 
0  Jo 


(4r  +  \)dt+  i4t  +  1)  rff 


(4f+  1)A  +  (4f  +  1)A 

I  Jo 

F'ix)  =  -i4x  +  1)  +  4(x  +  2)  +  1  =  8 


Jo 


91.    Fix)  =   I    sin  f  2  rff 
Jo 

F'ix)  =  sin(x3)2  •  3^2  =  3x^  sin  x^ 


95.  (a)  Cix)  =  50001  25  +  3  |  f''"'  dt 

[4 


3(25  .  3/;, 


=  5000  25  +  3 


Ij5/4 


=  5000(25  +  y^'")  =  1000(125  +  12x5/") 

(b)     C(l)  =  1000(125  +  12(1))  =  $137,000 
C(5)  =  1000(125  +  12(5)5/4)  ^  $214,721 
C(10)  =  1000(125  +  12(10)5/")  ^  $338,394 


g  has  a  relative  maximum  at  x  =  2. 


97.  True 


99.  False 


;    I    x-^dx  =  J    x-^dx  +  I  x-2atc 


Each  of  these  integrals  is  infinite. /(x)  =  x  ^ 
has  a  nonremovable  discontinuity  at  x  =  0. 


By  the  Second  Fundamental  Theorem  of  Calculus,  we  have 
1 


f'ix)  = 


lU    ' 


(l/x)2  +   1\      xV         X2  +    1 


'       4-^^  =  0. 


1    +  X2         x2  +    1 

Since  fix)  =  0,/(x)  must  be  constant. 


Section  4.5        Integration  by  Substitution        197 


103.  x{t)  =  t^  -  6t^  +  9t  -  2 
x'{t)  =  3f2  -  I2t  +  9 
=  3(f2  -  4/  +  3) 
=  3(r  -  3)(t  -  1) 


Total  distance  =       |j:'(')|rf' 
Jo 

=  \'3\{t-3){t-l)\dt 
Jo 

=  3  J  (i-  -  4t  +  3)dt  -  3     (f2  -  4r  +  3)A  +  3     (t^  -  4t  +  3)dr 


=  4  +  4  +  20 
=  28  units 

105.  Total  distance  =       \x'{t)\dt 
=  I  Ht)\dt 

=  2(2  -  1)  =  2  units 


Section  4.5       Integration  by  Substitution 


f{g{x))g'{x)dx 


u  =g{x)  du  =  g'{x)dx 


1.    I  {5x^  +  \Y{\Qx)  dx  5x-  +  \ 

x'+  1 


I  tan- X  sec- x 


dx 


tanjc 


XQx  dx 


2x  dx 


sec^  X  dx 


/' 


7.    1(1  +2.t)-'2d:t=  ^'  \^^'  +  C 


Check:  ^ 


(1 


^  +  C]  =  2(1  + 


ixy 


».   I  (9  -  x2)'/2(-lv)  dx  =  ^^   ,  J'^'  +  c  =  ^(9  -  .v-)3/-  +  C 


Check:  -^[|(9  -  .r^)^/:  +  c 
dxi3 


3/2         ■   ^       3 
2     3 


3     2 


(9_^)i/:(_2^)=  y9-.r=(-lT) 


198        Chapter  4        Integration 


11.    f.r3(.x^  +  3P<ic  =  ^f( 


.r3(.x^  +  3Ydx^^\(x'  +  3)2(4x3)  ir  =  -  ^"^  t  ^^'  +  C  =  ^"^  .t  ^^'  +  C 


4        3 


12 


Check: 


£[^^  +  c]=^^^(4x3)  =  (^  +  3)V) 


13.  |.rV-l)^A  =  |J(. 


.r2(x3  -  1)"  A  =  :^  I  (x^  -  Ij-'CSx^)  dx  =  ^ 


w-m^c  =  ^^^^^^c 


-] 


15 


Check: 


^ 


Cv^  -  1) 
15 


+  C 


5(.r3  -  1)^(3x2) 
15 


=  x2(x3  -  I)'* 


rVFT2  dt  =  ^  I  (r^  +  lY'^lt)  dt  =  \^^^^  +  C=  ^^±^  +  c 


15.   I  rVFT2  *  =  I  r 

"(r2  +  2)3^ 


Check: 


dt 


+  C 


3/2(f2  +  2)'/'(2f) 


(?2  +  2)'/2t 


17.   [5x(l-x2)'/3d^c=-|J(l-x^; 
Check:  4[-^l  -  x^)''/^  +  c 


5        (1    _    y2W3  15 

)>/3(-2x)  ^  =  -^  •  ^     ^^3^      +  C  =  -yd  -  x2)V3  +  c 
15     4, 


--^  •  ^1  -  x2)i/3(-2x)  =  5x(l  -  x2)i/3  =  5xyr^ 

O  3 


19-  J(]-f]^^  =  -||(1  -  x')-\-2x)dx=  - 


1  (1  -  x^ 


+  C^ 


4(1  -  x-: 


+  C 


Check: 


^ 


.4(1  -  x^Y 


^+  c 


=  i(-2)(l-xr'(-2x)  =  ^^-:^ 


-k 


1 


+  ^3)2<i^  =  jjd  +  ^')-'(3^-)  0^^  = 


(1  +  x^. 


-1 


+  c 


1 


3(1  +  x3) 


+  C 


Check: 


dx 


1 


L    3(1  +  x3) 


+  C 


-i(-i)(i+x3)-w)  =  ^Y:^ 


23. 


/^%-=-i/<'- 


,<i,--jJ(l-x")-'»(-2«)i<.-iiL_i! 


2-1 1/2 


+  C=  -  Vl  -  x2  +  C 


Check:  —[-(1  -  x^)'/^  +  C]  =  --(1  -  x2)-'/2(-2x)  =  -y^== 

dx  2  yn^ 


25. 


[1  +  (lA)? 


[1  +  iUt)V 

4 


Check: 


dr 


+  C 


+  C 

l.-J.     .     IV/       1\  1/.     ,     03 


4(4)i+7jl-^j  =  ?l'^7 


(2x) 


^^•/;fc^=iK"^^4[ 


Check:  ^V2i  +  C]  =  ^(2x)-'/2(2) 


1/2- 


1/2  J 


+  C=  V2x  +  C 


dj:'- 


vs 


Section  4.5        Integration  by  Substitution        199 


29. 


:  ^W^r-  +  2;c3/2  +  14.'/=  +  cl  =  :n±^±I 


+  35)  +  C 


Check; 


31. 


j  r^ff  -  7)  *  =  f (''  -  2;)  *  =  |f4  -  r-  +  C 


Check: 


dt 


-t"  -  t^  +  C 


=  f3  -  2f  =  f-U  -  y 


33.   [(9  -  y)^dy  =  [(Qy'/^  -  y/z)  rfy  =  9^|y3/2 


|v5/2  +  c  =  |v3/2(15  -  >')  +  C 


Check:  —  7^/^(15  -  y)  +  c 


6^/2  _  1^/2  +  c 


^^•^=/h^7ife] 


tic 


v/l6~-  x^ 
=  4lxdx-  lliie-  x-)-^'H-2x)dx 

-(f)- 


(16  -  x2)i/2 


1/2 


+  C 


2x2  _  4716  -  X-  +  C 


=  9v'/2  -  y/2  =  (9  -  y)v^ 
^^•^  =  J(.v2  +  lx-3P^ 


-  +  2.x  -  3)-2(2x  +  2)  dx 


{x-  +  2.x  -  3)- 


2(.x2  +  2x  -  3) 


+  C 


c 


39.  (a) 


dv 


(b)  ^  =  .xV4^^,  (2,  2) 
dx 


-/■ 


^/' 


xv^4^^dx  =  -^    (4  -  .x2)i''-(-2xdx) 


=  -i  •  ^(4  -  .r2)V2  +  c  =  -{(4  -  x-)^'-  +  c 


(2,  2):  2  =  -^(4  -  l-y-  +  C  =>  C  =  2 


V  =  -^(4  -  .x2)3/2  +  2 


41.    J  77  si 


sin  TTxdx  =  —  cos  ttx  +  C 


45.j^_coslde=-jcos\[-j,)de 


-sin-  +  C 

6 


43. 


I  sin  Iv  ix  =  -    I 


(sin  2jc)(2;t)  dx  =  --  cos  Ix  +  C 


200       Chapter  4        Integration 


47.    \smlxcos.2xdx-=^\  (sin  2x)(2  cos  2x)  dx  =  - i^iH^L  +  C  =  -  sin^ 2x  +  C     OR 


\^^^  +  C,  =  -\cos^lx  +  C,     OR 


sin  2x  cos  2xdx  =  rr  I  2  sin  2x  cos  Ixdx  =  ir  I  sin  4j:  A  —  -  cos  4j:  +  C-, 


49.    I  tan"*  .v  sec-  xdx  =  ^^  +  C  =  -  tan^jc  +  C 


.    I  sin  2x  cos  2j;  A;  =  —  I  (si 

I  sin  2x  cos  2x  dx  =  — -  I  (cos  2j:)(-2  sin  2x)  dx  =  — - 
/si.2.cos2,A  =  i|2™2xc.s2.<*:.i|: 

I 

I  CSC^  X  I 

51.      — —dx  =  -    (cot  j:)"3(-csc2.r)  otc 

=  -i£5L^  +  c  =  —^  +  C  =  )-tm^x  +  C  =  i(sec2;c  -  1)  +  C  =  |sec2;c  +  C, 
—  2  2  cot^  X  2  2  2 

53.      cot'  xdx  =   \  (esc-  j:  -  1)  A  =  -  cot  .r  -  jc  +  C  55.  /(x)  =     cos  ^  (it  =  2  sin  ^  +  C 

Since /(O)  =  3  =  2  sin  0  +  C,  C  =  3.  Thus, 
/(;c)  =  2sin|  +  3. 

51.  u  =  X  +  2,  X  =  u  ~  2,dx  =  du 

\xjx  +  2dx  =   \(u  -  2)^du 


/" 


3/2  _  2„l/2)  J„ 


=  |«V2  _  l„3/2  +  c 

=  ^(3«  -  10)  +  C 

=  ^x  +  2)3/2[3(x  +  2)  -  10]  +  C 

=  ^jc  +  2)3/2(3;c  -  4)  +  C 


59.  u  =  1  —  X,  X  =  I  —  u,  dx  =  —  du 

I  du 


jjcVl    -Xtic  =   -   1(1   -  Mfv^ 
=   -  J(«>/2  - 


2m3/2  +  „5/2)  ^j, 


=   -(|m3/2-1«V2  +  |„7/2)  +   c 
2«3/2^ 


105 


■(35  -  42m  +  15m2)  +  C 


-r^(\  -  xy/^[35  -  42(1  -  x)  +  15(1  -  x)^]  +  C 
-j|^(l  -  x)3/2(15a:-  +  12x  +  8)  +  C 


Section  4.5        Integration  by  Substitution       201 


61.  M  =  2x-  l,x  =  r{«  +  l),dx  =  -zdu 


J  J2x  -  1  J  V"  2 


!<3/2  +  2ttl/2  _   3„-l/2)  ^„ 


=  |(|m5/2  +  |„3/2  _  6„1/2J   +   c 

1/2 

=  ^(3m=  +  10«  -  45)  +  C 
60 


V2x-  1 


60 


{?>(2x  -  1)'  +  \Q{2x  -  1)  -  45]  +  C 


-^Jlx  -  \{\2x-  +  at  -  52)  +  C 
60 

^V2jc  -  1(3^2  +  2;^  _  13)  +  c 


63.  «  =  a:  +  1,  .X  =  M  —  I.  dx  =  du 


/ 


:  oLv  =      ;=^  du 


(X  +    1)   -    V.V  +    1  J     M  -    V« 

(y;i  + 1)(7^- 1) 

7ii(v«-  l) 

(1  +«-i/2)rfu 


rf« 


=  -(«  +  2«'/2)  +  C 
=  -M  -  2V«  +  C 


=  -(.r  +  1)  -  2V-r  +  1  +  C 
=  -.r  -  iVxTl  -  1  +  C 

=  -(.v  +  iJTTl)  +  c, 

where  Cj  =  —  1  +  C 


65.  Let  u  =  x~  +  I,  du  =  2v  dx. 


J    x(.r2  +  1)3  dr  =  ^1    (;c2  +  m2x)  dx 


U-  +  1)^ 


67.  Let  H  =  .v'  +  1,  rf"  =  3.r-  dx 

Ix-J^P^Tldx  =  2  •  I     Cr'  +  l)»/-(3.r2)a^t 

Ls       3/2       J, 
=  ^[27-2./2]=12-§V2 


202        Chapter  4        Integration 


69.  Let  M  =  2jc  +  1,  Jm  =  2  dx. 

r4 


Jo  ji^n      2jo 


^        dx  =  ]-\   {lx+  \)-"\2)dx  = 


Jl. 


;x  +  i[  =V9-VT  =  2 


71.  Let  tt  =  1  +  v^,  du  =  — -p  dx. 

Ijx 


73.  H  =  2  —  j:,  j:  =  2  —  M,  (ic=  —du 

Whenx  =  \,u=  \.  Whenx  =  2,  w  =  0. 


1 


2v^/^=rTT7^Ji-~2+'-2 


['(;C  -   1)72"^  A  =    ["  -   [(2  -  m)  -    iJv^dM  =     f  («3/2  -  „l/2)  ^„  =      |,,5/2  _  |„3/2l°  =    _  r|  _  |1   = 


_4_ 
15 


I 


r/2 


75.    I      cosl-jf)(ic 


3    .     1 
—  sin  -X 
2      V3 


V2 


3/73\       3v^ 


77.  u=x+\,x  =  u—  \,dx  =  du 

When  .t  =  0,  M  =  \.  When  x  =  7,  m  =  8. 


Area 


^M 


xi/x  +  ldx=       {u  -  \)l/u 

=   I   {u"'^  -  m'/^)  du 


-uy^  -  -u^l^ 


384 


12 


3  _  3\       1209 
7      4/  ~    28 


79.  A  =   I    (2  sin  jc  +  sin  2;c)  ate  =  - 1  2  cos  *  +  r  cos  2a; 


'.  A  =   I    (2  sin  jc  +  sin  It)  ate  =  —   2 

^£:Mf)--£>(f)©-[--(c:-(^-') 


81.  Area 


83. 


Jo 


Jc  ,        ,  ,,,       10 

,  dx^  3.333  =  — 

Jlx  +  1  3 


r 


85.       xjx  -  3dx'=  28.8 


144 


f 

Jo 


87.    I   |0  +  cos^lrfe  =  7.377 


r^ 

J 

89.    \{2x-  \y-dx  =  ^\{2x-  \yidx  =  h2x  -  1)^  +  C,  =  |x3  -  2^:^  +  .r  -  ^  +  C, 


».  j(2x-  \r~dx  =  ]A( 

\{2x-  \)-dx  =      (4;c--4x+  1) 


They  differ  by  a  constant:  Cj  =  C, 


i&  =  —x^  —  2jc  +  X  +  C2 

1 
6' 


Section  4.5        Integration  by  Substitution       203 


91.  fix)  =  x\x^  +  1)  is  even. 


x\x^  +  1)  ir  =  2     [x"  +  x'-)dx  =  2 


5  "^  3 


32      8 
T  +  3 


272 
15 


93.  fix)  =  x{x'^  +  1)3  is  odd. 


xix-  +  1)3  iv  =  0 


Jo 


95.       x'±x 
Jo 

(a) 
(c) 


the  function  x^  is  an  even  function. 


(b)    I    x2iT  =  2j>dLr  =  y 


(d) 


3^:^  ^-  =  3     x'- 


dx=  8 


97. 


U'  +  6x-  -2x-2)dx=        ix^  -  2x)  dx  +        (6.r-  -  3)  rf.t  =  0  +  2     i6x-  - 


3)dx  =  2 


2x'  -  3.x 


232 


99.  Answers  will  vary.  See  "Guidelines  for  Making  a  Change  of  Variables"  on  page  292. 


101.  fix)  =  xix-  +  1)2  is  odd.  Hence 


,  j^xix^  +  D- 


dx  =  0. 


dV 
103.     ^ 


dt  it  +    1)2 

Vit 


(      k        ,  k  ^ 


V(0)  =  -A:  +  C  =  500,000 
V'(l)  =  -i't  +  C  =  400,000 


Solving  this  system  yields  A'  =  —200.000  and 
C  =  300,000.  Thus, 

V(r)  =  ^  +  300.000. 

When  t  =  4,  V'(4)  =  $340,000. 


105. 


b  -  a 


f 


74.50  +  43.75  sin  ^ 
6 


dt  = 


b  -  a 


^^  ^„       262.5        tTt 
74.50/ cos  — - 

77  6 


(a)- 


(b) 


,,  ,„       262.5        Trt 
74.50/ cos  — 

77  6 

262.5        T7T 
74.50/ cos  — 

77  6 


3       1/  ''62  5 \ 

=  -  223.5  +  - — -  I  =  102.352  thousand  units 

0         3\  77 

^'447  +  ^^^  -  223.5  I  =  102.352  thousand  units 
77 


'''T2 


262.5        777 

74.50/ cos  — 

77  6 


'-       1  /  262.5      262. 5\ 

=  —  894 + 1  =  74.5  thousand  units 

0  12\  77  77 


204        Chapter  4        Integration 


b  - 
(a) 

(b) 


(c) 


-S: 


1    c  1   r     1  1  1* 

107. I   [2  sm(607rf)  +  cos(1207r;)  ]  dt  = -ttt-  cos(60iTf)  +  -— —  sin(120Trt) 

b  —  a\_     jOtt  12U  TT 


^^ 


1 


(1/60)  -  0 
1 


-^cos(60..)  +  Tisi„(12O.0]7  =  60[(^  +  o)  -  [~^^]  =  ^  »  1.273  amps 


(1/240)  -  0 


1  1  i'/^'"'       r 

cos(6077-f)  +  -— -  sin(120-7rf)  =  240 

12077  Jo  L 


3077 


'  +         ' 


30V2ir       12077/       V    3077, 


-(5  -  272)  ^  1.382  amps 


1 


(1/30)  -  OL    3077 


-^7— cos(6077t)  + 


I2O77 


sin(12077.)];^°  -  '{[£)  -  (-i)]  -  0 


I  amps 


109.  False 


|(2x+  \f-dx  =  ]A{2x+  \f2dx  =  hlx+  If  +  C 


111.  True 

rio  rio  rio 

(ax'  +  bx-  +  ex  +  d)  dx  =   \      {ax^  +  ex)  dc  +         {bx^  +  d)  dx  =  Q  +  1 
J-10  J-10  J-10 

Odd  Even 


J-10 
(to-  +  d)dx 
0 


113.  True 

4    sin  a:  cos  xdx  =  l\%\n2xdx  =  —  cos  2jc  +  C 


4-    sin  a:  cos  j:  lic  =  2  [  s 


115.  Let  «  =  j:  +  /i,  then  du  =  <ic.  When  j:  =  a,  «  =  a  +  ft.  When  x  =  b,  u  =  b  +  h.  Thus, 


J-fc  rb  +  h  rb  +  h 

f(x  +  h)dx=-  f{u)  du  =  fix)  dx. 

a  Ja  +  h  Ja  +  h 


Section  4.6       Numerical  Integration 


;.6667 


I.  Exact:  JJ,.  ^  =  [i^]^  |  »  2., 

Trapezoidal:    j  x^  ^  -  ^[o  +  2^)'  +  2(1)=  +  ll^J  +  (2)A  =  ~- =  2.7500 
Simpson's:       J  jc^otc  -  ifo  +  4^^)^  +  2(1)^  +  4(|j'  +  (2)^1  =  |  -  2.6667 


3.  Exact: 
Trapezoidal 
Simpson's 


4.000 


+  2(^)\  2(1)3 +  2(1)' +  (2)3 


17 


4.2500 


x^dx^ 


0  +  4(|y  + 2(1)3 +  4(1]' +  (2)3 


^  =  4.0000 


Section  4.6        Numerical  Integration        205 


5.  Exact:  \  }?  dx  =  \KA    =  4.0000 

Trapezoidal:       I  x'  oLr  ~  - 


o-iy-(!r-er-»)-er-(!r-er^ 


Si™p».V        [^  *  .  ^[O  +  4(i)'  .  2g)'  .  4g)'  .  2(,).  +  4(5)'  +  2(f)'  +  4(^)'  +  8 


4.0625 


4.0000 


7.  Exact: 


/: 


-Jxdx 


:,j/2 


^18_  1^  =  ^.12.6667 
4  3         3 


Trapezoidal:      I   ^dx  = 
Simpson's:        I   Vx  dx 


,37       ^      /2        ^      /47      ^      /26      ^      /57      ^      /31       ^      /67      , 
4  V8  \'4  VS  V4 


-  12.6640 


2  +  4^/?  +  V2T  +  4,/^  +  V26  +  4^/"  +  VJT  +  4^/?  +  3 


=  12.6667 


9.  Exact: 


1U  + 


;(ix 


X  +  1 


-  Ill 

=  -T  +  :;■  =  7  =  0.1667 
1  3      2      6 


Trapezoidal 


Simpson's: 


i 


(x  +  1 


'   ^«^ 


'  .  2f.....l-^U  2(  ' 


4      ^((5/4)  +  \r-j      A((3/2)  +  l)-y      n((7/4) 


•)  +  1)-]  ^  9J 


KMf-l^f^^-- 


J,  U  +  1)= 


ix 


^.41 


1 


+  2 


1 


4      "V((5/4)  +  If)      -V((3/2)  +  1)V        \((7/4)  +  1)^ 


+  41 


1 


p)4] 


^i^lMi^i^f^i)-- 


11.  Trapezoidal:  Vl  +  a^  dx  -  ^[l  +  2^1  +  (1/8)  +  ijl  +  2j\  +  (27/8)  +  3]  =  3.283 

Jo  4 

f 


Simpson's:         |    Vl  +  x"  dx  «  -[1  +  4Vl  +  (1/8)  +  ijl  +  AJ\  +  (27/8)  +  3]  =  3.240 
Graphing  utility:  3.241 


13.       JxJ\  -  xdx=       Jxi\  -  x)  dx 
Jo  Jo 


Trapezoidal 


Jo 


x)  dx  ~  — 


I 


Simpson's:         I   ^x(l  —  x)  dx  ~ 


0+4^ 


■-! 


i._i„,  ,. 


vf4)-VlH) 


«  0.342 


=  0.372 


Graphing  utility:  0.393 


206        Chapter  4        Integration 


15.  Trapezoidal: 


/: 


t/2  J'ttFI 

cos(x^)  dx  =  • — - — 


==  0.957 


cos  0  +  2  cosi  "  .      I    +2  cos 


^V2V  ,  ^  ..Y3VV2V 


+  2  cosI 


+  cos  ..  /  — 


r 


Simpson's:         |         cos(a:^)  dx  =  — rr — 

==  0.978 


cos  0  +  4  cosI  "  /     1    +  2cos(     r     |    +  4  cost V—\    +  cosI 


Graphing  utility:  0.977 


\: 


Yl.  Trapezoidal:  sin  jc^  ^  ^  -sTrCsinll)  +  2  sin(1.025)2  +  2  sin(1.05)2  +  2  sin(1.075P  +  sin(l.l)2]  -=  0.089 

80 


r 


Simpson's:         |     ^mx^dx'^  Tio'-^'"^^^  "^  4sin(1.025)2  +  2  sin(1.05)2  +  4sin(1.075)2  +  sin(l.l)2]  ==  0.089 


Graphing  utility:  0.089 


19.  Trapezoidal: 


/: 


r/4 


X  tan  X  dx  ■ 


32 


0  +  21 


16 


^^"(5)^2(7!)^ 


^U2f^ltani 


16 


'16 


f)n]-- 


194 


Simpson's:        \^\  tanxdx^  ^[o  +  4(^)  tan(:^)  +  2(ff )  tan(ff )  +  4(^]  tan(ff )  +  j]  »  0.186 


Graphing  utility:  0.186 


21.  (a) 


The  Trapezoidal  Rule  overestimates  the  area  if  the  graph 
of  the  integrand  is  concave  up. 


23.     fix)  =  x^ 

fix)  =  3x^ 

fix)  =  6x 

fix)  =  6 

f'Kx)  =  0 

(2  -  0)3 
(a)  Trapezoidal:  Error  <         ,^.   (12)  =  0.5  since 

/"W  is  maximum  in  [0,  2]  when  jc  =  2. 
(2  -  0)^ 


(b)  Simpson's:  Error 

/^W  =  0. 


180(4") 


{0)  =  0  since 


25./"(x)  =  ^in[l,3]. 

(a)  \f"{x)\  is  maximum  whence  =  1  and  |/"(1)|  =  2. 

2' 
Trapezoidal:  Error  <  7^(2)  <  0.00001,  n^  >  133,333.33,  n  >  365.15;  let«  =  366. 

/W'(;c)=^in[l,3] 

(b)  \p'*>{x)\  is  maximum  when  jc  =  1  and  [/"'(l)!  =  24. 

2' 
Simpson's:  Error  <  75777(24)  <  0.00001,  «■*  >  426,666.67,  «  >  25.56;  letn  =  26. 


Section  4.6        Numerical  Integration        IQTI 


27.  f(x)  =  ym 

(a)  f"(x) 


1 


4(1  +  x)V2 


in  [0,  2]. 


\f"{x)\  is  maximum  when.t  =  0  and  |/'(0)|  =  -. 


Trapezoidal;  Error  <  Ty^lj)  <  0.00001,  n-  >   16,666.67,  «  >   129.10;  let «  =  130. 


(b)  /(*>W  = 


-15 


16(1  +  xy/^ 


in  [0, 2] 


|/('*>(jc)|  is  maximum  when  a:  =  0  and  \f'^\Qi)\  = 


16' 


Simpson's:  Error  <  7^77(77  I  <  0.00001,/?''  >  16,666.67,  n  >  11.36;  let «  =  12. 
I0O/2  \16 


29.  fix)  =  tan(jc2) 

(a)  f"(x)  =  2  stc\x-)[\  +  Ax-  tan(x2)]  in  [0,  1]. 

\f"(x)\  is  maximum  when  .r  =  1  and  |/"(1)|  =  49.5305. 

Trapezoidal:  Error  <      .7  ^  (49.5305)  <  0.00001,  n-  >  412.754.17.  n  >  642.46;  let  n  =  643. 

(b)  /'"'(x)  =  8  sec2(jt2)[12T:2  +  (3  +  32^)  tan(x2)  +  36x- tan2(.:c2)  +  A^x^"  tan^i^?)]  in  [0,  1] 

\f''\x)\  is  maximum  whenx  =  1  and  |/'"(1)|  "  9184.4734. 
0-0)5, 


Simpson's:  Error  < 


180W' 


-(9184.4734)  <  0.00001,  «''  >  5,102,485.22,  n  >  47.53:  let  n  =  48. 


31.  Let/(x)  =  Ar*  +  Bx-  +  Cx  +  D.  Then/'^H^)  =  0. 

Simpson's:  Error  <  .   (0)  =  0 

180/2 

Therefore,  Simpson's  Rule  is  exact  when  approximating  the  integral  of  a  cubic  polynomial. 
1 


Example: 


I 


x^dx  = 


r      /iv     1 

1 

0+4^  +1 

L    12^    J 

4 

This  is  the  exact  value  of  the  integral. 


33.  f(x)  =  72  +  3.t-  on  [0.  4]. 


n 

LM 

M{n) 

R(n) 

Jin) 

Sin) 

4 

12.7771 

15.3965 

18.4340 

15.6055 

15.4845 

8 

14.0868 

15.4480 

16.9152 

15.5010 

15.4662 

10 

14.3569 

15.4544 

16.6197 

15.4883 

15.4658 

12 

14.5386 

15.4578 

16.4242 

15.4814 

15.4657 

16 

14.7674 

15.4613 

16.1816 

15.4745 

15.4657 

20 

14.9056 

15.4628 

16.0370 

15.4713 

15.4657 

208        Chapter  4        Integration 


35.  fix)  =  sinv^on[0,4]. 


n 

Lin) 

Min) 

Rin) 

Tin) 

Sin) 

4 

2.8163 

3.5456 

3.7256 

3.2709 

3.3996 

8 

3.1809 

3.5053 

3.6356 

3.4083 

3.4541 

10 

3.2478 

3.4990 

3.6115 

3.4296 

3.4624 

12 

3.2909 

3.4952 

3.5940 

3.4425 

3.4674 

16 

3.3431 

3.4910 

3.5704 

3.4568 

3.4730 

20 

3.3734 

3.4888 

3.5552 

3.4643 

3.4759 

37.  A 


Jo 


ix  COS  X  dx 


Simpson's  Rule:  «  =  14 

r,r/2 


^     V,cos.:.fa==-|^70cos0  +  4^-cos-  +  2^-cos-  +  4^-cos- 


0.701 


'  TT  ■7T\ 

TT  cos  — 

2  2 


Jo 


39.  W=       100xVl25  -  x^dx 


Simpson's  Rule:  «  =  12 

100xVl25  -x^dx'^  -^ 
Jo  3(12) 


-«'^)v--(^r-ov— (f 


'^^(u)-\^~^  ~  [nf  +  •  •  •  +  O]  -  10,233.58  ft  •  lb 


41. 


-0 


:dx    Simpson's  Rule,  n  =  6 


■Jr  "^     ^,^.     [6  +  4(6.0209)  +  2(6.0851)  +  4(6.1968)  +  2(6.3640)  +  4(6.6002)  +  6.9282] 

=  :^[113.098]«  3.1416 
36 

1000 
43.  Area  -  ^(J^^25  +  2(125)  +  2(120)  +  2(112)  +  2(90)  +  2(90)  +  2(95)  +  2(88)  +  2(75)  +  2(35)]  =  89,250  sqm 

45.    I  s\n^dx  =  2,  «  =  10 
Jo 

By  trial  and  error,  we  obtain  t  ~  2.477. 


Review  Exercises  for  Chapter  4        209 


Review  Exercises  for  Chapter  4 


1.    y 


./, 


3.    \{2x'^  +  X  -  \)  dx  =  ^}?  +  ^rx^  -  X  +  C 


/^-/ 


X  H — r;\dx  =  —x- h  C 

X-)  2  x 


J(4x- 


3  sin  x)  dx  =  2x-  +  3  cos  x  +  C 


9./'U)=  -2x,  (-1,1) 

/W  =      -Ixdx  =  -x^  +  C 
Whenx  =  -1: 

>-=  -1  +  C=  1 

C  =  2 

y  =  2  -  ^2 


11.     a(r)  =  a 


v(f)  =     a  rfr  = 


ar  +  C, 


v(0)  =  0  +  Ci  =  0  when  C,  =  0. 
v(f)  =  at 


-\' 


s{t)  =  I  ar  rfr  =  -r  +  C; 

s(G)  =  0  +  C,  =  0  when  C.  =  0. 

i(f)  =  2'' 


5(30)  =  -(30)-  =  3600  or 

.  =  «  =  8ft/sec^. 
v(30)  =  8(30)  =  240  ft/sec 


13.  a(t)  =  -32 

v(r)  =  -32f  +  96 
s(r)  =  -  16r=  +  96f 

(a)  v(f)  =  -  32f  +  96  =  0  when  t  =  3  sec. 

(b)  5(3)  =  -  144  +  288  =  144  ft 

96  3 

(c)  v(t)  =  -  32f  +  96  =  —  when  t  =  -  sec. 


(d)  5I 


(1)  = 


=  -16(|j  +  96(|j=  108  ft 


15.  (a)  2(2'-  1) 

(b)  S/' 

i=l 
10 

(c)  2(4' +  2) 


210        Chapter  4        Integration 


17.   y  =  ^r—T,  Aat  =  -,  /J  =  4 
X-  +  1  2 


S{n)  =  5(4)  =  ^r^  + 


10 


+  .J^  + 


10 


2\_  1        (1/2)2  +  1       (1)2  +  1       (3/2)2  +  i_ 
13.0385 


s{n)  =  s{A) 


^h 


10 


+  -^+         10 


10 


_(l/2)2  +1       1  +  1       (3/2)2  +1       22+1 
«  9.0385 
9.0385  <  Area  of  Region  <  13.0385 


4 
19.  y  =  6  —  jc,  Ax  =  -,  right  endpoints 


Area  =  lim  V  f{ci)  Ax 


lim  - 

n-*oo  n 


6n 


4  n{n  +  1)1 
n        2       J 


=  lim 


24-8  ^^-^  I  =  24  -  8  =  16 


21.  y  =  5  -  x^,  Ax  =  - 
n 


Area  =  lim  V  /(«')  Ajc 
=  lim  2 


-2  +■ 


=  lim^2ri+i^-^l 

,.      3r         12«(n  +1)       9  «(n  +  1)(2m  +  1) 

=  hm  -  n  + — ^ 

n->oo  n\_  n         2  n-  6 


lim[3  +  18^^-?(^l±il%^^l 

n^-oo  L  n  2  «'  J 


=  3  +  18  -  9  =  12 


23.  X  =  Sy  -  r,  2  <  y  <  5,  Ay  =  - 

n 


Area  =  lim  V 

5 

(-f)-(-f] 

© 

=  lim  -  2 

No+*^'      4       12'- 
n                   n 

9(^" 

=   lim  -  1 

1 

-> 
> 
i 

6+^-^1 

=  lim  - 


^      ,   3  n(n  +  1)        9  «(«  +  l)(2n  +  1) 

""  + 

n        2  n  6 


18 +  --9 


27 
2 


Review  Exercises  for  Chapter  4       211 


25.     lim    y  {lei  -  3)  ^xi  =       (2x-'i)dx 


-f 


\(5-\x-5\dx=  I  (5-{5-x))dx=   \  xdx  =  ^- 


(triangle) 


29.  (a)  J   [/W  +  gW]  d.x=   \  fix)  dx  +   \  g{x)  dx  =  10  +  3  =  13 
(b)    f  [/W  -  gW]  ^  =  J /W  dx-\  g{x)dx=\Q-3  =  l 


I 


(c)       [2/(;c)  -  SgW]  ^  =  2 


J/Wd:x-3[ 


gW  ^  =  2(10)  -  3(3)  =  11 


(d) 


5/(^)  dx  =  5\  f{x)dx  =  5(10)  =  50 


31.   j  (^  +  l) 


dx 


4 


4(16)  +  8 


]-[l 


+  1 


73 


(0 


Jo 


33.       {1  +  x)dx  = 


2x  + 


.^-u 


'•/: 


35.        (4r3  -  2t)  dt 


r  -  t- 


=  0 


37.    f  ;cv^a^r  =   f  ;t3'2^  =  Hr^^'T  =  Jlv^)'  -  (74)']  =  ^(243  -  32)  = 
J4  J4  l5       J4       5  5 


P'r/4  r 

39.  sindde  =     -cos 


3 17/4 
0 


f)+l    =    l+^   =   ^^ 

2    /  2  2 


41.       (2v-  l)at(  =  \x 


\(x--9)dx=    J -9x1' 


=  (y-36)-(9-27) 


64  _  54  ^  W 
3         3         3 


212        Chapter  4        Integration 


Jo 


45.       {x-  x^)dx  = 


2       4 


'  =1-1  =  1 

0      2      4      4 


47.  Area 


=r 


:dx  = 


^x  L(l/2)Ji 


4;c'/2 


=  8(3  -  1)  =  16 


1    f  1        ri      p    2  2 

49.  —pdx  =    -ijx     =  t(3  -  2)  =  -  Average  value 


2  _    1 

5       Vx 

25 


2        4         6        8        10 


51.  F'W  =  ;cVl  +  ;c3 


53.  F'W  =  ;c2  +  3x  +  2 


f  (;c2  +  1)3  die  =   JC 


;c^       3 


55.    I  (;c2  +  \f  dx  =   \{x^  +  ■ix^  +  l,x^  +  \)  dx  =  J  +  -x^  +  x^  +  X  +  C 


57.  M  =  a:^  +  3^  ^^  =  3;t:2  ^ 


I     /'       att  =   |(x3  +  3)-'/2;c2^  =  tI(-^  +  3)-'/2  3jc2d:^  =  |(;c3  +  Zf-  +  C 
J  Jx"  +  3  J  3J  3 


59.  M  =  1  —  3;c2,  £/m  =  —  6j;  (& 


/ 


41  -  ix-'Ydx=  -|    (1  -  Ix-'Yi-exdx)  =  -^(1  -  3;c2)5  +  C  =  ^(3;c2  -  1)^  +  C 


1.  /si 


61.    I  sin'  X  cos  xdx  =  -  sin''  jt  +  C 


63.         .  ""  ^       dx  =     (1  -  cose)-'/2sin0de  =  2(1  -  cos  e)'/^  +  C  =  2^/1  -  cos  e  +  C 
J  J\  -  cos  0  J 


tan"; 


tan" ^ '  X 

65.    I  tan"  x  sec^ xdx  ^^ —  +  C,ni^  -\ 

n  +  \ 


'■/' 


i/< 


67.    [  (1  +  sec  TTxf-  sec  Tr;c  tan  7rx<36c  =  —  |  (1  +  sec  Trj:)-(7rsec  Tr;ctan  nx)  dx  =  —(1  +  sec  ttxY  +  C 


69. 


j'xix^  -4)dx  =  ^j  y-  4)(2.)  ^  =  I^^^Y^]'  _  =  ^[0  -  9] 


Review  Exercises  for  Chapter  4       213 


4-2  =  2 


71.    I       ,  '        dx  =  I   (1  +  x)-"^dx=  [2(1  +  xY'^ 
Jo  VI  +  ->c  Jo  L 

Ti.  u  =  \  —  y,  y  =  \  —  u,  dy  =  —  du 

Whenv  =  0,  «  =  1.  Wheny  =  1,  «  =  0. 

2tt\  {y  +  l)Vl  -ydy  =  2tt\   -[(1  -  u)  +  \]V^du 

=  27r|  (m3/2  -  2M'/2)d„  =  2T7r|«^''2  -  |« 

75.  [  cos(f )  dx  =  2|^  cos(f )  I  ^  =  [2  sin(f 


°_  28t7 
1        15 


77.  u  =  \  —  x,x  =  1  —  «,  a[r=  —du 

When  x  =  a,  M  =  1  -  a.  When  x  =  fe,  «  =  1  —  /). 

Pa,b=   \  ^x^/V^~xdx  =  —\       -i\-u)Judu 


3/2 


l-a  4 


2„3/2 


15 


(3m  -  5) 


i-fc 

l-a 


(1  -  xy/^ 


{3x  +  2) 


"^3/2 

■~—{3x  +  2)  I       =  0.353  =  35.3% 

2  Jo.50 


(b)  P, 


'0.50. 0.75  ~  2        (3j:  +  2)  I 


*_      (1  -  fc)^/^ 


(3Zj  +  2)  +  1  =  0.5 


(1  -  fc)3/2(3fc  +  2)  =  1 
fe  =  0.586  =  58.6% 


79.  p  =  1.20  +  0.04r 

„      15.000  f'"'     , 
c  =  —ri-\     Pds 


(a)  2000  corresponds  to  f  =  10. 

C  =  -^f"[l.20  +  0.04r]dr 
^    Jio 

1.20r  +  0.02f' 


^  i5,ooor 

~      M    [ 


"       24,300 


10  M 


(b)  2005  corresponds  to  f  =  15. 


C  = 


15,000 


M 


1.20r  +  0.02r^ 


"^  _  27,300 
15  ~       M 


81.  Trapezoidal  Rule  («  =  4):  J_  -p^^  »=  |[y^  +  l  +  (',25)3  +  TtW  ^  1  +  (^75)3  +  TT2^ 
Simpson's  Rule  (n  =  4):    I  ,  dx  "  ~r7:\~r 


+  -4^  +  -    '^ 


+  1'       1  +  (1.25)3       1  +  (1  5)3       1  +  (J  75)3       1  +  2 


=  0.257 


0.254 


Graphing  utility:  0.254 


83.  Trapezoidal  Rule  (, 


«  =  4): 

Jo 


^  COS  xdx  ~  0.637 


Simpson's  Rule  (n  =  4):  0.685 
Graphing  Utility:  0.704 


SS.  (a.)  R  <  1  <  T  <  L 

(b)  S(4)  =  ^^[/(O)  +  4/(1)  +  2/(2)  +  4/(3)  +/(4)] 


4  +  4(2)  +  2(1)  +  4i^]  +  i 


5.417 


214        Chapter  4        Integration 


Problem  Solving  for  Chapter  4 


1.  (a)   L(l) 


=IV- 


1 


(b)  L  '{x)  =  -  by  the  Second  Fundamental  Theorem  of  Calculus. 

X 

L\\)  =  1  . 

(c)  L{x)  =  1  =   I    -rfrfor;c  «  2.718 


-^n^ 


dt  =  0.999896    (Note:  The  exact  value  of  x  is  e,  the  base  of  the  natural  logarithm  function.) 


f 

P'l  f    1 

(d)  We  first  show  that  \    -dt  =  \     -dt. 

To  see  this,  let  m  =  —  and  du  =  —  dt. 

Xy  X^ 

P'l  f  1  f         1  f         1 

Then       -dt=         — (x,  du)  =         -  du  =   \     -dt. 

h    t  JiA.^i  JiA,"  JlA.f 

/■jTAj  Pm      /  f\ 

Now,  i-(x,x-,)  =1      -dt  =   \     —du\  using «  =  — 

Ji      t  JiA,«      V  Xi/ 

f    1  Pn 

Ji/x,«  Ji  " 

P'l  P^l 

=       -du+       -du 

Ji  "  Ji  « 

=  LUi)  +  LUj). 


= IH't 


-2-- 


3.  5(;c)  =   I  sini  ^  Uf 
(a) 


(b) 


V2      V5       2   V?  vS-y7  2Vl3 


The  zeros  of  y  =  sin  ^r—  correspond  to  the  relative 
extrema  of  S{x). 


(c)  5'W  =  sin-^  =  0 


=  mr  =^  X'  =  2n  =>  X  =  V2»2.  n  integer. 


Relative  maximum  at  jc  =  ~Jl  =  1.4142  and  x  =  V6  «=  2.4495 
Relative  minimum  at  x  =  2  and  x  =  ,/8  =  2.8284 

.2 


(d)5"(x)  =  cos(^)(7rx)  =  0 


=  —  +  AjTT  =>  x^  =  1  +  2n  =>  X  =  Vl  +  2n, «  integer 


Points  of  inflection  at  x  =  1,  V3,  Js,  and  ^7. 


Problem  Solving  for  Chapter  4        215 


5.  (a) 


(8,3) 


(b) 


x 

0 

1 

2 

3 

4 

5 

6 

7 

8 

1 

7 

7 

1 

Hx) 

0 

"2 

-2 

~2 

-4 

~2 

-2 

4 

3 

(c)  f(x)  = 


-X,  0  <  .r  <  2 

X  -  4,      2<x<6 

ij:  -  1,    6  <  ;c  <  8 


0  <  -r  <  2 


F(x] 


.,  [(-^72),  ...... 

=      /(f)  dt  =  I  (.x:V2)    -  4x  +  4,    2<A<6 
■'''  L(l/4):r2_  ^    _  5     ^  <  x  <  " 


F'(x)  =  f(x).  F  is  decreasing  on  (0,  4)  and  increasing  on 
(4,  8).  Therefore,  the  minimum  is  —  4  at  .r  =  4,  and  the 
maximum  is  3  at  .r  =  8. 


(d)  F"{x)=f\x)  = 


f-l,  0  <  Jt  <  2 
1,  2  <  .r  <  6 
J., 

2 


6  <  j:  < 


At  =  2  is  a  point  of  inflection,  whereas  x  =  6  is  not. 
(/is  not  continuous  at  j:  =  6.) 


cos.ri±c  «  cosi ^1  +  cosi  — ?=  j  =  2  cosi  — p  1  =  1.6758 


7.  (a)        cos.ri±c  «  cosi  — -i=  \  +  cos' 

I    cos  a:  dx:  =  sin  X        =  2  sin(l)  =  1.6829 


Error.  11.6829  -  1.6758    =  0.0071 


(b) 


r.i 


1 


;  dx  ~ 


1 


1 


1  +A-2  1  +  (1/3)       1  +  (1/3)      2 

(Note:  exact  answer  is  7r/2  ==  1 .5708) 


(c)  Let  p(x)  =  ax^  +  bx-  +  ex  +  d. 


b.^      cx- 
+  —-  +  —-  +  <ir 
3  2 


1 


lb 
3 


=  =r  +  Id 


'^--ir'\ji 


.,|..).g..).|.. 


9.  Consider  Hv)  =  [fix)]-  =>  F\x)  =  2f{x)f\x).'\\ms, 


\f{x)f\x)dx=   \\ 

Ja  Jo  ^ 


F'(x)dx 
Fix) 


=  ^[F(b)  -  F(a)] 


=  pibT- -  f(ar-] 


11.  Consider      x^  dx  = 


Jo 


The  corresponding  Riemann  Sum  using  right  endpoints  is 


Si 


"'  =  e 


'  - 1^  ^ 


=  \[l^  +  25  +  ■  ■  ■  +  n5] 


Thus,  lim  S{n)  =  lim 


1^  +  25  + 


~  6' 


216        Chapter  4        Integration 


13.  By  Theorem  4.8,  0  <  /W  <  M  =>    \  f{x)  dx  <   I  M  dx  =  M(b  -  a). 

Ja  Ja 


rb  cb 

Similarly,  m  <  f(x)  =>  m{b  —  a)  =      mdx  <      f(x)  dx. 

Ja  Ja 

Thus,  m{b  -  a)  <   \  f{x)  dx  <  M{b  -  a).  On  the  interval  [0,  1],  1  <  JT^H?  <  V2  and  fo  -  a  =  1. 

Ja 

Thus,  1  <       J\  +  x^dx  <  72.      (Note:    I   yr+~?c&=  1.0894J 


15.  Since-|/W|  <  f{x)  <  \f{x)\, 

J'b  rb  rb  rb  rb 

\f{x)\dx<   \f{x)dx<       \f{x)\dx  ^  \   f{x)dx  <\    \f{x)\dx. 

a  Ja  Jo  Ja  Jo 


1  r 


100,000 


.    l-nit  -  60)1  _,        100,000 
1  +  sm r— 7 dt  = 


36.5 


'\ 


365 


365        l-nit  - 
t  -  ^r-COS    - 

2lT 


t  -  60)T'  ^ 
365       Jo 


100,000  lbs. 


CHAPTER     5 

Logarithmic,  Exponential, 

and  Other  Transcendental  Functions 


Section  5.1      The  Natural  Logarithmic  Function:  Differentiation     ....  218 

Section  5.2      The  Natural  Logarithmic  Function:  Integration     223 

Section  5.3      Inverse  Functions     227 

Section  5.4      Exponential  Functions:  Differentiation  and  Integration    .  .  233 

Section  5.5      Bases  Other  than  e  and  Applications 240 

Section  5.6      Differential  Equations:  Growth  and  Decay 246 

Sections.?      Differential  Equations:  Separation  of  Variables     251 

Section  5.8      Inverse  Trigonometric  Functions:  Differentiation     259 

Section  5.9      Inverse  Trigonometric  Functions:  Integration     263 

Section  5.10    Hyperbolic  Functions 267 

Review  Exercises 272 

Problem  Solving     278 


CHAPTER     5 

Logarithmic,  Exponential,  and  Other  Transcendental  Functions 

Section  5.1       The  Natural  Logarithmic  Function:  Differentiation 

Solutions  to  Odd-Numbered  Exercises 


1.  Simpson's  Rule:  /j  =  10 


X 

0.5 

1.5 

2 

2.5 

3 

3.5 

4 

Jl  ' 

-0.6932 

0.4055 

0.6932 

0.9163 

1.0987 

1.2529 

1.3865 

Note: 


Jl      t  Jos  t 


dt 


3.  (a)  In  45  »  3.8067 

ri 

(b)    I    -dt  ==  3.8067 


\y 


5.  (a)  In  0.8  =  -0.2231 
ro.8 
(b)    I     -dt  ==  -0.2231 


ro.8 

-dt  ==  -0.: 
Jl   t 


7.  f{x)  =  \nx  +  2 

Vertical  shift  2  units  upward 
Matches  (b) 

11.  f{x)  =  3  in  ;c 
Domain:  x  >  0 


13.  fix)  =  In  2x 
Domain:  jc  >  0 


9.  fix)  =  In  U  -  1) 

Horizontal  shift  1  unit  to  the  right 
Matches  (a) 

15.  fix)  =  In(x  -  1) 
Domain:  x  >  \ 


17.  (a)  In  6  =  In  2  +  In  3  =  1.7917 

(b)  Inf  =  In2  -  ln3  =  -0.4055 

(c)  In  81  =  In  3''  =  4  in  3  «  4.3944 

(d)  In  73  =  in  3'''2  =  i  |n  3  «  0.5493 


19.  Inf  =  In  2  -  In  3 


21.  In  —  =  In  X  +  In  y  -  In  z 


23.  In  7a2+  1  =  ln(a2  +  i)i/3  =  -  in(a2  +  1) 


218 


Sections.]        The  Natural  Logarithmic  Function:  Differentiation       219 


25.  Inf^^-T-^V  =  3[ln(;c2  -  1)  -  In.r^] 


x' 


=  3[lnU-  +  1)  +  InU  -  1)  -  3  In.x] 


27.  In  z(z  -  1)2  =  In  z  +  ln(z  -  1)^ 
=  In  z  +  2  ln(z  -  1) 


29.  ln(;c  -  2)  -  InU  +  2)  =  In 


x-2 

x  +  2 


—    1  r» ,   /        ,x       ,  ,   /  1       .\T       1  ,    -tU  +  3)-      ,      ,  /x(x  +  3)2 

31.  -[21ii(a:  +  3)  +  Inx  -  InU^  -  1)]  =  -  In    ^^,  _  ^    =  In  ^    '^^  _  ^ 


33  .  2  In  3  -  -  \n(x-  +  1)  =  In  9  -  lnVx=  +  1  =  In     ,  ^ 

2  Vj;'  +  1 


35.     3 


37.    lim  ln(x  -  3)  =  -oo 

j-»3* 


39.    lim  ln[x2(3  -  x)]  =  In  4  -  1.3863 

X  — »2 


41.    y  =  In  j:^  =  3  In  .r 

,      3 


At(l,0),v'  =  3. 


43.    >'  =  In  JT'  =  2  In  ;c 
At(l,0),v'=  2. 


45.    g(x)  =  Inx-  =  21nA; 


47.     V  =  (ln;c)'' 

^  =  4(lnx)3(i)=^(ill^ 
ax  \x/  X 


49.     V  =  In  xjx^  -  1  =  In  .X  +  -  In(x2  -  1) 


_    2.r2  -  1 
dc      X      2\x2  —  1/      xU'  —  1) 


^  =  i  +  V    ^ 


51.  /W  =  In^— -  =  In.T  -  In(.r-  +  1) 

„,  .       1  2x  l-x- 

/  w  = r 


x      x^  +  1       x(x^  +  1) 


53.    g{t)  = 


Int 


g'it) 


t-(l/t)  -  2t\nt      1  -  2Inr 


55.    .v  =  In(Inx-) 

^  =  -!-— (In.r2)  =  (^^'/-^^  =      -      =      1 
djc      In  x^  a[r      '  In  x-        x  In  x-      x  In  x 


57.    y  =  \n 


yj^  =  f[ln(x+l)-ln(x-l)] 

dy  ^  J_r_l 1_1  ^       1 

dx      2Lx  +  1      X  -  ij  ~  1  -x2 


59.  f(x)  =  In 


J 4  +  x^       1 


-ln(4  +  x^)  -  Inx 


fix) 


4  +  x^      X      x(x~  +  4) 


220       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


61. 


y  = 


■v^c^+T 


+  ln(;c  +  Jx-  +  1 ) 


dl^    -x[x/Jx-  +    l)    +    y/jC^  +    1 

dx~  £- 


1 


1 


1  + 


x  +  -Jx-  +  1  /  V        V;c2  +  1 
1 


J^fT\+ . 


x^J^^^Tx      \x  +  JWT\j  \    J^T\    I     x^JlFTl     7]?TT     ^-J^FTx 


+  ■ 


1  +  x-      v^2~rT 


63.    y  =  In  I  sin  .r| 

dV  _  cos.T 
dx      sinjc 


cotx 


65.    y  =  In 


COSJC 


COS  j:  -  1 
=  Inlcosxl  -  Inlcosj:  —  ll 


-sin  a: 


dy  _  —  sinx  _ 

dx        cos  X        cos  X  —  I 


—  tan.r  + 


sin  X 
cosj:  -  1 


67.    >>  =  In 


■  1  +  sin  x 


2  +  sinx 

=  ln|  — 1  +  sin  xl  —  ln|2  +  sinx| 

dy  _       cos  X  cos  x 

dx       —  1  +  sin  .t      2  +  sin  X 

_  3  cos  X 

(sinx  -  l)(sinx  +  2) 


69.  fix)  =  sin  2x  In  x^  =  2  sin  2x  In  x 
fix)  =  (2  sin  2x)(-J  +  4  cos  2x  in  x 


=  -  (sin  2x  +  2x  cos  2x  In  x) 

X 

2 
=  ^sin  2x  +  X  cos  2x  In  x^) 


71.  (a)     >-  =  3x2- In  X,     (13) 

dy  I 

—  =  6x 

dx  x 

.      When  X  =  1,  v"  =  5. 
dx 

Tangent  line:  y  -  3  =  5(x  -  1) 

y  =  5x  -  2 

0  =  5x  -  3^  -  2 


(b) 


73.       x2  -  31n>'  -l-y^  =  10 
y  dx  dx 


-le-' 


dy  _         2x 2x3; 

dx  "  i-i/y)  -ly~  l-ly^ 


75.  y  =  2(lnx)  +  3 


77.  y  =  j-Inx 

Domain:  x  >  0 

1       (x  +  l)(x  -  1) 


>>   =x 


0  when  x  =  1 . 


1 


/'=l+^>0 
Relative  minimum:  ( 1 ,  2) 


^ 


Section  5.]         The  Natural  Logarithmic  Function:   Differentiation        221 


79.  y  =  xlnx 

Domain:  ;c  >  0 

y'  =  xl-]  +  \nx  =  1  +  In .r  =  0  when x  =  e~K 
y"=-  >  0 


Relative  minimum:  (e  ',  —  e  ') 


(f-'.-f-') 


81.  V  = 


Injc 
Domain:  0  <  jc  <  l,.x  >  I 

,      (in;c)(l)  -  (x){l/x)  _  In-r-  1 


y  = 


=  0  when  x  =  e. 


(ln;c)2  (Inx)' 

(ln;c)^(lA)  -  (Inx  -  l)(2/;c)  In  a:      2  -  \nx 


{\nxr 
Relative  minimum:  (e,  e) 
Point  of  inflection:  {e~,  e^/2) 


x(\nx)^ 


0  whenx  =  e^. 


83.     fix)  =  ln;c,    /(I)  =  0 


/'W=^,     /'(1)=1 


/"W  =  -A,    /"(i)  =  -i 

PiW  =/(l)  +/'(1)U  -  1)  =  X  -  1,     P,(l)  =  0 
/'2W  =/(l)  +f'Wix  -  1)  +  |/"(1)U  -  IP 

=  U-l)-^(x-  1)%     P,(1)  =  0 

P,'(.r)  =  1,     P/(l)=  1 

P/W  =  1  -  (x  -  1)  =  2  -  .r,     P.'(l}  =  1 

M;c)=  -1,     P/i;i)=  -1 

85.  Find.x  such  that  In.r  =  —  a:. 
fix)  =  ilnx)+x  =  0 
1 


fix)  =  -  +  1 


"      fix  J      -''■ 


1  -  ln,T„ 


1  +.v„ 


M 

1 

2 

3 

^. 

0.5 

0.5644 

0.5671 

/UJ 

-0.1931 

-0.0076 

-0.0001 

The  values  of/,  Pj,  Pj,  and  their  first  derivatives  agree  at 
X  =  1.  The  values  of  the  second  derivatives  of/ and  P, 
agree  at  j:  =  1 . 


87.  y  =  x^x^  -  1 

Inr  =  In.v  +  |ln(.t=  -  1) 

y\dxj       X      ;c2  -  1 

dt      \xix^  -  1)J       ^/p^H" 


Approximate  root:  x  =  0.567 


222        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


89. 


y  = 


1 


]ny  =  2  ln;c  +  -ln(3;c  -  2)  -  2  In^  -  1) 


lf^U2^         3 


y\dx)      X      2(3a-  —  2)      x  —  I 


dy 
dx 


y 


3x^  -  \5x  + 


2xOx  -  2){x  -  1). 

3x!^  -  15;>:^  +  8jc 
2{x  -  iyj3x  -  2 


91. 


1)3/2 


V7+T 

3  1 

Iny  =  \nx  +  -  InU  -  1)  -  -  ln(;t  +  1) 


3/     1 


U     1 


y\dxj      X      2\x  —  1/       2\x  + 


dy 
dx 


2Lx 


X  +  1 


y^4x^  +  \x-  2 
21    xix''-  1) 


{2x^  +  2x-  \)Jx-  1 
{x  +  1)3/2 


93.  Answers  will  vary.  See  Theorems  5.1  and  5.2. 


95.  In  e'  =  ;c  because  f{x)  =  In  x  and  g(x)  =  e^ 
are  inverse  functions. 


97.  (a)  /(l)  9^/(3) 


(b)  fix)  =  1  -  -  =  0  forA:  =  2. 

X 


99. 


/3  =  10  log,, 


10\  10-16 


l«lnf     ^ 


In  10     VIO 


10 
In  10 


{In/  +  161n  10]  =  160  +  lOlogig/ 


j8(10"'°)  =  7^[ln  10-'°  +  16  In  10]  =  7^[-  10  In  10  +  16  In  10]  =  7^[6  In  10]  =  60  decibels 
1  In  10  m  10  In  10 


101.  (a)  You  get  an  error  message  because  In  h  does  not  exist 
for  /z  =  0. 

(b)  Reversing  the  data,  you  obtain 

h  =  0.8627  -  6.4474  In  p.  ■     ' 

[Note:  Fit  a  line  to  the  data  (x,  y)  =  (Inp,  h).] 

(C)         25 


(d)  If  p  =  0.75,  h  ==  2.72  km. 

(e)  If  h  =  13  km,  p  =  0.15  atmosphere. 

(f)  /!  =  0.8627  -  6.4474  In/? 

1  =  -6.4474--^    (implicit  differentiation) 
p  dh 

dp  ^        p 

dh       -6.4474 

For  A  =  5,  p  =  0.5264  and  dp/dh  =  -0.0816  atmos/km. 

For  h  =  2Q),p  =  0.0514  and  dp/dh  =  -0.0080 
atmos/km. 

As  the  altitude  increases,  the  rate  of  change  of  pressure 
decreases. 


103.  (a)  fix)  =  In  x,  gix)  =  J'x 


{h)  fix)^\nx,gix)=ifx 


^■'"4-'«^i^ 


For  X  >  'X,  g  'ix)  >  fix),  g  is  increasing  at  a  faster  rate 
than/for  "large"  values  of  z. 


fix) 


For  X  >  256,  g  Xx)  >  fix),  g  is  increasing  at  a  faster  rate 
than/for  '  ;arge"  values  of  .v./(.v)  =  In  x  increases  very 
slowly  for  "large"  values  of  x 


Section  5.2        The  Natural  Logarithmic  Function:  Integration       223 


105.  False 

In  j:  +  In  25  =  ln(25x)  #  ln(;t  +  25) 


Section  5.2       The  Natural  Logarithmic  Function:  Integration 


BH 


-dx  =  5\n  \x\  +  C 


3.  «  =  .r  +  1,  rf«  =  dx 
1 


J.r  +  1 


dx  =  InLc  +  1    +  C 


5.  u  =  3  —  2x,  du  =  —2dx 


^      dJc=-l-\—^{-2)dx 


Js-Zx'^  2j3  -2x 

1 


In  3  -  2x\  +  C 


7.  u  =  x^  +  I,  du  =  2x  dx 


-ln{x2+  1)  +  C 


InV.r^  +  1  +  C 


/^-/h! 


ott 


-  4ln|;c|  +  C 


11.  M  =  .r^  +  3x-  +  9x,  du  =  3(x~  +  Zx  +  3)  dx 

r  .t-  +  2x  +  3         ^  1  f3{x^  +  2j:  +  3) 
J  x3  +  3jc-  +  9.t:       "  3J  .r^  +  3a2  +  9.r 


■  ln|x3  +  3x^  +  9x\+  C 


..j^f^.-j{.-^^jh]. 


4x  +  61nU  +  1|  +  C 


"■/^^:^*^/(''--?tiK 


y-2;c  +  |ln(;c2  +  2)  +  C 


21.  H  =  a;  +  I,  du  =  dx 

=     Ux+    l)-'/2(ic 

=  2{x  +  1)1/2  +  C 


lvlTT*  =  l< 


=  2V.r  +  1  +  C 


-/^4^-/('-7^)- 


=  Y  +  51n|;c  -  3|  +  C 


19.  M  =  in  X,  du  =  -  dx 

X 


\ 


{\nxf    ,     _    1„_.,3 


dx  =  -(ln.r)'  +  C 
X  3 


f      2r  flv  -  2  +  2 

=/n--/u^- 


=  21nU  -  1| 


(.V  -  1) 


+  C 


224        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


1 


25.  M  =  1  +  Jlx,  du  =  -^=  dx  =^  {u  -  \)du  =  dx 
1 


}\  +  Jlx  J 


Jlx 


■du 


du 


1  +  V2jc  /        " 

=  «  —  ln|M|  +  C, 

=  (l  +  72I)  -  Injl  +  JYx\  +  Ci 
=  Jlx-  ln(l  +  v^)  +  C 
where  C  =  Cj  +  1 . 


27.  «  =  V^  -  3,  rfw  = -pdx  =>  2(m  +  3)  du  =  dx 

ijx 


\-^^dx  =  2j^.«  =  l\^^^^^du  =  2j(«  .  6  +  f).« 


=  2 


+  6m  +  91ni«| 


Ci  =  M^  +  12«  +  181n|M|  +  C, 


=  [Jx  -  3f  +  12(v^  -  3)  +  18  \^Jx  -  3|  +  C, 
=  ;»:+  6V5  +  IBlnlv^  -  3!  +  C  where  C  =  C,  -  27. 


f 


29.    P^rfe=ln|sine|  +C 


sin  6 
(m  =  sin  Q,  du  =  cos  6  dS) 


31.      CSC  2j:  ^  =  -    ( 


I  CSC  2j:  ^  =  -  I  (esc  2.i;)(2)  dx 

■  Inlcsc  2j:  +  cot  2x\  +  C 


33.    f-^^^ 

J  1  +  sin  r 


37..  =  |: 


df  =  Inll  +  sinil  +  C 


2-  X 


■dx 


=  -3 


-dx 


(1.0)^ 

i 

:^ 

?V:^ 

x-2 
=  -31n|;f  -  2|  +  C 

(1,0):  0  =  -31n|l  -  2|  +  C  ==*  C  =  0 
y  =  -3  1n|;<;-  2\ 


,_     ,  secxtanx  .  ,  1    ,   ," 

35.    i r  dx  =  Inlsec  x  -  1 1  +  C 


f 


39.  i  =     tan(2e)  rf0 
1 


(0.2),     4 


^1' 


tan(2e)(2rf0) 


A  I  I  A , 


-ln|cos2e|  +  C 


(0,  2):  2  =  --  ln|cos  (0)|  +  C  =J.  C  =  2 


i  =  --ln|cos2e|  +  2 


41, 


dx      X  +  2 


(a) 


(0,1) 


1=^* 


(b)       y 


X  +  2 
>.(0)  =  1  ^   1  =  In  2  +  C 


rfx  =  ln|x  +  2|  +  C 
C  = 


Hence,  y  =  ln|x  +  2|  +  I  -  In  2  =  In 


-  in  2 
X  +  2 


Section  5.2        The  Natural  Logarithmic  Function:   Integration        225 


43. 


fl^'^^tf'^l^^^'ll 


= -In  13  «  4.275 


45.  M  =  1  +  \n  X,  du  =  —  dx 

X 


i 


(1  +  \nxY 


dx  = 


^1  +ln.r)3 


-ff^-/> 


X  +  1 


dx 


-x^-  X-  \n\x+  1| 


-In  3 


49. 


f- 


cos  6 


sin  0 


rfe 


ln|e  -  sin  e\ 


=  In 


2  -  sin  2 


1  —  sin  1 


«  1.929 


51.  -Inlcosjcl  +  C  =  in 


cos.r 


+  C  =  Inlsecr   +  C 


53.  Inlsec^c  +  tan.r   +  C  =  In 


=  In 


(sec  X  +  tan  .r)(sec  j:  —  tan  jc) 


(sec  X  —  tan  x) 


+  C  =  In 


sec'.t  -  tan-^.x: 


secx  -  tanj: 


+  C 


1 


sec  X  -  tan  x 


+  C  =  —  Inlsecr  —  tan  j:   +  C 


.    I ^a!j;  =  2(1  +  v^)  -  21n(l  +  v^x)  +  C, 

=  2[Vx  -  ln(l  +  Jx)]  +  C  where  C  =  C,  +  2. 


57.      cos(l  -  x)dx  =  -sin(l  -  .t)  +  C 


p/2  r 

59.    I      (cscr  —  sinjf)fl[x  =     —  ln|cscjc  +  cot.i:|  +  cosj: 

Jtt/A  L 


V2 


72 


ir/4 


=  ln(V2  +  1)  -  -^  «  0.174 


Note:  In  Exercises  61  and  63,  you  can  use  the  Second  Fundamental  Theorem  of  Calculus  or  integrate  the  function. 


=B 


61.    F(x)  =   \  -dt 
F'ix)  =  i 


62.fix)  =  [\dt  =  ['\dt-[\dt 


F'ix)  =  f  -  i  =  0 
3a'       .V 


65. 


A  =  1.25 
Matches  (d) 


67.  A  =  I  '^^^-^dx  =  I   (x  +  -]dx 


'\^ 


+  4  In  .r 


'  =  (8  +  41n4)-^ 


15 


—  +  8  In  2  ~  13.045  square  units 


*^ 


226       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


69.    r2sec^d^  =  -r 
Jo  6  ttJo 


ttxXtt  , 


12 


In 


;— +  tan  — 
6  6  I  Jo 


11 

77 
12 


In 


sec—  +  tan— ln|l  +  0| 

3  3  77 


ln(2  +  73)  -  5.03041 


71.  Power  Rule 


73.  Substitution:  (m  =  j:^  +  4) 
and  Log  Rule 


75.  Divide  the  polynomials: 
=  j:  —  1  + 


x+  1 


X  +   1 


J         p  g  ("4 

77.  Average  value  = r-     ~dx  =  4     x'''^dx 

4  -  2J2  X-  J2 


-4i 


-M 


79.  Average  value 


^tI' 


Inx  ,  1 

dx  = 

X  e  —  1 


\_nxir 


1  /I 


e  -  1V2 
1 


2€  -  2 


=  0.291 


81.   Pit)  =  r  fo25/'  "  (3000)(4)J^   "p^-^g/?  =  12,000 In |1  +  0.25r|  +  C 

P(0)  =  12,000  ln|l  +  0.25(0)1  +  C  =  1000 

C  =  1000 

P(t)  =  12,000  ln|l  +  0.25f|  +  1000  =  1000[121n|l  +  0.25f|  +  1] 

P{3)  =  1000[12(ln  1.75)  +  1]  «  7715 


83. 


50 


^r3Sfi-=HH~ 


+  3x\ 


_  40 


«  $168.27 


85.  (a)  2x--  y^  =  S 
•  ■  ^2  =  2x2  -  8 

y,  =  V2x2-  8 
:y2  =  -  V2x2-  8 


\ 

^ 

/ 

'\ 

Let/:  =  4andgraphr.^    ^  I  -  if^) 


(c)  In  part  (a),      2^^  -  /  =  8 
4jc  -  2yy '  =  0 

,      2x 


In  part  (b),       y^  =  -  =  4j:  ' 
x 


2yy'  = 


,'_-^  _  ~2y  _  -2y  _  -y 
yx^      y'^  x'^        4x         2x' 


Using  a  graphing  utility  the  graphs  intersect  at  (2.214,  1.344).  The  slopes  are  3.295  and  -0.304  =  (-  l)/3.295,  respectively. 


Section  5.3        Inverse  Functions        227 


87.  False 
I 


(lnx)  =  ln(;c'^2)^(,n^)i/2 


Section  5.3       Inverse  Functions 


89.  True 
"l 


il 


dx  =  InU   +  C, 


=  ln|x|  +  ln|C|  =  ln|C;c|,  C  ^0 


1.  (a)        f(x)  =  5;c  +  1 


/(gW)  =/(^)  =  5(^1  +  l=x 


giifU))  =  g(5x  +  1)  =  ^^""^P       '  =  X 


3.  (a)       fix)  =  x' 
g(x)  =  ^x 

f{g{x))=f[ifx)  =  {irxy  =  x 

g(/W)  =  g(:^)=   W  =  x 


(b) 


I  _2-- 
-3 


5.  (a)       fix)  =  vT^^ 

gU)  =  x=  +  4,  .V  >  0 
/(gW)=/U-  +  4) 


=  VU^  +  4)-4=v^  =  ;c 
=  (y;c  -4)2  +  4  =  x-4  +  4 


(b) 


12-- 
10- 

4 

2 


-\ 1 1 l-»-J 


2      4      6      8     10     12 


7.  (a)       fix)  = 


1 


g{x)  =  - 


f(g{x))  =  Y/^  =  ^ 
g(/W)  =  tV  =  ^ 

l/x 


(b) 


H 1 1—*--' 


9.  Matches  (c) 


11.  Matches  (a) 


228        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


13.  fix)  =  ja:  +  6 

One-to-one;  has  an  inverse 


15.  f{e)  =  sin  d 

Not  one-to-one;  does  not  have  an 


17.  h(s)  = 


1 


s-2 
One-to-one;  has  an  inverse 


19. /W  =  \nx 

One-to-one;  has  an  inverse 


21.  g(x)  =  U  +  5)3 

One-to-one;  has  an  inverse 


-2 


23.  f(x)  --  {x  +  af  +  b 

f'(x)  =  3(;c  +  a)2  >  0  for  all  x. 

/is  increasing  on  (— oo,  oo).  Therefore, /is  strictly 
monotonic  and  has  an  inverse. 


25.   /W  =  ^  -  2x^ 

f'ix)=x?-4x  =  0  when  ;c  =  0,  2,  -2. 

/is  not  strictly  monotonic  on  (— oo,  oo).  Therefore, /does 
not  have  an  inverse. 


27.  /(x)  =  2  -  X  -  ;c3  .        -. 

fXx)  =  -  1  -  3;c2  <  0  for  all  x. 
/is  decreasing  on  (— oo,  oo).  Therefore, / is  strictly  monotonic  and  has  an  inverse. 


29.      fix)  =  lx--b=y 

x  =  '-^ 
2 

X  +  3 


y  = 


/-'W  = 


2 
X  +  3 


31.      /W  =  x5  =  y 

x=  4/y 


y=  Vx 


/-'(x)  =   5/^  =  x'/5 


33.      /(;c)  =  v^  =  y 


X  =  y^ 


y  =  x'- 
f-\x)  =  jc2,   jc  >  0 


Section  5.3 


Inverse  Functions 


229 


35.      fix)  =  JA-  x'^  =  y,    0  <x  <2 


x=  J  A  -y^ 


=  JV^J^ 


f-\x)  =  V4  -  x\  0  <  ;c  <  2 


37.      fix)  =  Vx-  1  =  y 
jc  =  y3  +  1 

y  =  x^  +  \ 

/-'W  =x3+  1 


r 

^'r 

4- 

^ 

The  graphs  of /and/"'  are 
reflections  of  each  other 
across  the  line  y  =  x. 


39.     fix)  =  x^l^  =  .V,  ;(  >  0 
x  =  y3/2 

f'\x)  =;c3/2,  ;c  >  0 


The  graphs  of/and/"'  are 
reflections  of  each  other 
across  the  line  y  =  x. 


41.      /(x)=^#=  =  y 
77;c 


-^-yr^ 

/- 

2 

f::^ 

-^z 

Jly 


1  <  ;<:  <   1 


The  graphs  of/ and/  '  are 
reflections  of  each  other 
across  the  line  v  =  x. 


43. 


X 

1 

2 

3 

4 

f-\x) 

0 

1 

2 

4 

2  3  4 


45.  (a)  Let  x  be  the  number  of  pounds  of  the  commodity 
costing  1.25  per  pound.  Since  there  are  50  pounds 
total,  the  amount  of  the  second  commodity  is  50  —  x 
The  total  cost  is 

V  =  1.25.r  +  1.60(50  -  x) 

=  -0.35a:  +  80  0  <  .r  <  50. 

(b)  We  find  the  inverse  of  the  original  function: 

V  =  -0.35;c  +  80 
0.35a:  =  80  -  >> 

X  =  f  (80  -  y) 
Inverse:  y  =  -^(80  -  x)  =  f  (80  -  .x). 
.r  represents  cost  and  y  represents  poimds. 

(c)  Domain  of  inverse  is  62.5  <  .v  <  80. 

(d)  If  .t  =  73  in  the  inverse  function. 

y  =  -^(80  -  73)  =  -x  =  20  pounds. 


230       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


47.  fix)  =  (x  -  4)2  on  [4,  oo) 

f'(x)  =  2U  -  4)  >  0  on  (4,  oo) 

/is  increasing  on  [4,  oo).  Therefore, /is  strictly 
monotonic  and  has  an  inverse. 


49.  f(x)  =  -^  on  (0,  oo) 


fix)  =  — r  <  Oon(0,  oo) 
x' 

/is  decreasing  on  (0,  oo).  Therefore, /is  strictly 
monotonic  and  has  an  inverse. 


51.  f(x)  =  cos  X  on  [0,  tt] 

f'(x)  =  —  sin  x  <  0  on  (0,  it) 

/is  decreasing  on  [0,  it].  Therefore, /is  strictly  monotonic  and  has  an  inverse. 


53. 


fix) 


x^--4 

X^y  —  4y  =  X 

x^y  —  X  —  4>'  =  0 

a  =  y,  b  =  —  1,  c  =  —4y 


yon  (-2,  2) 


^  1  +  Vl  -  4(y)(-4v)  ^  1  ±  Vl  +  16>-2 
""'  _       2y  2>      . 

f(l  -  WTj6?)/2x,    ifx  ¥=  0 
0,  if  X  =  0 


y=r'ix) 


Domain:  all  x 
Range:   -2  <  y  <  2 


^ 

^ 

The  graphs  of /and/"'  are 
reflections  of  each  other 
across  the  line  >>  =  x. 


55.  (a),  (b) 


/ 

/-' 

-fl 

-^ 

(c)  Yes, /is  one-to-one  and  has  an  inverse.  The  inverse 
relation  is  an  inverse  function. 


57.  (a),  (b) 


(c)  g  is  not  one-to-one  and  does  not  have  an  inverse. 
The  inverse  relation  is  not  an  inverse  function. 


59.  /U)  =  Jx  -  2,  Domain:  x>2 


fix) 


>  OfoTx  >  2. 


2yr^ 

/is  one-to-one;  has  an  inverse 

Jx  -  2  =  y 
x-2=f 
x  =  f  +  2 
y  =  x^  +  2 
f'^ix)  =  x^  +  2,x  >  0 


61.  fix)  =  |x-  2|,x  <  2 
=  -(x-2) 
=  2  -X 
/is  one-to-one;  has  an  inverse 
2  —  X  =  >> 
2  —  y  =  x 
f~\x)  =  2  -  X,  X  >  0 


63.  fix)  =  ix  -  3)2  is  one-to-one  for  x  >  3. 
(x  -  3)2  =  >- 
X  -  3  =  v^ 
x=  Vy  +  3 
y=Vx  +  3 
/-'(x)  =  ^  -I-  3,  X  >  0 
(Answer  is  not  unique) 


65.  /(x)  =  |x  -I-  3|  is  one-to-one  forx  >  -3. 
X  -I-  3  =y 
X  =  y  —  3 
y  =  X  —  2 
/-H3c)  =  X  -  3,  X  >  0 
(Answer  is  not  unique) 


Section  5.3        Inverse  Functions        231 


67.  Yes,  the  volume  is  an  increasing  function,  and  hence 
one-to-one.  The  inverse  function  gives  the  time  / 
corresponding  to  the  volume  V. 


69.  No,  C{t)  is  not  one-to-one  because  long  distance  costs  are 
step  functions.  A  call  lasting  2.1  minutes  costs  the  same  as 
one  lasting  2.2  minutes. 


71. 


fix)  =  :c^  +  2x  -  1,  /(I)  =  2  =  a 
fix)  =  3.r2  +  2 


if-r{2)-j;rj^ 


1 


1 


1 


/'(/-'(2))      /'(I)       3(iP  +  2       5 


73.  /W  =  sin;t,/(|)=|  =  a 


(/- 


fix)  =  cos  .r 


1 


1 


2/      /'(/-'(1/2))      /V/6)      cos(7r/6) 

1       _  2V3 
73/2         3 


75.  /W  =  ^  -  -■  /(2)  =  6  =  a 


fix)  =  3.r=  +  ^ 


(J    )  yo)     f'(  f~^((i\\     f'(i\ 


1 


1 


/'(/-H6))      /'(2)       3(2)2  + (4/22)       13 


77.  (a)  Domain/ =  Domain/  '  =  (—00,00) 
(b)  Range/=  Range/"'  =  (—00,00) 
(c) 

3-1- 

// 


(d) 


/(.)  =  ^,   (|,^ 


/I 


'X  1^1 


/u 


/-H;c) 


(/-')'(.r)  = 


(/- 


</.t- 


79.  (a)  Domain/ =  [4,  00),  Domain /^^  =  [0.  oc) 
(b)  Range/ =  [0,  00),  Range/"'  =  [4,  00) 
(c) 


4       6       8      10     12 


(d) 


fix)  =  TT^,  (5,  1) 

Ax)  = 


2jx  -  4 


/'(5)  =  ^ 
/"'(x)  =  X-  +  4,  (1,5) 
(/"■)'(.r)  =  2x 
(/-')'(1)  =  2 


232        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


81.    .r  =  y3  -  V  +  2 

^  ^d\       , ,   dy 


dv 


'         Mi-4A),^  ' 


1 


dx      liy-  -  14v'  '    "ate      3-14       11 

Alternate  solution;  let /(a)  =  x^  -  Ix^  +  2. 
Then/'(jc)  =  Sjc^  -  14Aand/'(l)  =  -11. 


In  Exercises  83  and  85,  use  the  following. 
/(x)  =  |a:  -  3  andg(x)  =  x^ 
r\x)  =  %{x  +  3)  and  g-\x)  =  i^ 


83.  (/-'  "g-')(l)  =/-'(g-Hl))  =/-'(!)  =  32 


85.  (/-'  »r')(6)  =/-'(/-'(6))  =/-'(72)  =  600 


In  Exercises  87  and  89,  use  the  following. 

f(x)  =  X  +  4  and  gix)  =  2*  —  5 

r'W=x-4andg-'W  =  ^ 

87.  (g-'  ./-i)W  =  r'(/-'W) 
=  g-'U  -  4) 

^(x-  4)  +  5 
2 

x+  \ 


89.  (/°g)(x)=/(gW) 

=  /(2x-5) 
.      =  (Zx  -  5)  +  4 
=  2x-  1 


Hence,  (/"g)-'U)  = 


X  +  1 


(Note:  (/-g)-'  =g-'"/-') 


91.  Answers  will  vary.  See  page  335  and  Example  3. 


93.  y  =  x-^  on  {— CO,  ca)  does  not  have  an  inverse. 


95.  /is  not  one-to-one  because  many  different  x- values  yield 
the  same  >'-value. 

Example:  /(O)  =  /(tt)  =  0 

(2rt  —  IItt 
Not  contmuous  at ,  where  n  is  an  mteger 


97.  Let  if'gjix)  =  y  then  x  =  (/■=  g)^'(y).  Also, 

{f'g)ix)=y 
figix))  =  y 
g(x)=r'(y) 

X  =  g-'{f-'(y)) 
=  ig-'  'f-')(y) 

Since/and  g  are  one-to-one  functions, 

(/°5)-'  =  g^'°r'- 


99.  Suppose  g(x)  and  h{x)  are  both  inverses  of/(x).  Then  the  graph  of/(x)  contains  the  point  {a,  b)  if  and  only  if  the 
graphs  of  gix)  and  h{x)  contain  the  point  (b,  a).  Since  the  graphs  of  g{x)  and  h(x)  are  the  same,  g{x)  =  h{x). 
Therefore,  the  inverse  of/(x)  is  unique. 


Section  5.4        Exponential  Functions:   Differentiation  and  Integration        233 


101.  False 

Let/W  =  x\ 


105.  Not  true 


X,  0  <  ;c  <  1 

1  -  jc,       1  <  X  <  2  ■ 


Let/W 

/is  one-to-one,  but  not  strictly  monotonic. 


103.  True 


107. 


fix) 

(/-')'(o) 


dt 


71  +  t 
1 


ym^ 


/'(2)    i/yi? 


;,  /(2)  =  0 


=  yi7 


Section  5.4       Exponential  Functions:  Differentiation  and  Integration 


1.     e°  =  \ 
Inl  =  0 


3.         In  2  =  0.6931 

g0.6931.       =2 


5.  e'"-'  =  4 
X  =  4 


7.  e'  =  12 

JC  =  In  12  =  2.485 


9.  9  -  2?*  =  7 
2^^=  7 
e'  =  1 
x  =  0 


11.  50e-^  =  30 

-X  =  In 


-4 


0.511 


15.  InU  -  3)  =  2 
X  —  i  =  e- 

.t  =  3  +  e2  ==  10.389 


13.  In  .r  =  2 

.r  =  e=  -  7.3891 


17.  ln7x  +  2  =  1 

Jx  +  2  =  e'  =  e 
X  +  2  =  e- 

jt  =  e^  -  2  =  5.389 


19.  V  =  e 


21.  >•  =  e-"^ 

Symmetric  with  respect  to  the  .%-axis 
Horizontal  asymptote:  v  =  0 


234       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


23.  (a) 


^ 

V 

Horizontal  shift  2  units  to  the 
right 


(b) 


/f 

k 

A  reflection  in  the  jc-axis  and  a 
vertical  shrink 


(c) 


^ 


Vertical  shift  3  units  upward 
and  a  reflection  in  the  y-axis 


25.  y  =  Ce'" 

Horizontal  asymptote:  v  =  0 
Matches  (c) 


27.  y  =  C(l  -  €-<") 
Vertical  shift  C  units 
Reflection  in  both  the  x-  and  y-axes 
Matches  (a) 


29.  f(x)  =  e^" 

g(x)  =  InV^  =  -\nx 


31.  f(x)  =  e--l 
g(x)  =  ln{x  +  1) 


33. 


; 

g 

^ 

As  j:  — >  oo,  the  graph  of /approaches  the  graph  of  g. 


lim  (1  + 

X  — »oo 


^r 


35.  1  + 


1 


1,000,000 


1.000,000 


«  2.718280469 


e  «=  2.718281828 


e  >  1  + 


1 


1,000,000 


37.  (a)  y  =  e^^ 

At(0,  l),y'=  3. 

39.  f{x)  =  e^ 
f'(x)  =  2e^ 

45.  g(i)  =  (e-'  +  e')^ 

g'W  =  3(e-'  +  e')V-e-') 


(b)  y  =  e- 


41.  /(jc)  =  e-2'+^' 


f-" 


47.  >'  =  In<r'' 


Ik- 


y'  =  -Ze-^" 

At(0,  l),.v'  = 

•  -J 

. 

43. 

y  = 

dy  _ 
dx 

Ij-x 

49. 

y  = 
di_ 

ln(l  + 
2e^ 

e^) 

dx       I  +  e^ 


Section  5.4        Exponential  Functions:   Differentiation  and  Integration        235 


51.    y  = 


e'  +  e- 


2{e^  +  e-")'^ 


dy 
dx 


=  -lie'  +  e-'Y^e'  -  e'") 
-2(e^  -  e'') 


{e'  +  e-^)2 


53.    y  =  x^e^  -  Ixe'  +  le'  =  e^ix^  -  2x  +  2) 
^  =  e^(2x  -  2)  +  e'ix^  -  2x  +  2)  =  .tV 


55.  /(;c)  =  e-'  In  j: 

Z'U)  =  e'4-]  -  e-'\BX  =  e~4-  -  In^J 


57.    y  =  e'isin  x  +  cos  x) 

—-  =  e^icQis  x  —  sin  x)  +  (sin  x  +  cos  xSie' ) 
dx 

=  e^(2  cos  j:)  =  le'  cos  at 


59.  xey  -  mx  +  3.V  =  0 

xey^-  +  ey  -  10  +  3^  =  0 
dx  dx 


dy 
dx 


(xey  +  3)  =  \0-  ey 

dy  _  10  -  gy 
dx  "  xey  +  3 


61.  fix)  =  (3  +  2x)e-^' 

fix)  =  (3  +  2x)(-3e-3')  +  le-^" 

=  (-7  -  6A;)e-3^ 
/W  =  (-7  -  6x){-3e-^')  -  6e-3x 

=  3(6;c  +  5)e-^' 


63.  J!  =  e^{cosV2jc  +  sinv/2Jc) 

>>'  =  e^(-  V2sin  ^x  +  V2cos  V2;>:)  +  e-^fcosVlv  +  sin  v^) 

=  ej{l  +  72)cosV2x  +  (l  -  >/5)sin>/2»:] 
>>"=  ej_-{j2  +  2)sin  v/2x  +  (^2  -  2)cos  J2x]  +  e^[(\  +  V2)cos72Jc  +  (l  -  v^sin  Vlt] 
=  e{(-  1  -  2V2)sin  ^x  +  (- 1  +  2V2)cos  V2a] 
-2>''  +  3v  =  -2e-'f(l  +  V2)cos  Vli:  +  (l  -  72)sin  Vlr]  +  3e{cosV2.i:  +  sin  Tlr] 

=  e{(l  -  2v/2)cos  y2.v  +  (l  +  272)sin  Vlx]  =  -y" 
Therefore,  -2y'  +  3y  =  -y"  =>  y"  -  2.v'  +  3.v  =  0. 


65.  f(x)  = 


e^  +  e- 


f'(x)  =  ^    .^  "  =  0  when  x  =  0. 


fix)  =  ^-^-^  >  0 


Relative  minimum;  (0,  1) 


67.    gW  = -^,-U-2)V2 

8'{x)  =  ^(.v  -  2)g-(-2)V2 
V2Tr 


g"(x)  =  -^(.t  -  l)(.r  -  3)g-(-2'V2 


v/2^ 


1 


Relative  maximum:  (  2,  — ;=  )  ~  (2,  0.399) 


'Z7T 
1 


Points  of  inflection:  I  1, 


^r- 1    3 


,.-1/:     == 


(1,0.242),  (3,0.242) 


236       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


69.   fix)  =  x-e-'^ 

fix)  =  -jc^e---  +  2x6''^  =  xe'^il  -  x)  =  0  when  jc  =  0,  2. 
fix)  =  -e''i2x  -  x^)  +  e-^(2  -  2x) 

=  e-^ix^  -  4x  +  2)  =  0  when;c  =  2  ±  V2. 
Relative  minimum:  (0,  0) 
Relative  maximum:  i2,4e~^) 

x  =  l±  Jl 

y  =  (2  ±  v^2^-(2±>^ 
Points  of  inflection:  (3.414,  0.384),  (0.586,  0.191) 


°(2±V2,(6±4V2)c-"*^') 


71.    g{i)  =  1  +  (2  +  t)e-' 

.       g'ii)  =  (1  +  t)e-' 
g"(i)  =  te'' 

Relative  maximum:  (—1,1  +  e) 
Point  of  inflection:  (0,  3) 


(-1,3.718) 


{-\.\*e) 

^0.3) 

73.    A  =  (base)(height)  =  Ixe'"' 
dA 


dx 


=  -Ax^e''^  +  le-^ 


=  2e-^(l  -  Ix^)  =  Owhenx  = 


72 


A  =  J2e~''^ 


75.    y  = 


1  +  ae-''"' 

-x/b 


.A-i' 


,a>0,b>0,L>0 
at 


,-xlb 


y  = 


(1  +  ae-^l»Y       (1  +  ae-^I^Y 


y"= 


(1  +  ae-''"'Y 
(1  +  ae-'/>')\~e-''^\  +  2(y  <?--/*  V^g-V* 


(1  +  ae-'''>'f 


^  Lae-^"'[ae-''/'>  -  1] 
(1  +  ae-'/^f  fc2 


y"=  Olfae-"'"  =  1 
L 


—r-  =  In  -    =>  j:  =  fo  In  a 

b  \aj 


yib  In  a)  = 


1  +ae-(i'in«)/*       1  +a(l/a)       2 
Therefore,  the  y-coordinate  of  the  inflection  point  is  L/2. 


Section  5.4        Exponential  Functions:  Dijferentiation  and  Integration       237 


77,    e"^  =  X  =^  fix)  =  X-  e'" 
fix)  =  1  +  e"^ 

X,  =  1 

X2  =  x,-  |r4  =  0.5379 


79.  (a) 


'        f'(x2) 


0.5670 


^4  =  *3  -  TTfH  "  0-5671 
/U3) 

We  approximate  the  root  of /to  be  .1:  =  0.567. 


(b)  When  x  increases  without  bound,  l/x  approaches  zero, 
and  e'''-'  approaches  1.  Therefore,  f(x)  approaches 
2/(1  +  1)  =  1.  Thus, /(.r)  has  a  horizontal  asymptote 
at  y  =  1.  As  j:  approaches  zero  from  the  right,  l/x 
approaches  co,  e^^'  approaches  00  and/(.r)  approaches 
zero.  As  x  approaches  zero  from  the  left,  l/x  approach- 
es —  00,  e'/^  approaches  zero,  and/(.r)  approaches  2. 
The  limit  does  not  exist  since  the  left  limit  does  not 
equal  the  right  limit.  Therefore,  x  =  0  is  a 
nonremovable  discontinuity. 


81. 


h 

0 

5 

10 

15 

20 

P 

10,332 

5.583 

2,376 

1,240 

517 

]nP 

9.243 

8.627 

7.773 

7.123 

6.248 

(a)        12 


y  =  -0.1499/!  +  9.3018  is  the  regression 
line  for  data  (h.  In  P). 


(c)   12.000 


gOh 


(b)  In  P  =  ah  +  b 

P  =  pnh  +  b  — 

P  =  Ce^,  C  =  e" 
For  our  data,  a  =  -0.1499  and  C  =  e"0'8  =  10.957.7 
P  =  10,957.7e-o'''99'' 


(d)  ^  =  (10,957.71)(-0.1499)e-''"'9'" 
all 

=  -  1642.56e-o  '«»'■ 

For/i  =  5,^  =  -776.3.  For /!  =  18,^  «  -110.6. 
ah  all 


83.    fix)  =  e'^fio)  =  1 
fix)  =  \e^'\fXQ)  =  i 

fix)  =  iw^/"(0)  =  \ 


P:  jf^'^ 


P,(;f)  =  1  +  2(^-0)=:^+  l.PilO)  =  1 


P,'W=|,P/(0)=| 
P2W  =  1  +  |(-v  -  0)  +  |(.x-  -  0)^-  =  I  +  ^  +  1,  P,(0)  =  1 

P/W  =  \,  Pz'tO)  =  ^ 


The  values  of/,  f ,,  Pj  and  their  first  derivatives  agree  at  x  =  0.  The  values  of  the  second  derivatives  of/ and  P; 

agree  at  .v  =  0. 


238        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


85.  (a)    y  =  e^ 


/ 


(c)    y  =  e' 

x^      x^ 


/ 

> 

Qo)    y  =  e 


^2  =  1  +  ^  +  ( y 


^ ^ 

/ 

87.  Let  u  =  'bx,  du  =  5  dx. 


/ 


e  '  5dx  =  e^  +  C 


91. 


Jxe-^dx=-|J, 


e-'^{-2x)dx  =  -|e"^  +  C 


89.  Let  u  =  -2x,du  =  -2dx. 

ju^=4|U(-2)^=[4.- 

1  e^  _  1 

93.    I  ^dx  =  2  I  e^(-^  W  =  2e-^  +  C 


95.  Let  H  =  1  +  e"-',  du  =  -e""^dj: 


I     ^  "^     dx  =  -  \-—^-^dx  =  -ln(l  +  e-^)  +  C  =  ln(     ^  .  )  +  C  =  a:  -  ln(e^  +  1)  +  C 
J  1  +  e"^  J  I  +  e-'  ^  '  \e^+  1/ 


3  3 

97.  Let  u  =  -,  du  =  — :;dx. 
X  X- 


/:f-4H-i)- 


-igSAl 


'I 


{e^  -  1) 


99.  Letu=  I  -  e^,du  =  -e'dx. 

le'JT^^dx  =  -    (1  -  e'y'-(-e')dx 


=  -^(1  -  e'f'^  +  C 


101.  Let «  =  e^  -  e"-',  <^u  =  (e^  +  e-'^)dx. 


/ 


e*  —  e 


-iic  =  In  e"^  -  e"^   +  C 


103.    r    J"  dx=   \5e-^dx-   \e-^dx 


=  -T^"^  +  e"-*  +  C 


Lsinm^Qs  7^^  =  _Lsin,rx(^ 


COS  T7;c)  lie 


—  rtSin  7j:r 


+  c 


Y 


107.    I  e-^Xw.(e-^)dx=  -     [tan(e~^)](-e-"^)att 
=  ln|cos(e-^)|  +  C 


Section  5.4        Exponential  Functions:  Differentiation  and  Integration       239 


109.  Let  u  =  ax^,  du  =  lax  dx.  (Assume  a  i=  0) 
y  =    I  xe"^'  dx 


=    \xe^( 


—   e'^(2ax)  dx  =  —e^  +  C 
2a  j  2a 


/i 


111.  fix)  =   \^(e'  +  e-^)dx  =  ]-(e-  -  e'^)  +  C, 


/'(O)  =  C,  =  0 
"l 


/w 


/: 


^{e'  -  e-')dx  =  -(e^  +  e"^)  +  C^ 


/(O)  =  1  +  Cj  =  1  =>  Co  =  0 

f(x}  =  -(C  +  e-') 


113.  (a) 


(0,  d; 


(b)  ^  =  2e-^/%     (0,  1) 


=   \le-''^dx=  -4    e 


1 


>-=   \2e-''^dx=  -A\e-''^\--dx 


=  -4e-^/2  +  c 
(0,  1):   1  =  -4e°  +  C=  -4  +  C  =>  C  =  5 


t 


115.    I    £^dA:=e'      =e5-l  =  147.413 


76 

117.    I      xe-'^^'^dx  = 


I 


.lp-^/4 


=  -le-^l^-  +  2  «  1.554 


119.  (a)  /(m  -  v)  =  e"-"  =  (£")(£-")  = 
(b)  /(fcjc)  =  e^-  =  (e')^  =  [/W?. 


e"  _  /(«) 


(-6 


121.  0.0665        e-o.oi39Cr-48)^^, 
J48 


Graphing  Utility:  0.4772  =  47.727c 


123. 


e'dt  > 
Jo  Jo 


\dt 


e^-\>x^!-e^>\+  X  for.v  >  0 


125.  /(.v)  =  e".  Domain  is  (—00.  00)  and  range  is  (0.  oc). 
/is  continuous,  increasing,  one-to-one.  and  concave 
upwards  on  its  entire  domain. 


lim  e''  =  Q  and  lim  e''  =  00. 

a  — »  -  00  j:— >oo 


127.  Yes.  fix)  =  Ce^.Ca  constant. 


129.  e   '  > 


Jo 


e'^dx  >  0. 


240       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


131.  fix) 


\nx 


(a)  f'(x)  = ^ —  =  0  when  x  =  e. 


On  (0,  e),f'{x)  >  0  =>  /is  increasing. 
On  {e,  oo),/'(jc)  <  0  =>  /is  decreasing. 

(b)  For  e  <  /4  <  S,  we  have: 

In  A       InS 

B\t\A  >  A\nB 
InA^  >  InS'' 

A«  >  B^. 

(c)  Since  e  <  tt,  from  part  (b)  we  have  e'^  >  tt"". 


Section  5.5       Bases  Other  than  e  and  Applications 


■-(r 

'  -^(r 

5.  log^l  =  log2  2-3  =  - 

At  fo  =  6,  y  = 

(if 

_  1 

~  4 

At  fo  =  10,  y  = 

10/7 

-  0.3715 

7.  log,  1  =  0 

9.  (a)         23  =  8 

11.  (a)  logioO.Ol  =  -2 

\                             ' 

log28  =  3 
(b)      3-'=^ 

10-2  =  0.01 

(b)  logo^8=  -3 

0.5-3  =  8 

l0g3T=-l 


%-'  =  8 


13.  y  =  3^ 


X 

-2 

-1 

0 

1 

2 

y 

1 

9 

1 
3 

1 

3 

9 

\ 1 — >-» 


15.  v  = 


X 

-2 

-1 

0 

1 

2 

y 

9 

3 

1 

1 

3 

1 

9 

17.  h{x)  =  5^-2 


JC 

-1 

0 

1 

2 

3 

y 

125 

X 

25 

i 
5 

1 

5 

/ 

4- 

/ 

3- 

/ 

2- 

1 

\ 

1- 

w. 

1           2 

3 

A 

* 

Section  5.5        Bases  Other  than  e  and  Applications        241 


19.  (a)  logio  1000  =  X 


W  =  1000 

.t  =  3 

(b)  logioO.l  =x 

i(y  =  0.1 

JC=  -1 

23.  (a)               x^-  x  =  log;  25 

X-  -  X  =  logj  5-  = 

2 

;c2  -  X  -  2  =  0 

(x  +  1)U  -  2)  =  0 

X  =  -10R;c  =  2 

25.        32^  =  75 

2jcln  3  =  In  75 

.  =  1'"^5^,Q.. 

2  In  3 


21.  (a)  log3;c=  -1 

3-'  =x 

I 
-f  =  3 

(b)  log2J:  =  -4 

2-"  =  X 
1 

(b)  3a;  +  5  =  log2  64 
3jc  +  5  =  log2  2*  =  6 
3.r  =  1 


27.  23--'  =  625 

(3  -  .r)ln  2  =  In  625 
In  625 


3  -  x  = 


In  2 


3  - 


In  625 
In  2 


-6.288 


29.        |l+«ff^3 
12rln|l  +~)  =  ln3 


f  = 


1 


In  3 


12     /,  ^  0.09 
T+I2- 


==  12.253 


31.  logjU  -  1)  =  5 

.r  -  I  =  2^  =  32 
.r  =  33 


33.  logj  x~  =  4.5 

;c2  =  3^-5 

.t  =  ±v^^  ±11.845 


35.  gU)  =  6(2'--)-25 
Zero:  x=  -1.059 


^ 

(-1.059.0) 

/ 

\ 

X.^ 

37.  /lU)  =  32  logioU  -  2)  +  15 
Zero:  5  =  2.340 


242        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


39.  f(x)  =  4^ 
g{x)  =  log4;c 


x 

-2 

-1 

0 

i 

2 

1 

fix) 

1 

16 

1 
4 

1 

2 

4 

x 

1 
16 

1 

4 

1 

2 

4 

gW 

-2 

-1 

0 

i 

2 

1 

41.  /U)  =  4^ 

/'(x)  =  (ln4)4- 


43.    >-  =  5^-2 
ax 


45.    g{t)  =  t^2' 

g'it)  =  tHln2)2'  +  (2t)2' 
=  r2'(rln2  +  2) 
=  2'ti2  +  t\n2) 


47.    /i(e)  =  2-9cos  ttO 

h'ie)  =  2-s(-7rsin  ttO)  -  (ln2)2-»cos  trd 
.      =  -2-^(In  2)  cos  -770+  TTSin  Trd] 


49. 


^ 
^ 


logs  -'^ 

1 
xln3 


51.  fix)  =  log. 


/'W 


55.    git) 


8 'it) 


-   10S2 

X  -  1 

=  2  log2  x  -  logj  ix  -  1) 

2 
xln 

1 

2       (;t-l)ln2 

X-  2 

(In  2)a:(jc  -  1) 

lOlog^r       10 /In  A 
r           ln4V  r  / 

10 

rr(lA)  -  Inrl 

In  4 

L     f'     J 

10 

r,       ,„  .1 

5 

/2ln4'- 


;Mn2 


(1  -Inf) 


53.    y  =  logj  V^^^^  =  I  log;  ix^  -  1) 

^  =  1  2;c  ^  X 

dx      2'  [x-  -  l)ln5  ~  U^-  l)ln5 


57. 


y  =  X 


'./x 


In  y  =  -  In  j: 

X 


^  =  ^(1  -  Inx)  =  2x(2/-'-2(l  -  ln;c) 


59.  y=ix-2Y*^ 

Iny  =  (x  +  l)ln(x  -  2) 
1 


Kl)=<-«u-. 


+  InU  -  2) 


^ 
^ 


X  +  I 

-^  +  Hx  -  2) 

x  -  2 


=  U  -  2)-- 


i^ 


+  InU  -  2) 


61.j3^^  =  |^ 


+  C 


Section  5.5        Bases  Other  than  e  and  Applications       243 


In  2  L         2j 


2  In  2      In  4 


5./.5-=^=-l|5 


65.    \x5'''~  dx=  -]r\5  '\-2x)dx 


1\5- 


\ll  In  5 
-1 


+  C 


2  In  5 


(5-^'-)  +  C 


r  3^ 

J  1  +3- 


67.    I  .  :        d[»;,  M  =  1  +  3-',  c/m  =  2(ln  3)3^  dx 


1 


2  In  3)3- 


2  In  3 


m 


d[x 


^      ln(l+3^)  +  C 


2  In  3 


69.  ^  =  0.4^/3^  (0,  \ 
dx  \     2 


Jo.4^^^^.  =  3[o.4'/'(| 


dx 


In  0.4 


0.4^/3  _,_  (;  =  3(in  2.5)(0.4K3  +  ^ 


.V  =  3  In  2.5(0.4)^/3  +  _  _  3  ]„  2.5 


(a) 


3(1  -  0.4^3)       1 
In  2.5  2 


71.  Answers  will  vary.  Example:  Growth  and  decay  problems. 


(b) 


7 


73.      y 


(8,3)» 


•  (2.1) 

(1,0) 

-»-\ 1 1 1- 


X 

1 

2 

8 

y 

0 

1 

3 

(a)  y  is  an  exponential  function  of -v:  False 

(b)  y  is  a  logarithmic  function  of  .r:  True;  v  =  log^.v 

(c)  X  is  an  exponential  function  of  v:  True,  2*  =  x 

(d)  y  is  a  linear  function  of  x:  False 


2  4  6 


75./(.^)  =  log,x  ^  f'(x)  = 
six. 


1 


xln2 

x'  =^  g'(x)  =  x^(l  +  In.x) 


[Note:  Let  y  =  g(x).  Then:    In  y  =  In  a-"^  =  x  In  .r 

—  y    =  A'  •  — h  In  .V 
y  .V 

y'  =  y(l  +  In.v) 

y'  =  x'^(l  +lnA)  =  g'(j:).] 

^(a)  =  .ir  =>  ^  '(.t)  =  2x 

Ma)  =  2'  =»  A''(.v)  =  (In  2)2^ 

From  greatest  to  smallest  rate  of  growth: 
gix),  k{x),  h{x)J(x) 


77.  C{t)  =  P(1.05)' 

(a)  C(10)  =  24.95(1.05)'° 

-$40.64 

(b)  ^  =  P{\n  1.05)(1.05)' 
at 

j^ 

Whenf  =  1:  —  =  0.051P 
dt 

When  f  =  8:  —  =  0.072P 
dt 

(c)  ^  =  (In  1.05)[P(1.05)'] 


=  (In  1.05)C(r) 


The  constant  of  proportionality 
is  hi  1.05. 


244        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


79.  P  =  $1000,  r  =  35%  =  0.035,  t  =  10 

/        0  035\"'" 
A=  lOOofl  +^^) 

A  =  1000e<oo35)(>o)  =  1419.07 


n 

1 

2 

4 

12 

365 

Continuous 

A 

1410.60 

1414.78 

1416.91 

1418.34 

1419.04 

1419.07 

81.  P  =  $1000,  r  =  5%  =  0.05,  (  =  30 
0.05  yo" 


A  =  10001  1  + 1 

A  =  lOOOeCo^'^o  =  4481.69 


n 

1 

2 

4 

12 

365 

Continuous 

A 

4321.94 

4399.79 

4440.21 

4467.74 

4481.23 

4481.69 

83.  100,000  =  P^-oo^i  =>  p  =  lOO.OOOe^ 


t 

1 

10 

20 

30 

40 

50 

p 

95,122.94 

60,653.07 

36,787.94 

22,313.02 

13,583.53 

8208.50 

85.  100,000  =  P  1  + 


OOSV^' 
12 


P  =  100,000  1  + 


0.05  V'^ 
12 


t 

1 

10 

20 

30 

40 

50 

p 

95,132.82 

60,716.10 

36,864.45 

22,382.66 

13,589.88 

8251.24 

0  06V365)(8) 

87.  (a)  A  =  20,000(  1  +  ^j  »  $32,320.21 


(b)  A  =  $30,000 


(c)  A  =  8000  1 


0.06V 


,(365)(8) 


+  20,0001 


365/ 
$12,928.09  +  25,424.48  =  $38,352.57 


0.06Y36s)(4) 
365/ 


=  $34,985.11 
Take  option  (c). 


(365)(8) 


+      1   + 


0.06V 
365/ 


(365){4) 


+    1 


89.  (a)    lim  6.7e<-*8'>/'  =  e.le"  =  6.7  million  ft^ 

r-»oo 

322.27 


(b) 


V- 


-(48.1)A 


V"(20)  ==  0.073  million  ftVyr 
V'(60)  =  0.040  million  ftVyr 


91.  y 


300 


3  +  ne'0.062Sjc 
(a)    '<» 


(b)  If  ;c  =  2  (2000  egg  masses),  y  =  16.67  ==  16.' 


(c)  If  y  =  66.67%,  then  x  =  38.8  or  38,800  egg  masses. 

(d)  y  =  300(3  +  ne-oos^^o:)-! 

,_    318.756-°°^^^ 
^        (3  +  17e-oo625x)2 

„_  19.921875e-'"^^^(17g-°'^^^  -  3) 

^  (3   +    17e-0"625^)3 


17^-0.0625^  -  3  =  0  =>  ;c  =  27.8  or  27,800  egg  masses. 


Section  5.5        Bases  Other  than  e  and  Applications       245 


93.  (a)  B  =  4.7539(6.7744)''  =  4.7539e''»32^ 

(b)       '20 


(c)      SV)  =  9.0952e'»'3M 
5 '(0.8)  ==  42.03  tons/inch 
5 '(1.5)  =  160.38  tons/inch 


95.  (a)      f(t)  dt  =  5.67 
Jo 

I  g{t)  dt  -  5.67 
Jo 

h(t)  dt  -  5.67 
Jo 


(b) 


(c)  The  functions  appear  to  be  equal:  fit)  =  git)  =  hit) 
Analytically, 


/3\2r/3 

/W=4|         =4 


4(^)'  =  ^(0 


;i(t)  =  4^-0.653886,  =  4|-g-0.653886J,  =  4(0.52002)' 

^9i/3Y 


«(f)  =  41 


4(0.52002)' 


No.  The  definite  integrals  over  a  given  interval  may  be 
equal  when  the  functions  are  not  equal. 


97. 


= 

IQQOe-"'^' 

dt 

Jo 

= 

\  2000        „,1 
.-0.06 

10 
0 

=s; 

$15,039.61 

99. 


101.  False,  e  is  an  irrational  number. 


t 

0 

1 

2 

3 

4 

y 

1200 

720 

432 

259.20 

155.52 

y  =  Cik!) 

When  r  =  0.  y  =  1200  =>  C  =  1200. 

y  =  1200(/f ) 

720               432              259.20               155.52 
1200  -  °-^-  720  -  °-^'     432     "  "■^-  259.20 

Let  k  =  0.6. 

y  =  1200(0.6)' 

103.  True. 

105.  True. 

figix)) 

=  2  +  e'-'f^-^ 

£M  =  .^and£[e-1=- 

=  2  +  .r  -  2 

=  X 

g{f{x)) 

=  ln(2  +  e-  - 

e'  =  e'"  when  .v  =  0. 

=  In  e^  =  X 

ie°){-e-°)  =  -1 

=  0.6 


246       Chapter  5       Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


f=^>(! -)-(«) =^ 


^'^^=idt^'~ 


y[{5/4)  -y]      25  5 

lny-ln(|-y)=|f+C 


/(r(vi7^)'^^^B* 


g(2/5)t  +  C  =   Q  g(2/5)( 


(5/4)  -  y 
y{0)  =  1  =^  C,  =  4  =»  4e'^5>' 


(5/4)  -  y 


4g(2/5)/5  _  ^\      ^  ^  2^(2/5),  =  4g(2/5);y  +  y  =  (4e(2/*  +  l)y 
5e(2/5>'  5  1.25 


4^(2/5)t  +1        4  +  g-0.4/        J   +  0.256-°" 


Section  5.6       Differential  Equations:  Growth  and  Decay 


l.^  =  .  +  2  3.  ?  =  .  +  2 


abc  dx 

X?-  dy 


•      >>  =   I  (.X  +  2)dx  =  y  +  2x  +  C  jj^  =  A 

■■  ■     ■•■  )jh'^y  =  j'^ 

Injy  +  2|  =  jc  +  Ci 
>-  +  2  =  e^**^'  =  Cr' 
>>  =  Ce^  -  2 

,_5jc  7.  y'  =  V^ ); 

W   =  5x  y 

\yy'dx=   ISxdx  ■-  \—dx=   iVxdx 

lydy=\5xdx         .  j^^}^'^ 

i,2  =  |,2^C,  ln,  =  f.3/2  +  C, 

,2  _  5,3  =   c  ^  =  ^'^^^'"'"'^- 

=  gC,  g(2/3);(5/^ 


Section  5.6        Differential  Equations:   Growth  and  Decay        247 


9.  (I  +  x^)y'  -  2xy  =  0 


1  +.t2 
2x 


y        \  +  x^ 
jjdx  =  jj^^dx 


-  dx 


(dv^    f     2x 

J  y     Ji+x' 

Inv  =  ln(l  +  X-)  +  Ci 
\ny  =  ln(l  +  x^)  +  In  C 
Iny  =  lnC(l  +  x'^) 
y  =  C(l  +  x^) 


11. 


dQ^k 

dt       t' 


dt 


dQ=  --  +  C 


t 


dN 
13.         =r-  =  k{250  -  s) 
ds 


If-/ 


k{250  -  s)ds 


dN  =  -x(250  -  5)2  +  C 


A'  =  -t(250  -  ip  +  C 


15.  (a) 


(b) 


di 
dx 

_dy_ 
y-6 


x(6->),    (0,0) 


n 


Inb  -  6|  =  ^-  +  C 

>-  -  6  =  e--""/2  +  c  =  c,e-'^/2 
.V  =  6  +  C.g-'^'/^ 
(0,  0):  0  =  6  +  Ci  =^  Ci  =  -6  ^  y  =  6  -  6e-^/2 


17.    ^4,.  (0.10, 


/-/■ 


rrfr 


y  =  -r^  +  C 


10  =  -(0)2  +  c 


y  =  -r2+10 


C=  10 


19.     |=_i,,    (0,10) 


/f^H 


\dt 


In  V 


f  +  Ci 


y  =  e-(r/2)  +  C,  ==  gC,  g-,/2  =   Cg-r/2 

10  =  Ce°  :^  C  =  10 
y  =  lOe-'/^ 


y  =  Ce'-''    (Theorem  5.16) 
(0,  4):  4  =  Ce"  =  C 

(3,10):  10  =  4e3*  =4.  /t  =  |  ln[| 

When  x  =  (,,y  =  Ae^'^  ^^(^nm  =  4^^(5/2)^ 


23.  ^  =  kV 

dt 

V=Ce*'    (Theorem  5.16) 
(0,  20,000):  C  =  20,000 

(4,  12.500):  12,500  =  20.000e*  ^  <•'  =  ^  ln(| 
When  r  =  6,  V  =  20,000e '-""''■  *^'*'  =  20,O0Oe^^5/8)'« 
=  20,000(|j   "  =  9882.118 


248        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


25.    V  =  C<^\  (  0,  -1,  (5,  5) 


^  =  2 


,  =  -^ 


5  =  2^* 


In  10 


k  = 


y  =  i  g(ta  10/5),  =  l(10'/5}  or  3^  =  ieO.4605, 


29.  A  differential  equation  in  x  and  y  is  an  equation  that 
involves  x,  y  and  derivatives  oiy. 


27. 

y  =  Ce^,  (1,1),  (5,5) 

1  =  Ce* 

5  =  Ce5* 

5Ce*  =  Ce5* 

Set  =  g5«. 

5   =  6^" 

/t  =  ^  -  0.4024 

4 

■y  =  Ce°-*'2'" 

1  =  CfiO'W^i 

C  «  0.6687     (C  =  5-1'"') 

y  -  0.6687e0-^24, 

31. 

rfy       1 
-dx  =  -2^ 

dy 

—  >  0  when  xy  >  0.  Quadrants  I  and  in. 


33.  Since  the  initial  quantity  is  10  grams,  y  =  iOeIi"(i/2)/i62o],_  ■^^hen  /  =  1000,  y  =  iQ^^iUD/iiiojvxa)  «  552  grams.  When 
/  =  10,000,  >'  =  iOe['"<i/2Vi620](io,ooo)  «  0.14  gram. 

35.  Since  >-  =  c^^^U2)/\(,io],^  ^g  ^ave  0.5  =  Cet'"('/2Vi620]Cio,ooo)  ==^  c  =  36.07. 
Initial  quantity:  36.07  grams. 
When  t  =  1000,  we  have  y  =  Ce[i"(i/2)/i62o](iooo)  ^  23.51  grams. 

37.  Since  the  initial  quantity  is  5  grams,  we  have  y  =  5.0e['"*'''^'^^'^*. 
When?  =  1000,>'  =  4.43  g. 
Whenf=  10,000,  v=»  1.49  g.  '' 

39.  Since  y  =  Ce^^iUD/i'i.im ^  ^e  have  2.1  =  Cet"'"/2»/24.360](iooo)  ==>  c  =  2.16.  Thus,  the  initial  quantity  is  2.16  grams.  When 
t  =  10,000,  y  =  2.16e['"('/2'/2«*]«'°'0'»)  =  1.63  grams. 


dy 
41.  Since—  =  ky.  y  =  Ce'" or y  =  y^e'". 


1 


7%  =  yoe 


1620* 


-In  2 
1620 

y  =  y  g-'ln2)//I620_ 

When  t=  100,  y  =  y^e''^^"  2)/i6.2  „  ^^(0.9581). 
Therefore,  95.81  %  of  the  present  amount  still  exists. 


43.  Since  A  =  1000e°°^',  the  time  to  double  is  given  by 
2000  =  1000e°°'5'  and  we  have 

2  =  gO.oer 
In  2  =  0.06f 

'  =  o:o6'"-^^y'''''- 

Amount  after  10  years:  A  =  1000e*°°«'<'°'  =  $1822.12 


Section  5.6        Differential  Equations:   Growth  and  Decay        249 


45.  Since  A  =  750e"  and  A  =  1500  when  t  =  7.75,  we  have 
the  following. 

1500  =  750s''"'- 

r  =  :^  =  0.0894  =  8.94% 

7.75 

Amount  after  10  years:  A  =  750eO"89''(io)  =  $1833.67 


47.  Since  A  =  500e"  and/4  =  1292.85  when  t  =  10,  we  have 
the  following. 


1292.85  =  SOOe'O'- 

ln(1292.85/500) 

'■  = lo 

The  time  to  double  is  given  by 
1000  =  500e'"»5o, 
In  2 


=  0.0950  =  9.50% 


0.095 


=  7.30  years. 


0  075\<i2)(20) 
49.  500,000  =  P|  1  +  ^^ j 


0.075  Vz-w 


P  =  500,000  1  + 


=  $112,087.09 


12 


51.  500,000  =  P  1  + 


P  =  500,000  1 


0^yi2K35) 

12 


0.08 
12 


$30,688.87 


53.  (a)  2000  =  1000(1  +  0.07) 
2  =  1.07' 
ln2  =  r  In  1.07 

In  2 


t  = 


In  1.07 


=»  10.24  years 


/        0.07  V^' 
(b)  2000  =  1000(  1  +  —1 


2=1  + 


0.007 
12 


ln2  =  12fln  1  + 


0.07 
12 


In: 


121n(l  +  (0.07/12)) 

55.  (a)  2000  =  1000(1  +  0.085)' 
2  =  1.085' 
ln2  =  rlnl.085 
In  2 


9.93  years 


In  1.085 


=  8.50  years 


(b)  2000  =  1000(  1  + 
2  =  (l  + 


0.085 
12 

0.085\'2' 


12 


ln2  =  12rln  1  + 


0.085 
12 


/  = 


In  2 


12 


1  (i  ^0-085\ 


8.18  years 


(c)  2000 

2 
In  2 


f  = 


(d)  2000 

2 
In  2 


/        0.07  V*" 

0.07  Y«' 
365/ 

3651n(ll"(0.07/365))^^-^°y^^ 

■-  lOOOeCO""' 
;  gO.cni 

'  O.Olt 

In  2 
■■  —  =  9.90  years 


(c)  2000  =  1000  1  + 


0.085  V"' 


1  + 


365  / 

0.085  y*" 

365  / 


,    -,      -,..  ,  1 ,       0.085\ 
ln2  =  365rln(  1  +  "ttt"  I 


t  = 


365 


(d)  2000 

0 


Inh  + 
lOOOfOO*" 

,0.085; 


ln2 ^  ,^ 


365 


e' 

hi  2  =  0.085f 

_    ln2 
'  ~  0.085 


=  8.15  years 


250        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


57.   P  =  Ce*'  =  Ce-oow 

P(-l)  =  8.2  =  Ce-o«"<-"  ^  C  =  8.1265 

P  =  8.1265e-o™9' 

P(  10)  =  7.43     or    7,430,000  people  in  2010 


59.   P  =  Ce'"  =  Cgoo^^' 

P{-\)  =  4.6  =  Cg0036(-i)  =>  c  =  4.7686 

P  =  4.7686eO'>36' 

/'(lO)  =  6.83    or    6,830,000  people  in  2010 


61.  If  fc  <  0,  the  population  decreases. 
If  ^  >  0,  the  population  increases. 


63.  P  =  Ce^  (0,  760),  (1000,  672.71) 

C  =  760 

672.71  =  760e'««^ 

ln(672.7 1/760)  .       nmmo-7 
^  = loOO -0000122 

P  =  760e-0'»0'22x 
When  X  =  3000,  P  =  527.06  mm  Hg. 


65.  (a)         19  =  30(1  -  e^"*) 
30e20t  =  11 

,  =  MM„_0.0502 
N^  30(1  -  e-00502,) 


(b)  25  =  30(1  -  e-oo502» ) 

„- 0.0502/  =  _ 

6 

-In  6 
^  =  ^0050^"'^'^^^^ 


67.  5  =  Ce*/' 

(a)  5  =  5  when  f  =  1 

5  =  Ce* 
lim  Ce'/'  =  C  =  30 

r  — »oo 

5  =  30e* 

A:  =  Ing  «  -1.791S 

5  »  30e-'™i8''' 


(b)  When  f  =  5,  5  =  20.9646  which  is  20,965  units. 

(C)         30 


69.  Ait)  =  V(r)e-o'0'  =  100,000e°^-^e'-''""  =  100,0006"^-^^°"" 

^  =  100,OOof^  -  O.loV"'^''"""  =  0  when  16. 
dt  \Jt  I 

The  timber  should  be  harvested  in  the  year  2014,  (1998  +  16).  Note:  You  could  also  use  a  graphing  utility  to  graph  A{t) 
and  find  the  maximum  of  A(r).  Use  the  viewing  rectangle  0  <  x  <  30  and  Q  <  y  <  600,000. 


71.  ;8(/)=  101og,of/o=  10 


/n 


10" 


(a)  /3(10-"')  =  lOlogjorrr;^  =  20  decibels 


(b)  )3(10-9)  =  lOlogioTT^TTi  =  70  decibels 


10- 


10"" 
(c)  /3(10-")  =  lOlog.o-y^TT^  =  95  decibels 


(d)  /SdO-")  =  lOlog.o-— Y^  =  120  decibels 


10" 
10- 


73.  R  =  '"/.„°.  /  =  e«in  10  =  io« 


(a)  8.3  = 


In  10 

In/-  0 


In  10 
/  =  1083  «  199,526,231.5 

^  _  g2Rln  10  —  gifln  10  _   /^Slu  10)2  =   (10"  )2 

Increases  by  a  factor  of  e^  "^ '°  or  10'*. 
^     dR  1 


rf/      /  In  10 


Section  5.7        Differential  Equations:   Separation  of  Variables        251 


75.  False.  \iy  =  Ce^,  y '  =  Cke^  i-  constant. 


77.  True 


Section  5.7       Differential  Equations:  Separation  of  Variables 

1,  Differential  equation:  y'  =  ^y 
Solution:  y  =  Ce''"^ 
Check:  y'  =  ^Ce^''  =  4v 

3.  Differential  equation:  y"  +  v  =  0 
Solution:  >"  =  C,  cos  x  +  Cj  sin  j: 
Check:  y'  =  —  Cj  sin  or  +  Cj  cos  x 

y"  =  —C^  cos  x  —  C,  sin  x 
y"  +  y  =  —  Ci  cos  X  —  Cj  sin  JT  +  Cj  cos  j:  +  C2  sin  j:  =  0 


5.    y  =  —  cos  -t  Injsec  x  +  tan  j: 
1 


y'  =  (—cos  a:) 


sec  jc  +  tan  ;c 
cos  X 


{secx  •  tanj:  +  sec'j:)  +  sin  j:  Injsec.x  +  tanjcj 


sec  j:  +  tan  ;c 
=  —  1  +  sin  JT  ln|sec -t  +  tan.ic 
1 


secx)(tan.t  +  secj:)  +  sin  x  In  I  seer  +  tan  a:  I 


y"=  (sinx) 


(sec.r  •  tan.t  +  sec^x)  +  cosxln|secx  +  tan.r| 


sect  +  tan.r 
=  (sinx)(secjt)  +  cosxln|secj:  +  tanx| 
Substituting, 

y"  +  y  =  (sin  x) (sec  x)  +  cosxln|secx  +  tanjc|  —  cos  j:  ln|secx  +  tanx| 
=  tanx. 

In  Exercises  7-11,  the  differential  equation  is  j'''*'  —  16y  =  0. 


y  =  3  cos  X 

yW  -  i6y  =  -45C0SJC  ^  0, 
No. 


y  =  e 


v(4) 


Yes. 


16y  =  16e-^  -  \6e-^  =  0, 


11.  y  =  Cifi^  +  C,)?--"^  +  C3  sin  2x  +  C4  cos  2x 

y*"'  =  16Cie^  +  leCjg-^  +  I6C3  sin  Ix:  +  16Q  cos  2x 

yW  -   16y  =  0, 

Yes. 


252        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


In  13-17,  the  differential  equation  is  xy '  —  2>  =  x^e'. 


13.  y  =  X'^,  y'  =  2x 

xy'  -2y  =  x{2x)  -  2(;c2)  =  0  ¥=  x^e' 
No. 


15.  y  =  xH2  +  e^),   y'  =  xV)  +  2x(2  +  e^) 

xy'  -  2y  =  x[xV  +  Ixe'  +  4x]  -  2[xV  +  2x^]  =  xV, 
Yes. 


17.  y  =  lnx,3''  =  - 


xy '  —  2y  =  X 


2  In  X  ^  x^e^.        No. 


19.     V  =  Ce*^ 


dy 
dx 


=  Cke'^ 


Since  dy/dx  =  O.OTy,  we  have  Cke'^'  =  O.OTCe*". 
Thus,  /t  =  0.07. 


21.  y-  =  Cx^  passes  through  (4,  4) 
16  =  C(64)  =>  C  =  i 
Particular  solution:  y^  =  j  x^  or  4^^  =  x^ 


23.  Differential  equation:  4yy '  —  x  =  0 

General  solution:  4y~  —  x-  =  C 

Particular  solutions:   C  =  0,  Two  intersecting  lines 
C  =  ±1,  C  =  ±4,  Hyperbolas 


\. 

.^ 

^ 

^^ 

^"**^*>^-. 

p^ 

"^^--^ 

"-H^,^ 

c  =  ~\      .^ 

^v 

— • ^^*T' ' ' 


C  =  -4 


25.  Differential  equation:  y '  +  2>'  =  0 
General  Solution:  y  =  Ce~^ 
y'  +  2y  =  C(-2)e-^  +  2{Ce-^)  =  0 
Initial  condition:  y(0)  =  3,  3  =  Ce°  =  C 
Particular  solution:  y  =  3e~^ 


27.  Differential  equation:  y"  +  9y  =  0 

General  solution:  y  =  C,  sin  3a:  +  Cj  cos  3x 
y'  =  3C|  cos  3x  —  3C2  sin  3x, 
y"  =  -  9C,  sin  3x  -  QC,  cos  3x 
y"  +  9y  =  (-9C,  sin  3;c  -  9C2  cos  3x)  + 
9(C,  sin  3x  +  C  cos  3x)  =  0 


Initial  conditions:  y(— -)  =  2,  y'(  — j  =  1 


2  =  C|  sin(  ^  1  +  Co  cosi  — 


y '  =  3C]  cos  3x  —  30,  sin  3x 
1  =  3C,  cos(  y  1  -  3C2  sin( -| 


C.  =  2 


=  -3C, 


C,  = 


1 


Particular  solution:  y  =  2  sin  3x  —  -  cos  3x 


Section  5.7       Differential  Equations:  Separation  of  Variables       253 


29.  Differential  equation:  x^y"  -  3xy'  +  By  =  0 
General  solution:  y  =  C,x  +  Cjx' 
y'  =  C,  +  2C2x'^,y"  =  6C2X 
xy-  3xy'  +  3y  =  x^iec^x)  -  3x(C,  +  BQjc^)  + 

3{C,x  +  C^x^)  =  0 


Initial  conditions:  y(2)  =  0,  y  '(2)  =  4 
0  =  2C,  +  8C2 


C,  +  4C2  =  0 
C,  +  I2C2  =  4 


Q  =2-    Ci  =  -2 


Particular  solution:  y  =  —  2jr  +  — jc^ 


dx 


=  / 


3x^dx  =  x^  +  C 


33.  $  = 


tic       1  +;c2 
(m  =  1  +  x^,  du  =  2x  dx) 


J   1    +  .t2 


d:t  =  ^ln(l  +  x^)  +  C 


35.^  =  ^^^=1-2 
or  j:  X 


/[-!]■ 


y  =   I    1  --Idlx 

jc  -  2  InUI  +C  =  x-\nx~  +  C 


dy 
31.  -r-  =  sin  2j: 
(tc 


^/^ 


y  =   I  sin  2x  (ic  =  — -  cos  2x  +  C 


{u  =  2x,du  =  2dx) 


dy 


39.  -;-  =  xjx  -  3      Let  u  =  Vj:  -  3,  then  x  =  u-  +  3  and  dx  =  2u  du. 
dx 


xjx  -3dx=     («2 


=  uy 


+  3)(M)(2M)rfM 


2  Km"  +  3M2)rf„  =  2^ J  +  M^j  +  C  =  I  {x  -  3)'/-  +  2(x  -  3y'-  +  C 


Al.^  =  xe^ 
dx 


43. 


-'[ 


xe^dx  =  -e^  +  C 


(m  =  x'^,  du  =  2xd!.t) 


dy      x 
dx      y 

lydy  =  Ixdx 


2        2       ^' 
y2-;c2  =  C 


45.     ^  =  O.OSr 
as 

j^  =  j 0.05  ds 

In  |r|  =  0.05i  +  Q 


47.  (2  +:t)y'  =  3y 


i  y       J  2  +  .r 


(ir 


In  y  =  3  ln{2  +  .t)  +  In  C  =  In  C(2  +  .r)^ 
y  =  C(x  +  2)3 


254        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


49.       yy'  =  sin  jc 

=     sin  ;c  dx: 


v  ^  =     s 


=T-  =  -  cos  JC  +  C, 
y^  =  -Icosx  +  C 


dy 


51.  yr^"4?  ^  =  X 
dx 


dy  = 


VT-4? 


dx 


\-'U 


4x^ 


dx 


4/<.- 


4x^)-'^H-Sxdx) 


y  =    -i(l    -  4;c2)'/2  +   C 


53.  _y  In  j:  —  xy'  =  0 


lf  =  / 


—  (fa  \  u  =  In  X,  du  =  — 

X  \  X 


liiy  =  -(ln;c)2  +  C, 

y  =  g(l/2)(bu:F  +  C,   =   (^g(lnx)V2 


55.  yy'  -  e^  =  0 

jydy  =  j, 


e^dx 


y2  =  2e^  +  C 
Initial  condition:  yiO)  =  4,  16  =  2  +  C,  C  =  14 
Particular  solution:  y^  =  le'  +  14 


57.  >'(x  +  I)  +  y'  =  0 


/?-/' 


Iny  = +  C, 

Initial  condition:  ^(-l)  =  1,  1  =  Ce-'^^  C  =  e^^^ 
Particular  solution:  v  =  e[i-(A:+i«/2  =  g-(.r^+2r)/2 


59.  ^(1  +x^)^  =  xil  +y^) 
^  dy  =  T— — ^  dx 


1  +>'-•'       l+x^ 

iln(l  +y2)  =  ^ln(l  +;t2)  +  C, 

ln(l  +  y2)  =  ln(l  +  x^)  +  In  C  =  ln[C(l  +  x^)] 
\  +y^=  C{1  +  x^) 
.v(0)  =73:1+3  =  C^C  =  4 
1  +  3,2  =  4(1  +  ;r2) 

;y2   =    3    +    4;t2 


61.      — -  =  Mv  sm  V- 

|3V 


—  =     V  sin  v^ 
J  "       J 


dv 


Ihm  =  —-cos  v^  +  Ci 


Initial  condition:  u(Q)  =  1,  C  = 


-1/2 


=  ^1/2 


63.  dP  -  kPdt  =  0 


/f  =  f 


In  P  =  to  +  C, 

Initial  condition:  ^(0)  =  Pg,  Pg  =  Ce°  =  C 
Particular  solution;  P  =  P^e'^ 


Particular  solution:  u  =  e(i-':osv^)/2 


Section  5.7        Differential  Equations:   Separation  of  Variables        255 


65. 


dy  _  -9x 
dx  "   16y 

\\6ydy=  -  \9xdx 


By 


-9 

2  =  -^x2   +   C 


9  25 

Initial  condition:  y(l)=  1,  8=  --  +  C,  C  =  — 

-9  25 

Particular  solution:  8y-  =  ^t-jc^  +  ^r. 

•^2  2 

16y2  +  9x^  =  25 


67.       m 


_  dy  0  -y 


/f=H 


£tc       (x  +  2)  -  X 


Iny  =  -2"^  +  C, 
y  =  Ce-^/^ 


69.     /(.r,^)  =;c3  -  4x>'2  +  y3 

f(tx,ty)  =  i'.c^  -  4rjcf'y^  +  t^  y^ 

=  r^U^  -  4x>'2  +  y) 
Homogeneous  of  degree  3 


71.  f{x,y)  = 
fitx,  ty)  -- 


xY 


fx'Y 


=  t=- 


xY 


Homogeneous  of  degree  3 


73. 

f{x.  y)  =  2  In 
/(rx,  /y)  =  2  In 

xy 
txty 

=  21nr2j:j,  = 

2(ln  f ' 

+  In 

xy) 

Not  homogeneous 

77. 

>-'  = 

x  +  y 
2x  ' 

y  =  vx 

V  +  X—  = 
dx 

X  +  vx 
Ix 

• 

dv 

1    +    V 

2 

-  V 

J    dv     ^ 

1  -  V 

'dx 

X 

-ln(l  -  v)2  =  ln|;c|  +  In  C  =  ln|Cx| 
1 


(1  -  v2) 
1 


\Cx\ 


[1  -  (y/x)] 

X 


2  =    \CX\ 

=  \Cx\ 


(x  -  y? 

\x\  =  C(x  -  y)2 


75.     f(x,  y)  =  2  In  = 


/(a,ry)  =  21n— =  21n- 
ty  y 

Homogeneous  degree  0 


79. 


X  -  y 

V  =  vx 


y 

X 

+ 

y  ' 

V  + 

dv 
'Tx 

= 

X 
X 

+ 

XV 
XV 

V 

dx  + 

rdv 

^ 

\_ 

- 

^dx 

1    +   V 


f       v+1         ,  {dx 


-ln|v2  +  2v  -  1|  =  -ln|.v|  +  In  Q  =  in 


C, 


c 

|v^ 

+  2v- 

^1=:;^ 

V- 

_  V 

c 

+  2-  - 

1 

X- 

.T 

x- 

|y-  +  2v>'-.T-|  =  C 


256       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


81. 


V  +  X 


y 

dv 


xy 

— ^-  y  =  vx 

x-^  —  y- 


.2  _   ^2„2 


dx      x^  —  xf-v 


V  dx  +  x  dv 


1  -  V 


-dx 


/^-/^ 


-y-j  -  ln|v|  =  \n\x\  +  InC,  =  ln|Ci.r| 


-1 

2v2 

=  ln|Ci;cv| 

-x^ 
2y'- 

=  ln|C,);| 

y  = 

=  ce-'^'^y' 

83.  xdy  ~  {Ixe'yl^  +  y)dx  =  Q,y  =  vx 

x{vdx  +  X  dv)  -  {2x6'"  +  vxjdx  =  0 


je^'dv  =  jl 


dx 


e''  =  In  C,;c' 
«>■/•'  =  In  C,  +  In  x2 


e^A  =  C  +  lnx^ 
Initial  condition:  y(l)  =  0,  1  =  C 
Particular  solution:  e^^'  =  1  +  In  x^ 


85.  \x  sec-  +  y]dx  -  xdy  =  0,y  =  vx 

[x  sec  V  +  xv)dx  —  xiv  dx  +  x  dv)  —  0 

(sec  v  +  v)dx  =  vdx  +  xdv 


f  ,         (^ 

cos  V  dv  =     — 


sin  V  =  In  X  +  In  C, 

Initial  condition:  ^(l)  =  0,  1  =  Ce°  =  C 
Particular  solution:  x  =  e*'"'^/-^* 


87.^  =  . 
dx 


/ 


A:(ic  =  -j;-  +  C 


rfy 
89.|  =  4-y 


In  \4  -  y\  =  -X  +  Ci 


4-y 


y  =  4  +  Ce"-' 


91.  ^  =  O.Sy.yCO)  =  6 


93.  ^  =  O.Olj'llO  -  j),  y(0) 


12 


I  I  I  I  I  I  {  If  t  I  I  I  I 
I  I  I  I  I  I  \  I  I  I  I  I  I 
I   I   I  I   I   I   Ifi   I   I   /   i   I 

/  y  /  /  y  ^  y  J  ^  /  /  / 
y  y  y  y  ^  1(  y  y  y  y  y  y 

y  y  y  y 


^  y  y  y  y 

'■/////// 
,'/  /////// 
■////////// 

^y  y  y  y  y  y  y  y  y  y 


Section  5.7        Differential  Equations:   Separation  of  Variables        257 


95.  ^  =  ky,y  =  C^ 
dt 

Initial  conditions:       >'(0)  =  y^ 


>'(1620) 

2 

C 

=  ^-0 

Jo 
2 

=  ^-ofi'"* 

t 

ln(l/2) 

1620 


Particular  solution:  y  =  ;yQe-'(iii2)/i62o 
When  f  =  25,  v  =»  0.989yo.  y  =  98.9%  of  yo- 


99.  ^  =  ky(y-  4) 


97.  ^  =  kiv  -  4) 
(fa 

The  direction  field  satisfies  (dy/dx)  =  0  along  >  =  4;  but 
not  along  y  =  0.  Matches  (a). 


The  direction  field  satisfies  {dy/dx)  =  0  along  y  =  Q  and  y  =  A.  Matches  (c). 


101. 


^  =  /t(1200  -  w) 
dt 


J  1200  -  w       J 


ln|1200  -  M'l  =  -fa  +  C, 


1200  -  w  =  e 


_  ^-fa+C, 


Ce- 


w  =  1200  -  Ce"*' 
^(0)  =  60  =  1200  -  C  =*  C  =  1200  -  60  =  1 140 
w  =  1200  -  1140e-*' 

(a)    1400 


103.  (a) 


f-«--" 


J  IV  -  V       J 
-ln|W-  v|  =  /tr  +  C, 

V  =  W  -  Ce^*' 
Initial  conditions: 

W  =  20,  V  =  0  when  ;  =  0.  and 

V  =  5  when  r  =  1 . 

C  =  20,k=  -  ln(3/4) 
Particular  solution: 

V  =  20(1  -  ei"'3/4).)  =  20(  1 


(b)  k  =  0.8:  /  =  1.31  years 
k  =  0.9:  t  =  1.16  years 
k=  1.0:  t=  1.05  years 

(c)  Maximum  weight   1200  pounds 


V  =  20(1    -  e-0.2877,) 

(b)  .?  =   120(1  -  e-o-28^')(/f 
=  20[?  +  3.476  l<'-o-S''' 


C 


Since  j(0)  =  0.  C  «  -  69.5  and  we  have 
j«20/  +  69.5(e-°-2"''  -  1). 


lim  w  =  1200 

/-»oo 


258        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


105.  Given  family  (circles):    x'^  +  y"^  =  C 
2x  +  2yy'  =  0 


Orthogonal  trajectory  (lines):    y'  =  ' 


If'f 


dx 
x 


Iny  =  \nx  +  \n  K 
y  =  Kx 


107.  Given  family  (parabolas):  x^  =  Cy 

2x  =  Cy' 


,  _  2x  _    2x    _2y 
C       x^/y       X 


Orthogonal  trajectory  (ellipses): 


\ 

4( 

p 

® 

^y 


lly  dy  =  —  \xdx 


x^  +  2y^  =  K 


109.  Given  family:    y'^  =  Cx^ 

2yy'  =  3Cx^ 


,  _  3Cx^  _  3x2  /y2\  _  3y 


2y         2y  \x?  /       2x 


Orthogonal  trajectory  (ellipses): 


y  = 


2x 


3Jydy^-2Jx 

-x^  +  Ki 


3\y  dy  —  —2\xdx 

3y2 


33,2  +  2x2  =  K 


111.  A  general  solution  of  order  n  has  n  arbitrary  constants 
while  in  a  particular  solution  initial  conditions  are  given 
in  order  to  solve  for  all  these  constants. 


113.  M{x,  y)dx  +  N{x,  y)dy  =  0,  where  M  and  A'  are 
homogeneous  functions  of  the  same  degree. 


115.  False.  Consider  Example  2.  v  =  ^c^  is  a  solution  to 
xy '  -  3y  =  Q,h\Ay  =  x^  +  Ws  not  a  solution. 


117.  False 

f(tx,ty)  =  tV  +  t^-xy  +  2 
*t2f(x,y) 


Section  5.8        Inverse  Trigonometric  Functions:  Differentiation       259 


Section  5.8       Inverse  Trigonometric  Functions:  Differentiation 


1.  >>  =  arcsinjt 
(a) 


X 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

y 

-1.571 

-0.927 

-0.644 

-0.412 

-0.201 

0 

0.201 

0.412 

0.644 

0.927 

1.571 

(c) 


(d)  Symmetric  about  origin: 

arcsin(— or)  =  — arcsinx 

Intercept:  (0,  0) 


3.  False. 


1  TT 

arccos  -  =  T 
since  the  range  is  [0,  tt]. 


.  .      1  77 

5.  arcsin  -  =  — 
2       6 


1       -n- 
7.  arccos  t^  =  v 


9.  arctan 


73    ^    TT 

3        6 


11.  arccsc(-72) 


4 


13.  arccos(-0.8)  «  2.50 


15.  arcsec(1.269)  =  arccos  7-77- 
\  1.269 

=  0.66 


17.  (a)  sin( arctan  4)  =  5 


(b)  sec(  arcsin  5 


5 

5;  ~  3 


19.  (a)  cot 


-^ 


(b)  CSC  arctan!  -  — 


11 
5 


21.  y  =  cos(arcsin  2t) 
6  =  arcsin  2x 

y  =  cos  0  =  J\  -  4a- 


23.  V  =  sin(arcsec  .r) 


6  =  arcsec x,Q  <  6  <  n.  6  i^ 


y  =  sinO 


The  absolute  value  bars  on  x  are  necessary  because  of 
the  restriction  0  <  6  <  tt.  6  ^  tt/1.  and  sin  6  for  this 
domain  must  always  be  nonnegative. 


260       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


25.  y  =  tanf ; 


X 

arcsec - 


0  =  arcsec  - 


y  =  tan  6 


Jx^'^ 


27.  y  =  cscl  arctan 


X 

72 


6  =  arctan 


y  =  CSC  I 


29.  sin(arctan  2r) 


2x 


yrT4? 


/=« 


Asymptotes:  y  =  ±\ 
arctan  lie  =  0 
tan  e  =  Ir 


sin  e  = 


2x 


vT+4j? 


VT+T? 


31.  arcsin(3x  —  tt)  =  5 

3jc  —  77  =  sin^j) 

X  =  5[sin(5)  +  77]  =  1.207 


33.  arcsinV2x  =  arccos  Jx 

v^  =  sin(arccos  ~Jx) 
Jlx  =  Vl  -^  0  <  a:  <  1 

2x=  1  -;c 

3a:  =  1 

1 

^  =  3 


35.  (a)  arccscx  =  arcsin-  |jc|  >  1 


Let  y  =  arccsc  x.  Then  for 

77  77 

-—  <  y  <  0  and  Q  <  y  <  —, 

csc>'  =  ;c  =>  siny  =  \/x.  Thus,  y  =  arcsin(l/j:) 
Therefore,  arccsc  j:  =  arcsin(l/j:). 


1       77 
(b)  arctan  x  +  arctan  -  =  — ,  x  >  0 
X       2 

Lety  =  arctan  X  +  arctan(l/jr).  Then, 

tan(arctanx)  +  tan[arctan(l/x)] 


tan  V 


1  -  tan(arctanx)  tan[arctan(l/x)] 


X  +  (lA) 

1  -  x(iA) 

X  +  (1/x) 
0 


(which  is  undefined). 


Thus,  >»  =  77/2.  Therefore,  arctan  x  +  arctan(l/x)  =  77/2. 


37.     f(x)  =  arcsin(x  —  1) 
X  —  1  =  sin>' 

X  =  1  +  siny 
Domain:  [0,2] 


Range: 


77  77 
'2'  2 


/(x)  is  the  graph  of  arcsin  x 
shifted  1  unit  to  the  right. 


n- 

- 

f- 

•         /(2-f) 

-1 

-It' 

■("•-f) 

39.     fix)  =  arcsec  2x 

2x  =  secy 

1 
X  =  —  sec  y 


Domain:  (-°°. -|].  [|. ' 
Range:  [0,f),(f,77] 


^i-ol 


Section  5.8        Inverse  Trigonometric  Functions:  Differentiation       261 


41.  f(x)  =  2  arcsinU  -  1) 
fix)  =  ^ 


Vl  -  (jt  -  If      V2x-x^ 


43.    g{x)  =  3  arccos  — 


g'ix)  = 


-3(1/2) 


Vl  -  U-V4)      V^^^ 


45.  /(jc)  =  arctan  ' 


47.    g(x) 


arcsin  3x 


Ma 


•^'^""^       1  +  UVa")      a 


+  x2 


g'W 


x\hl  J\  -  ^yr)  -  arcsin  'hx 


3;c  -  yi  -  9j:-  arcsin  3.t 


49.    /!(/)  =  sin(arccos  t)  =  Vl  -  t- 

//'«=|(l-^2)-'/^(-2f)  =  -== 
2  Vl  -  r 


51.  y  =  X  arccos  j:  -  Vl  -  -t- 


>>   =  arccos  X  — 


VT^ 


(1  -.r2)-i/2(-2A:) 


=  arccos  x 


53.     y  =  -  -  In +  arctan  x 

2\2      j:  -  1 


=  T[ln(jr  +  1)  -  ln(.t  -  1)]  +  -  arctan  jc 


55.    y  =  X  arcsin  x  +  Vl  —  x- 


dx     "VVT 


+  arcsin  A- 


VT^ 


dy  _  1/     1 


1     \  ^     1/2 


dx      4\j;  +  1       j:  -  1  /       1  +  x^       I  -  x^ 


1 


57.    y  =  8  arcsin 


x      ArVl6  —  x^ 


59.    J  =  arctan  .t  + 


1  +x'- 


y'=2- 


1^  -  ^^\     ■''  -  f(16  -  x^)-/2(-2x) 
Vl  -  U/4)-  2  4 


8 


Vl6^^ 


Vl6  -  x2 


16  -  (16  -  x^)  +  x^ 


2V16  -  X- 
X- 


2V16  -  X-  Vl6  -  x2 


3'    = 


1  (1  +  X-)  -  x(lt) 

1  +  x^        (1  +  x^y- 


(1  +  X-)  +  (1  -  x^) 
(1  +  x=)= 


(1  +  x^r 


61.  /(x)  =  arcsin  x,  a  =  - 


fix) 


yr 


fix)  = 


(1    -  x2)3/2 


.,,,., (l).,.(i)(,_i). 


1\        77   ,    2V3/  1 


6^     3 


""2 


^2W=/U     +/'! 


1\  .  1  ,,/l 


-^f/lfH- 


I\-         TT    ,     2v/3/  1 


^¥('4J 


262       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


63.  fix)  =  arcsec  x  -  x 

1 


fix)  = 


\x\V^^^l 


=  Owhen  \x\^x'^  -  1  =  1. 
jc2(;c2  -  1)  =  1 

X*  —  x^  —  I  =  0  when  x'^  = or 

/i  +  Vs 

Jf  =  ±  W 2 "  ±1-272 

Relative  maximum:  (1.272,-0.606) 
Relative  minimum:  (- 1.272,  3.747) 


65.      f{x)  =  arctanx  —  arctan(j:  —  4) 

\  +  x^       1  +  U  -  4)^ 

1  +  .^2  =  1  +  (;c  -  4)2 

0  =  -8jc  +  16 

x  =  2 

By  the  First  Derivative  Test,  (2,  2.214)  is  a  relative 
maximum. 


67.  The  trigonometric  functions  are  not  one-to-one  on 
(— oo,  oo),  sot  their  domains  must  be  restricted  to 
intervals  on  which  they  are  one-to-one. 


69.   y  =  arccot x,Q  <  y  <  tt 
X  =  cot  V 

1 

tany  =  - 

X 

So,  graph  the  function 

y  =  arctani  -  J  for  ;c  >  0  and  y  =  arctan 


©- 


ioxx  <  0. 


\ 


71.  (a)  cot  0  =  - 


6  =  arccoti  - 


(b) 


de 

dt 


5       dx 


-5     dx 


+  (l\  ^'      ^'  "•"  25  A 


If  ^  =  -400  and  a:  =  10,  ^  =  16  rad/hr. 

If  ^  =  -400  and  ;c  =  3,  ^  =  58.824  rad/hr. 
dt  dt 


73.  (a)  h(t)  =  -\(,t'  +  256 

-  161^  -I-  256  =  0  when  t  =  4  sec. 
h        -16f2  4-256 


(b)  tane 


500 
0  =  arctan 


de 


500 
-8t/125 


•lOOOf 


dt       1  -h  [(4/125)(-/2  +  16)P      15,625  -^  16(16  -  t-Y 
When  f  =  1,  de/dt  «  -0.0520  rad/sec. 
When  t  =  2,  rf^M  «  -0.11 16  rad/sec. 


Section  5.9        Inverse  Trigonometric  Functions:   Integration        263 


,  ,        tan(arctan  x)  +  tan(arctan  y)        x  +  y 

75.  tan(arctan  x  +  arctan  y)  =  -; -, ; -, r  =  -; ,  xy  i=  I 

1  —  tan(arctan  x)  tan(arctan  y)       1  —  xy 

Therefore, 


arctan  x  +  arctan  y  =  arctanl ],xy¥'   1. 

\  1  -  xyj 


Let  X  =  2  3rid  y  =  5 . 


/1\  (A  (1/2) +  (1/3)  5/6 

arctan^-j  +  arctan^-j  =  arctan  ^  _  ^^j^^)  .  (1/3)]  =  ^'^'^ 


5/6  ,  TT 

l-(l/6)   =arctan3^  =  arctanl  =- 


77.  f(x)  =  be  +  sin.ic 

fix)  =  k  +  cosx  >  QfoTk  >  I 

f'(x)  =  (t  +  cos  ;c  <  0  for  A:  <  -  1 

Therefore, /(x)  =  fcc  +  sin  jc  is  strictly  monotonic  and  has  an  inverse  for  k  < 


loTk  >   1. 


79.  True 


81.  True 


dr  -,  1 

—-j  arctan  jcj  = ?  >  0  for  all  x. 

dx  1  +  X- 


d^  ,        ,T  sec^;c  sec^x 

— H  arctan(tan  x)\  = ;—  =  — ;—  =  1 

dx  I  +  tan-x      sec-x 


Section  5.9       Inverse  Trigonometric  Functions:  Integration 


■•/ 


79^^ 


dx  =  5  arcsin  —]  +  C 


Ki) 


3.  Let  u  =  3x,  du  =  3  dx. 


dx  =  ^\  S3)  dx 

Jo  yr=^?      3jo  vi  -  (3x  -' 


-  arcsin(3x) 


0   "Ts 


Jt^*  =  I 


4  arctanl -I  +  C 


7.  Let  u  =  Zx,  du  =  2  dx. 

■V3/2         ,  ,    rV3/2 


r^'^=_i    ,     1  [^"'    2     , 


-  arctan(2x) 


v^/2 


—  2L 
0       ~  6 


J  xV4x2  -  1  J 


2xV(2x)=  -  1 


tZv  =  arcsec|2x|  +  C 


r  x^         fr       t1       r       if  it        ii 

11.       ;'        dr  =       X  -    -,   ,        oLv-  =     X  civ  -  -     ,         civ  =  -x^  -  -  ln(x^  +  1)  +  C    (Use  long  division.) 


13.  ^=a[v  =  arcsin(x  +  1)  +  C 

J  VI  -  (x  +  1)2 


15.  Let  i<  =  t-.du  =  2tdt. 


J  v'l  -t'  2j  , 


(2r)  dt  =  -  arcsin(f =)  +  C 


'1  -  (r 


264       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


17.  Let  u  =  arcsin  x,  du 


yr^ 


dx. 


0         > 


'o  Vl    -X2 


dx 


0  32 


0.308 


19.  Let  «=  1  -  x^,  du  =  -Ixdx. 

X 


\      -j===dx=M      {\-x')-'l\-lx)dx 

J-I/2VI   -  X^  ^J-\/2 


-vr^ 


=  -0.134 


0       _  73 -2 

-1/2  2 


21.  LetM  =  e'^,du  =  le^  dx. 
1  r      2e^ 


j4  +  e^-  2J4  + 


1  e^ 

,  ,,,,  dx  =  —  arctan  -r-  +  C 
{e^f  4  2 


25. 


f \ 

J  v^  -Jl    —  X 

I       J ,{2udu)  =  l\ 

J  MVl    -  M-  J 


dLr.  u  =  ^,  X  —  u^,  dx  =  2u  du 
du 


=  2  arcsin  Vx  +  C 


2  arcsin  u  +  C 


-■J7?mw-'i 


U-3) 


:d:x:  + 


/: 


23.  Let  M  =  cosj:,  £/m  =  -s'mxdx. 


1  +  cos^j: 


dx 


=     -  arctan(cos  x)\       =  — 
L  Jt/2      4 

„     fj:  -  3   ^         1  r     2j;      ^        .  f      1       _, 

27.      — ; etc  =  -    -z r  dx  —  3  \  -z — —  dx 

J  .)c^  +  1  2]  X-  +  \  ]  X-  +  \ 


1 


\n(x^  +  1)  -  3  arctan;c  +  C 


V9  -  (jc  -  3)2  J  79  -  U  -  3) 


.  /x-  3 


:d[»: 


=  -  79  -  (x  -  3)2  -  8  arcsin(  -^  ]  +  C 


=  -  J6x  -  x^  +  8  arcsini  -  -  1  )  +  C 


'  }qX-  -  2x  +  2  Jo  1 


1 


+  {x-  \f 


dx  = 


arctan(ji:  -  1 


'M 


33. 


Ix^  +  lUn"^  =  \x^  + 6x1x3'^  -  %^  +  L+X3'^  =  \x^  + 6x1x3"^  "  4^ 


=  InU^  +  6jj  +  i3|  _  3  arctan 


+  C 


{.X  +  3)2 


-dx 


,c  r    1     .    r     1      _,      ■  (x  +  2\ 

35.         ,  =  dx  =     — ,        ,       =  dx  =  arcsin  — - — 

J  7-.r2  _  4;^  J  74  -  (x  +  2)2  V     2     ; 


37.  Let  M  =  -x2  -  4x,  d«  =  (-2x  -  4)  dx. 


j^^^==dx  =  -||(-x2  -  4x)^'/2(-2x  -  4)afe 


-  7-x2  -  4x  +  C 


"■  I 


2a:-  3 


dx  = 


-274x-x2  +  arcsinf^^j     =  4  -  273  +  -|  =  L059 


74  -  (x  -  2) 


■  dx 


Section  5.9        Inverse  Trigonometric  Functions:  Integration       265 


41.  Let  M  =  ;c2  +  l,du  =  2xdx. 


(  X  ,        if  2x 

Jx'  +  lx^  +  l  2j(x^+  1)2  +  1 


^  =  2  arctan(;c2  +  1)  +  C 


2m  du 


43.  Let  M  =  Ve'  -  3.  Then  u^  +  3  =  e',  lu  du  =  e'  dt,  and  "-,   ""   =  dr. 

M-  +  3 

=  2m  -  2v^  arctan  -^  +  C  =  2Ve'  -  3  -  2^3  arctan 
V3 


/e'  -  3 


+  C 


45.  A  f)erfect  square  trinomial  is  an  expression  in  x  with  three  terms  that  factor  as  a  perfect  square. 
Example:  x^  +  6x  +  9  =  (x  +  3)- 


47.  (a) 
(c) 


J  xj\—x 


dx  =  arcsin  x  +  C,  m  =  ;<: 


(b) 


yr^^ 


ate  =  -  Vl  -^2  +  C,  M  =  1  -  x^ 


:  dt  cannot  be  evaluated  using  the  basic  integration  rules. 


I 


49.  (a)    \Jx-\dx  =  ^x  -  1)3/2  +  c,  M  =  X  -  1 


(b)  Let  M  =  V.v-  -  1.  Then  .r  =  m^  +  i  and  dx  =  2m  du. 
IxV^rn'  (&  =  I  (m2  +  1)(m)(2«)  dM  =  2  I  (m-*  +  u- 


)dM  =  2(y  +  j)  +  C 


=  :^«^(3«2  +  5)  +  C  =  Y^x-  l)V2[3(x  -  1)  +  5]  +  C  =  :^(x  -  l)3/2(3x  +  2)  +  C 

(c)  Let  M  =  Vx  -  1.  Then  x  =  m^  +  1  and  dx  =  2m  dM. 

|-;r4=^dx  =   j^^^-i-^(2«)  dM  =  2  j  (m2  +  1)  dM  =  2[y  +  M j  +  C  =  !«("-  +  3)  +  C  =  jVx  -  l{x  +  2)  +  C 
Note:  In  (b)  and  (c),  substitution  was  necessary  before  the  basic  integration  rules  could  be  used. 


51.  (a) 


(0,0) 


dv 


dr       \  +T' 

y 


(0,0) 


-/Tf;^^ 


(0,  0):  0  =  3  arctan(O)  +  C 
y  =  3  arctan  x 


3  arctan  x  +  C 

C  =  0 


3z 
2 


,.v(3)  =  0 


55. 


=  [^  arctanf^^^^ j     =  ^  arctan(l)  =  y  «  0.3927 


266       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


57.  Area  «  (1)(1)  =  1 
Matches  (c) 


59.  (a)    I  ^  dtc  =    4  arctan  x     =  4  arctan  1  -  4  arctan  0  =  4(  —  J  - 

Let  n  = 


4(0) 


(b)  Let  n  =  6. 


:dx  ~  4 


4  2 

+ 


1  +  (1/36)       1  +  (1/9)       1  +  (1/4)       1  +  (4/9)       1  +  (25/36)      2 


h 


3.1415918 


(c)  3.1415927 


61.  (a)  —I  arcsin  -    +  C  ^^,      ,  

\aj         J       Vl  -  {u^/a~)\al       Ja^  -  u^ 


1.  (a)  f  [arcsinQ  +  c]  = 
[___du__  ^ 


(b) 


Thus^ 


arcsini  -  1  +  C. 


i  "  4-  /"I  -  If      u'/a      1  _   1  r         u' 

a  ^""^a         \~  aV\+  {u/a)A  '  ai{a^-  +  u^)/a^i 

^,         \      du  f      m'        ,         1  u       ^ 

Thus,     — T  =     -^ ^  dx  =  -  arctan  -  +  C. 

J  a~  +  u        J  a'^  +  w^  a  a 


a^  +  u^ 


(c)  Assume  h  >  0. 

d_ 
dx 


1               u           1 

1 

-  arcsec  — \-  C 

a            a         ] 

a 

u'/a 


{u/aU(u/af  -  1 

™,.    r    1^"       r    «'     ,1      i«i   „ 

Thus,     — ,  =     — ,  dx  =  -  arsec  -"-J-  +  C. 

J  mV«2  -  a^       J  uju^  -  a^  a  a 


i]  = 


u^ur  —  a^)/a^        u^w-  —  a^ 


The  case  «  <  0  is  handled  in  a  simi- 
lar manner. 


63.  (a)  v(t)  =  -32f  +  500 


(b)    5(f) 


=  ^v{t)dt  =  ^ 


(-32r+  500)  d; 


=  -  16f=  +  500f  +  C 

5(0)  =  - 16(0)  +  500(0)  +  C  =  0^  C  =  0 

5(f)  =  -16f-  +  500f 

When  the  object  reaches  its  maximum  height, 
v(f)  =  0. 

v(f)  =  -32f  +  500  =  0 

-32f  =  -500 

f  =  15.625 

5(15.625)  =  - 16(15.625)2  +  500(15.625) 

=  3906.25  ft  (Maximum  height) 


—CONTINUED- 


Section  5.10        Hyperbolic  Functions       267 


63.  — CONTINUED- 


(c) 


\l^-'"=-\ 


kv 


dt 


Vi2k  \V  32    '  ' 


arctani  -.  /  ^  v' 


/32<:f  +  C 


V  =  tan(c  -  Vyzici 


^  tan(C-  V32kt) 
k 


When  r  =  0,  V  =  500,  C  =  arctan(500VA:/32),  and  we 
have 


(d)  When  k  =  0.001,  v(r)  =  732,000  tan[arctan(500V0.00003125)  -  VO.032  t\ 


/^  /32 

v(f)  =  ^  /  --  tan 
k 


arctani  500, 


v(r)  =  0  when  t^  =  6.86  sec. 

/■6.86      ' 

(e)  /!  =  732,000  tan[arctan(500V0.00003125)  -  70.032  r]  dt 

Jo 

Simpson's  Rule:  n  =  10;  /j  «  1088  feet 

(f)  Air  resistance  lowers  the  maximum  height. 

Section  5.10       Hyperbolic  Functions 


1.  (a)  sinh  3  =  - 
(b)  tanh(-2) 


10.018 


2 

sinh(-2)  _  e~-  -  e- 
cosh(— 2)      e^'  +  e- 


-0.964 


5.  (a)  cosh- '(2)  =  ln(2  +  v^s)  -  1.317 

04/9) 
2/3  / 


(b)sech-.(|)  =  ln(J^4P^U  0.962 


3.  (a)  csch(ln2) 


(b)  coth(ln5) 


2 

2             4 

^ln2  _  ^-lii2 

2  -  (1/2)      3 

cosh(ln  5) 
sinh(ln  5) 

gins  +  g-lnS 
^ln5   _  g-]n5 

= 

5   +  (1/5)          13 

5  -  (1/5)       12 

/e^  —  e~'\-      I       '' 
7.  tanh^  j:  +  sech-  x  =  I  ^ — -r  1    + 


e'  +  g- 


£■'  +  e' 


2      ^ir  _  2  +  e"^  +  4      e^  +  2  +  e'-" 


(e'  +  e-'Y  e^  +  2  +  e~^ 


268        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


e'  -  e^^Xfey  +  e'A       (e^  +  e~^\( e^  -  e"^ 
9.  sinh X  cosh y  +  cosh  x  sinh  y  =  \ z II : 1  + 


4 
=  ^{e^y  -  e-(^+>')]  = Y =  sinh(A:  +  .v) 


11.  3  sinh  a:  +  4  sinh' .t  =  sinh;c(3  +  4sinh^j:)  = 


2 

gX  —  g-x 


3+41 


e'  —  e' 


T] 


,[3  +  e^^  -  2  +  e"^]  =  -(e^  -  e-')(e^  +  e'^  +  1) 


-[e'Jt  +  e'"  +  e^  -  e'  -  e'^"  -  e'"] 


sinh(3;c) 


13. 


sinh  a:  = 


cosh^  ^  ~  ( o  )    ~  1  =^  cosh^  jc  =  —  =>  cosh  x  = 


3/2         3V13 


tanh;ic  =  —;= —  =     ,, 

713/2         13 

CSCh. -3/2 -3 

1           2jU 
sechjc  =  — ^ —  =  —rr— 

1       ^ 

coth  X  -     ,    , —  -     , 

3/713         3 

15.    y  = 

sinhd  -  x^) 

y'  = 

-2j:cosh(l  -  x~) 

17.  f{x)  =  ln(sinh;c) 

/'W  =  ^-r(cosh;c)  =  cothx 
sinh 


19.    y  =  In  tanh 


'/2      sech^f^ 
tanh(V2)  \2 


1 


2  sinh(x/2)  cosh(./2) 
1 


sinh  x 


=  csch;c 


21.    h{x)  =  I  sinh(2;c)  -  | 

■  ,/  \       1       ,  /„  \       1       cosh(2j:)  -  1        .  , , 
h'{x)  =  -cosh(2A:)  -  -  = ^-r^ =  sinh^j: 


23.  fit)  =  arctan(sinh  t) 
1 


f'(t)  = 


1  +  sinh^  t 
cosh  t 


(cosh  t) 


cosh' r 


=  sech  / 


25.  hsty  =  g{x). 

y   ^    ycosh  X 

\ny  =  cosh  a:  In  j: 
\(dy\  _  coshj: 


y\dx 


+  sinh  ;c  In  ;c 


--  =  -[cosh X  +  ;c(sinh x)  In x\ 
ax      X 


■{cosh  X  +  x(sinh  x)  In  x] 


Section  5.10        Hyperbolic  Functions       269 


27.    y  =  (cosh  x  -  sinh  x)^ 

y '  =  2(cosh  X  —  sinh  x)(sinh  x  —  cosh  x) 
=  —  2(cosh  X  —  sinh  xY  =  —  2e"^ 


29.  /(x)  =  sin  X  sinh  x  —  cos  x  cosh  x,  —  4  <  j:  <  4 

/'(jc)  =  sin  x  cosh  jc  +  cos  x  sinh  x  —  cos  x  sinh  x  +  sin  x  cosh  jc 

=  2  sin  x  cosh  x  =  0  when  x  =  0,  ±  tt. 

Relative  maxima:  (±  tt,  cosh  tt) 
Relative  minimum:  (0,-1) 


f-ff,  coshff)     i5f;r.  coshff) 
i — i 


31.  g(x)  =  .r  sech  x  = 


coshx 


(1.20.0.66) 

>^ 

(-1.20.-0.66)    -1 


Relative  maximum:  (1.20,0.66) 
Relative  minimum:  (-  1.20,  -0.66) 


33.     y  =  a  sinh  x 

y'  =  a  cosh x 

y"  =  a  sinhx 
y '"  =  a  cosh  x 
Therefore,  y'"  —  y'  =  0. 


35.  /(x)  =  tanh  x 
/'(x)  =  sech-x 


/(I)  =  tanh(l)  =  0.7616 
1 


/'(I)  = 


cosh-(l) 
fU)  =  -2  sech^x  •  tanhx  /tl)  ==  -0.6397 

/',(^)  =/(l)  +/'(1)(a-  -  1)  =  0.7616  +  0.42(x  -  1) 

0.6397 


-  0.4200 


P.^{x)  =  0.7616  +  0.42(x  -  1) 


-{x  -  \r- 


p./ 


37.  (a)  y  =10+15  cosh—  -15  <  x  <  15 


20  ■• 
10 


(b)  Atx  =  ±15. y  =  10  +  15cosh(l)  =  33.146. 
At  X  =  0,y  =10+15  cosh(l)  =  25. 


(c)  y'  =  sinh -j-r.  Atx  =  15, y'  =  sinh(l)  =  1.175 


39.  Let  M  =  I  -  Zx,  du  =  -2dx. 

sinh(l  -  2x)  dx  =  -^    sinh(l  -  2r)(-2)  dx 


I' 


--cosh(l  -  2x)  +  C 


41.  Let  u  =  cosh(x  —  1),  du  =  sinh(x  —  1)  dx. 


i 


cosh'(x  -  1)  sinh(x  -  Otiv  =  -cosh^(x  -  1)  +  C 


270        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


43.  Let  u  =  sinh  x,  du  =  cosh  x  dx. 
Tcosh  .V 


45.  Let  u  =  —,du  =  xdx. 


iinhx 


■dx  =  In  sinh. V   +  C 


P-f-l 


csch^  —  \xdx  = 


-cothy  +  C 


47.  Let  u  —  —.  du  =  — rctc. 
x  x'^ 


\ 


csch(l/A-)coth(l/A-) 


dx 


■[ 


csch  -  coth  -  — x]dx  =  cscb-  +  C 
X         x\    x^  x 


49. 


25  -A-^  10    5  -  A~"       1015  +,t' 


dx  +  -—\ dx 


i" 


5  +  X 


5  -  X 


o^m'"^  =  5'"^ 


51.  Let  u  =  2x,  du  =  2  dx. 


r^/2/A 
Jo 


-dx 


rV2/4 
Jo 


VI  -  Ax^  Jo       VI  -  [2xf 


=(2)  dx  ■ 


arcsin(2x) 


0  4 


53.  Let  »  =  x^,  du  =  2x  dx. 


J?TT*  =  i/: 


2a         ,        1  /  ■,\       ^ 

-  dx  =  -  arctan(A^j  +  C 


(a^)2  +1  2 


55.    y  =  cosh   '(3a) 

3 
^       V9a2  -  1 


57.    y  =  sinh~'(tanA) 

y'  =      ,  (sec^x)  =  |secA| 

Vtan-^  A  +  1 


59.    y  =  tanh-'(sm2A) 
1 


1  —  sin^  2a 


(2  cos  2a)  =  2  sec  2a 


61.    y  =  2Asinh-'(2A)  -  Vl  +  4x^ 

2 


Vl  +  4x- 


4x 


y'  =  2a-  z    +  2  sinh" '(2a) ^=^  =  2  sinh" '(2a) 


Vl  +  4a2 


63.  See  page  395. 


65.  y  =  a  sech   '  - —  Va^  —  a-,  a  >  0 
a 


-1 


^^_         

dx       (x/a)Vl  -  (aVq^)    ■    Vfl"  -  a2       aVg^  -  A^    '    Va^  -  a^       aVq^  -  a^ 


""  +  ^ 


a2  -  ^2  -  V^5^^ 


67. 


:d^  = 


Vl  +  e^  J  e'Vl  +  (e>p 


e^ 


:a[x  =  -csch-'(e')  +  C  =  -Inl 


1  +  Vl  + 


+  C 


69.  Let  iY  =  Va,  du  =  — tt  dx. 

2jx 


/: 


:^A=   2 


v^v^l^^  J  Vl  +  (v^)^V2^ 


— ^)  rfA  =  2  sinh  '  v/J:  +  C  =  2  ln(^  +  Vl  +  a)  +  C 
2Va/ 


^^•/i^^^  =  J(7 


-^jr^^'^  =  4ln 


(a  -  2)  -  2 


(a  -  2)  +  2 


=  5'" 


A-  4 


+  C 


Section  5.10        Hyperbolic  Functions       271 


^^'  Jl-J-2x^'^'^  -  J  3  -  2(1  +  l)^'^  -  Jj[72U  +  \)Y  -  (73)^"^ 


-1 

2^6 


In 


^{x  +  1)  -  73 


v^U  +0  +  73 


+  c 


276 


In 


v/2(;c  +  1)  +  73 


72(jt  +  1)  -  73 


+  C 


75.  Let  M  =  4jc  -  1,  ^k  =  4  <&. 

J  780  +  8^  -  ldt=  4J 


4  ,        1         .  /4;c  -  1\       ^ 

,  dx  =  -  arcsin  — - —    +  C 

781  -  {Ax  -  If  4  \      9       ' 


'''  y  =  /sT^'^  =  /(-  -  ^  ^  jrf^)^  =  /(-  -'^'^^  -«/f^17^ 


ix 


^'      .    -.20, 
—  -  4j:  +  -^  In 
2  6 


U  -  2)  +  3 


U  -  2)  -  3 


^C=-f-4.  +  fln 


X  +  1 


X-  5 


^      -X        .  0, 

+  C  =  — 4.V  -  —  n 

2  3 


X  -  5 


.x+  1 


+  C 


79.  A  =  2     sech^atc 
Jo         •^ 


81.  A 


=  2 


^/2  +  g-xn 


dx 


Jo  ie^^'r  + 


-dx 


8  arctan(e^/2) 
8  arctan(e-)  -  27r  ==  5.207 


2jo 


:dv 


7l?FTT 


dx 


|ln(x-+  ./^^TT) 


=  -  ln(4  +  717)  =  5.237 


83.    l^dt  = -^ —  dx 

J  16  ]x-  -  lit  +  32 

3fa^  r 

16       J 


(^_-^r3^<i^  =  ^'" 


(.V  -  6)  -  2 


(.V  -  6)  +  2 


+  C  =  -  In 
4 


.T  -  8 


X  -  4 


+  C 


When  .t  =  0:         f  =  0 


C=  --ln(2) 


When;c  =  1: 


When  t  =  20: 


t=  10 


30A-  _  1 
16  ~  4 


In 


-3 


-4'"(2)=-ln(- 


^^  =  ^'"6 


a(^)-eh4'"^ 


49       .V  -  8 


36      2x  -  8 

eix=  104 

104      52       ,  ^^^ , 
a:  =  —  =  -«  1.677  kg 


272        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


85.  As  k  increases,  the  time  required  for  the  object  to  reach  the  ground  increases. 


87.    y  =  coshx  • 
e^  —  e~ 


e^  +  e'" 

2 

=  sinhjc 


89.  y  =  cosh   '  x 

cosh  y  =  X 
(sinh3')(y')  =  1 
1 


y  =:? 


smhy       Vcosh^ y  -  1       ^x^  -  1 


91.    y  =  sechx 


e"  +  e^-' 
y'  =  -2(e'^  +  e"^)-V  -  e'") 


e^  —  e 


e'  +  e  ^l\e'  +  e  " 


—  sech  X  tanh  x 


Review  Exercises  for  Chapter  5 


1. /(x)  =  ln;c  +  3 

Vertical  shift  3  units  upward 
Vertical  asymptote:  x  =  Q 


12        3        4        5 


3-  'n  V£^  =  1'"^^"  J/+V^'  =  if'"^^  "  ^^  ■"  '"^2"  +  ^^  -  '"(^"'  +  ^^^ 


5.  In  3  +  ^  ln(4  -  x^)  -  In  jc  =  In  3  +  In  3/4  -  x^  -  Inx  =  ln(  ^^^ 
3  V       X 


7.  InVx  +  1  =  2 

Vjc+  1  =  e2 

X  +  1  =  e"* 

X  -  e"  -  1  ^  53.598 


9.    g(x)  =  InVx  =2'"^ 


^'«=t 


11.  /w  =  xTinI 


1  /; —      1  +  21nx 

— j=  +  V  In  X  = 7=^ 

2vlnx  2vlnx 


13.    >-  =  75|  ln(a  +  bx)  + 

^  ^  ±r^ <L 

dx      if\_a  +  bx      (a  + 


a  +  bx 
ab 


to)"  J 


(a  +  bxY 


15.     y 


dy 


a     \      X      /  a 


1/      fc 


a[)c         aVa  +  bx      xj      x{a  +  bx) 


1 


17.  u  —  Ix  —  2,du  =  Idx 
1 


J  7x  -  2  7j 


Ix-T  '  7     '  ' 


Review  Exercises  for  Chapter  5        TTi 


,  „     f     sin  .t       ,  r   ~  s 

19. dx=  -\ 

J  1  +  cos  j;  J  1  + 


-dx 


1   +  cos  X  J   1   +  COS  X 

-ln|l  +  cosjtl  +  C 


-r^-K-i)- 


X  +  Inlxl 


3  +  ln4 


23.    I      secede  = 


Jo 


ln|sec  e  +  tan  e| 


t/3 


=  ln(2  +  73) 


25.  (a)  /W  =  it  -  3 

1         -, 
>  =  2-t  -  3 

2(y  +  3)=x      . 

2(x  +  3)=y 

r\x)  =  2x  +  6 


(b) 


'/ 

^ 

> 

■^ 

(c)  /-'(/W)  =/-'(it  -  3)  =  l{{x  -  3)  +  6  =  ;c 
/(/-'W)  =/(2;c  +  6)  =  ^(2x  +  6)  -  3  =  j: 


27.  (a)      /U)  =  v'TTT 
y=  Jx+  1 
y —  1=0: 
x-  —  \  =  y 
f-'(x)  =x^-  \,x  >  0 


(b) 


^ 

^ 

■' 

(c)  /-'(/W)  =/-'(7^TT)  =  VCr  -  1)=  -  1  =  X 
■     /(/-W)  =  /(.t^  -  1)  =  J{x-  -  1)  +  1 

=  v^?  =  JT  for  -V  >  0. 


29.  (a)      /(x)  =  3/.V  +  1 


V  =Vx+  1 
'  3^-  1  =x 

x'  -  1  =y 
/->W=x3-  1 


(b) 


f- 

"^^ 

y 

(c)  /-(/W)  =/-'(4/^^^)  =  (^^n^)'  -  1  =  -r 


/(/-'U))  =  /(x^  -  1)  =  ^(.T^  -  1)  +  1  =  X 


31.  /U)  =y?  ^-1 

r\x)  =  U  -  2)>/3 

(/-')'W  =  |u-2)-V3 


33. 


1 

35/3 


=  0.160 


/(.r)  =  tan  .r 

/^\  ^  73 

-^Uy     3 

f\x)  =  sec-.r 

^U/       3 

3 

^      '  \  3  y      /'(7r/6) 

4 

274       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 

35.  (a)     f{x)  =  In  v^  (b) 

y  =  ln>/t 

ey  =  v^ 
e'^y  =  X 

e^  =  y 


/-'W  =  e^ 


V 

/'V 

^ 

(c)  /''(/W)  =/"'(ln  >A)  =  e^i"-^  =  giBA:  =  jf 
/(/~'W)  =  Ae^)  =  In  7^  =  In  e^  =  X 


37.  y  =  e-^/2 


39.  f{x)  =  ln(e-^)  =  -jc^ 
fix)  =  -lx 


41.    g(f)  =  i^e' 

g\x)  =  t-e'  +  2te'  =  te'(t  +  2) 


43.    y  =  Ve^'  +  e"^ 


y'  =  f(e^  +  e-^-)-/2(2e^  -  2e-^)  =    '       ^     2. 
I  ^  e"  +  e  '^ 


45.    8ix)=~ 


g'ix) 


e^{2x)  -  JcV      x{2  -  x) 


49.  Let  M  =  —  3x^,  ^m  =  —6x  dx. 


J^-3.^=_i| 


£fa:=  -7   e-3j:^(-6x)dx=  -re"'^  +  C 


47.  y(ln  x)  +  y^  =  0 

dy_ 


(ic      x(2y  +  In  x) 


51.      ^ ^^        Sfa  =     (e3^-e^  + 


e-^)dx 


g3jr  _   ^  _  g    AT  ^    ^ 


3e^  -  3 


3e^ 


+  C 


/„-*.-ip.-(-2.,^ 


53.     xe'-^atc 


=  -/'^  +  C 


55.  Let  u  =  e^  -  l,du  =  e'  dx. 

e^ 


1 


e^-  1 


dx  =  Ine'  -  1    +  C 


57.  y  =  Wa  cos  3x  +  b  sin  3jc) 

y '  =  e't-  3a  sin  3x  +  3b  cos  3j:)  +  e*(a  cos  3j:  +  fo  sin  3x) 

=  e^{-3a  +  b)  sin  3x  +  {a  +  3b)  cos  Sx] 
y"  =  K3(- 3a  +  b)  cos  3jc  -  3(a  +  3b)  sin  3x]  +  e'[(-3a  +  b)  sin  3x  +  (a  +  3b)  cos  3x] 
=  s^[(-6a  -  %b)  sin  3x  +  (-8a  +  6fe)  cos  3x\ 
y"  -  2y '  +  lOy  =  e^{[(-6a  -  8fc)  -  2(-3a  +  b)  +  \Qb]  sin  3x  +  [(-8a  +  (,b)  -  2{a  +  3b)  +  10a]  cos  3a;}  =  0 


Review  Exercises  for  Chapter  5       275 


59.  Area 


=  j  xe-'^dx  =  [-f^'^]  =  -!(«•"'*  -  1)  =  0.500 


61.  y  =  33/2 


63.  y  =  logjCj:  -  1) 


65.  fix)  =  3^-' 
/'U)  =  3--'ln3 


69.    g{x)  =  logjVl  -  X  =  -  log3(l  -  x) 


g'ix)  =  ^ 


1 


1 


2(1  -;c)ln3       2{x  -  l)ln3 


67.      y  =  x2^-'' 

Iny  =  (2x  +  \)\nx 
y'  _  Ix  +  1 


+  l\r\x 


y        * 

(Zx+  1 


3'    =  >' 


+  2  In  .X  1  =  ;c^* '(  — +  2  In .t 


X 


71.    \{x  +  l)5(-+»'rfr  =  1  As'-*"'  +  C 
J  2  In  5 


73.  (a)    y  =  x" 


y   =  ax" 


75.  10,000  =  PefooTXis) 
„       10,000 


(b)    y  =  a- 
y '  =  (In  a)<3-' 


$3499.38 


(c)       y  =  x^  (d)    J  =  a" 

In  y  =  JT  In  ,r  y '  =  0 

—  v'  =  X  •  — I-  (1)  In.v 
y-  j: 

y'  =  y(l  +  In.v) 

y'  =  x'(l  +  In.r) 

77.  P(/i)  =  30e^ 

P(18,000)  =  30e'««»'--  =  15 
,  _  ln(l/2)  _   -ln2 


18,000       18,000 
Pih)  =  30e-<'"° ->/'«•«» 
/'(35,000)  =  30e-(35.oooin2)/i8,ooo  ^  7  79  inches 


79.      P  =  CeOO'S' 

2  =  eOO'5' 
ln2  =  0.015r 
In-- 


t  = 


0.015 


=  46.21  years 


81.   J  =  ^i±l 

ttc  X 


h-~l 


x^-Ux 


y  =  y  +  3  ln|.r|  +  C 


276        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


83.  y'  -2xy  =  0 
dv 


dx 


2xy 


\-dy=   llxdx 
\n\y\  =  x^  +  Q 

y=Ce^ 


dy      v^  ~t~  V*" 

85.  -^  = ^-   (homogeneous  differential  equation) 

dx         2xy 

(x^  +  y^)  dx  -  2xy  dy  =  0 

Let  y  =  vx,  dy  =  x  dv  +  v  dx. 

(x-  +  vV)  dx  -  2x{vx){x  dv  +  vdx)  =  0 

(x^  +  vV  -  2x^v^)  dx-2x>vdv  =  0 

(x^  —  xhP)  dx  =  2a^v  dv 

i\-v'^)dx  =  2x  dv 


(dx^  r_2v_ 

]  X        J  1  -  v2 


dv 


ln|jc|  =  -ln|l  -  v^l  +  C,  =  -ln|l  -  v^l  +  In  C 
C  C  Cx^ 


1  = 


1 

—   V- 

1    - 

-  {y/xY 

X-  - 

/ 

Cx 

-y2 

or 

X 

x^ 

^'"x^ 

-f 

87.  y  =  C^x  +  C^^ 
y'  =  Cj  +  SCjJC' 
y"  =  6C2X 

x^y"  -  3xy'  +  Sy  =  X'iec^x)  -  Zx{C^  +  SCjX^)  +  iCyX  =  C.x^) 
=  ec^x^  -  3C,x  -  QCoX^  +  3CiX  +  SCjX^  =  0 

X  =  2,y  =  0:  0  =  2C,  +  8C2  =>  Cj  =  -4C2 

x  =  2,y'  =  A:  4  =  C,  +  llCj  ,   -    ' 

■     4  =  (-4C2)  +  I2C2  =  8C2  =»  C2  =  |,  Ci  =  -2 


y  =  ~2x  +  -x^ 


»9.f(x)  =  2  arctan(ar  +  3) 


Review  Exercises  for  Chapter  5       277 


91.  (a) 


Let  0  =  arcsin  — 


sin  6  = 


sinl  arcsin -I  =  sm6  =  —. 


(b) 


Let  6  =  arcsin 


1 


sin  e  =  - 


cosi  arcsin -I  =  cos  6  =  -r~. 


93.    >  =  tan(arcsin  j:) 


vr 


95.    y  =  x  arcsec  x 

X 


|x|v^^^^ 


+  arcsec  j: 


97.    y  =  .t(arcsin  x)^  —  2r  +  2  Vl  —  .r-  arcsin  ;c 
2x  arcsin  x 


vr^ 


+  (arcsin  j:)^  —  2  + 


2VTZ 


2j: 


yr 


:  arcsin  x  =  (arcsin  .t)^ 


99.  Let  M  =  e^,  (iu  =  2e^  dx. 


J-TTT^  '^  =  \y^  dx  =  l/yrrU^^^.-)  ^  =  \  arctan(.-)  +  C 


101.  Let  «  =  X-,  du  =  2xdx. 


103.  Let  M  =  16  +  X-.  du  =  2xdx. 


(2r)  A  =  —  arcsin  x^  +  C 


jjeT^'^^ljleh^^^^'-'-b^^'' 


+  x^)  +  C 


105.  Let  u  =  arctan  t-  I.  <i"  =  ": ^  <if  • 

\2/  4  +  x^ 


. ,  arctan '-]    +  C 
4\  2 


\Ai       -w     ■'  +  <^ 
\A/        V  m 

Since  y  =  0  when  f  =  0,  you  have  C  =  0.  Thus, 

^\       V 


>-  =  A  sin(  ^/  -  f 


109.    >-  =  It  -  coshv^x 


sinhv'x 


,^  =  2-^(sinhV^)  =  2-^-^ 


111.  Let  u  =  x^.  du  =  2x  dx. 


\        ■''        dx  =  U    ,     ^      ={2x)dx  =  \\n{x^  +  V?~^)  +  C 


278        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


Problem  Solving  for  Chapter  5 


1-  tan  01  = 


tan  e,  = 


10  -X 


f{x)  =  0,  +  ^2  ^  arctan(-J  +  arctanl       _ 


1 +4  '        1 + 


1 


36 


(10  -  x) 


=  0 


(10  -  xf 


6 


x2  +  9      (10  -  xY  +  36 
(10  -  xf  +  36  =  2(x2  +  9) 
100  -  20;c  +  x2  +  36  =  2jc2  +  18 
;c2  +  20x  -  118  =  0 


-20  ±  V202  -4(-118) 
X  = =  -  10 


a  =  - 10  +  v^TS  -  4.7648      f(a)  =-  1.4153 
e  =  77  -  (0,  +  e^)  «  1.7263    or    98.9° 
Endpoints;  a  =  0:  0  =  1.0304 
a  =  10:  0  «  1.2793 
Maximum  is  1.7263  at  a  =  -  10  +  7211  «  4.7648. 


/2T8 


3.  f{x)  =  sin(lnj:) 

(a)  Domain:  x  >  Q    or     (0,  oo) 


(b)  /(x)  =  1  =  sin(in  x)  =*  In  ;c  =  y  +  2^it. 
Two  values  are  jt  =  e'^''^,  g(7r/2)+27r_ 


(c)  f(x)  =  -1  =  sin(lnj:) 

Two  values  are  x  =  e""''^,  e^''''^. 


ln.t  =  —  +  2^77. 


(d)  Since  the  range  of  the  sine  function  is  [—  1,  1], 
parts  (b)  and  (c)  show  that  the  range  of/is  [—  1,  1]. 

(e)  f'(x)  =  -cos(lnx) 

fix)  =  0  ^  cos(!n x)  =  0  =^  \nx  =  —  +  ktr  =i 


fie-"'")  =  1 
/(I)  =  0 
/(lO)  =  0.7440 


•  Maximum  is  1  atx  =  e^^^  =  4.8105 


(f) 


[T 


lim  f(x)  seems  to  be  --.  (This  in  incorrect.) 

Jr-»0*  2 

(g)  For  the  points  x  =  e'"!'^,  g-^Vz^  e"'''/^, . . . 

we  have  f(x)  =  1. 

For  the  points  x  =  e"''/^,  e"^'"!'^,  e~^'"'\  . . . 

we  have  f{x)  =  - 1 . 

That  is,  as  j:— ^O"^,  there  is  an  infinite  number  of 
points  where  f{x)  =  1,  and  an  infinite  number  where 
f(x)  =  —  l.Thus  lim  sin(ln a:)  does  not  exist. 

You  can  verifiy  this  by  graphing  f{x)  on  small 
intervals  close  to  the  origin. 


Problem  Solving  for  Chapter  5        279 


,    ,  ,  Area  sector        t  .  t  ,    .       t 

5.  (a) 7—r-  =  T—  =>  Area  sector  =  r— (tt)  =  - 

Area  circle       Itt  Itt  2 

,  rcosh  t 

(b)  AreaAOP  =  -{base)(height)  -  Vjt  -  1  dx 

rcosh  r 

1  ^ 


'^(f)  =  -  cosh  t  ■  sinh  t 


\dx 


A  '(f)  =  -[cosh-  t  +  sinh-  i\  -  Vcosh^  t  -  1  sinh  « 


=  rCcosh-  t  +  sinh- 1]  -  sinh^  t 
=  —[cosh-  t  -  sinh-  t]  =  - 


A(f)  =  -t+C.  But,  A(Q)  =  C  =  O^C  =  0 


Thus,  A(f)  =  -f    or    J  =  2  A(/). 


7.  y  =  In  jr 

1 


y 


1, 


>>  -  fe  =  -(.r  -  a) 
a 


y  =  —X  +  b  —  1     Tangent  line 
a 


lix  =  Q,c  =  b  -  1.  Thus,  b  -  c  =  b  -  {b  -  \)  =  \. 


11.  (a) 


^ 
A 


,,1-01 


jy-""*'=   \dt 


-0,01 

I  ^ 

"-l 

1 

y0.01 

-O.Olr  +  C 

yO.OI 

1 

C  - 

-  O.Olr 

1 

y  - 

(c 

-  O.Olr)"* 

v(0)  =  l:   1  =^=^  C=l 


Hence,  y 


1 


(1  -  O.Olr)" 


9.  Let  u  =  I  +  Vx,  ^  =  u  -  ].x  =  u^  -  2u  +  \, 
dx  =  (2m  —  2)Jm. 


Area  =      —p dx  = — t— 

]-,Jx  +  x  h  («-!)  +  ("-  -  2u 

h    u-  -  u 

"I 


+  1) 


■du 


2  In 
2  In  3  -  2  In  2  =  2  Ini 
0.8109 


(!) 


(b) 


|y-»*-'rf>-=  r 


■^—  =  kt+C, 

—  E 

1 


(C  -  eitr)'/^ 


.v(0)=.Vo  =  ^=>C-4 


Hence,  v 


^r 


i -)'•■■ 


For  r— > .  V— >cx;, 


For  T  =  100,  lim  v  =  oo. 

r-»r-  ■ 


280        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


13.  Since  ^  =  /t(v  -  20), 
dt 


/t^^-/ 


dy=   \kdt 

\n{y  -  20)  =  kt+  C 

>>  =  Ce*'  +  20. 

When  r  =  0,  y  =  72.  Therefore,  C  =  52. 

When  f  =  1,  y  =  48.  Therefore,  48  =  Sle"  +  20,  e*  =  (28/52)  =  (7/13),  and  A:  =  ln(7/13). 
Thus,  .V  =  52«ti°*''/'3'>  +  20. 

When  f  =  5.  >-  =  52e5M7/i3)  +  20  «  22.35°. 


JO 

15.  (a)  —  =  k^S{L  -  S) 


(b)    ^  =  In  m  5(100  -  S) 


1  -'-  Ce- 


:  is  a  solution  because 


rf25  /4 

^  =  '"19 


5|-f)  +  (100-S)''^ 


rfr 


dr 


^=  -L(l  +  Ce-'')-2(-C/te-*') 
dt 


LCke- 


(1  +  Ce-'')2 

fM 

L 

Ul 

+  Ce-'^-' 

(k\ 

L 

CLe- 


1  +  Ce-*' 


U/  1  +  Ce- 


L  - 


1  +  Ce- 


k^S{L  -  S),  where  A:,  =  — . 


L  =  100.  Also,  S  =  10  when  f  =  0  ^.  C  =  9.  And, 
S  =  20  when  t=  \  =*  fc  =  -ln(4/9). 


Particular  Solution.  S 


100 


J    +  9gln(4/9)f 

100 

1   4.  9g-0.8109 


(C)      125 


^lng)(100-25)f  . 

=  OwhenS  =  50or^  =  0. 
dt 

Choosing  S  =  50,  we  have: 

50  = 100— 

1  +  9ei"M/9)' 

2=1+  9eln(4/9)r 

ln(l/9) 


ln(4/9) 


=  r 


t  =  2.7  months 


(d) 


(e)  Sales  will  decrease  toward  the  line  S  =  L. 


PART     II 


CHAPTER     P 
Preparation  for  Calculus 


Section  P.l       Graphs  and  Models 282 

Section  P.2      Linear  Models  and  Rates  of  Change 287 

Section  P.3      Functions  and  Their  Graphs    292 

Section  P.4      Fitting  Models  to  Data 296 

Review  Exercises      297 

Problem  Solving 300 


CHAPTER     P 
Preparation  for  Calculus 

Section  P.l       Graphs  and  Models 

Solutions  to  Even-Numbered  Exercises 


2.  y=  V9  -  x^ 

x-intercepts:  (-3,0),  (3,0) 
y-intercept:  (0,  3) 
Matches  graph  (d) 

6.   y  =  6  —  2x 


X 

-2 

-1 

0 

1 

2 

3 

4 

y 

10 

8 

6 

4 

2 

0 

-2 

4.  y  =  x'  —  a: 

x-intercepts:  (0,  0),  (- 1,  0),  (1,  0) 
y-intercept:  (0,  0) 
Matches  graph  (c) 

8.  y  =  (x  -  3)2 


X 

0 

1 

2 

3 

4 

5 

6 

y 

9 

4 

1 

0 

1 

4 

9 

10.  y 


x 

-3 

-2 

-1 

0 

1 

2 

3 

y 

2 

1 

0 

-1 

0 

1 

2 

12.  y  =  Jx  +  2 


X 

-2 

-1 

0 

2 

7 

14 

y 

0 

1 

V2 

2 

3 

4 

5        10      15      20 


282 


Section  P.l        Graphs  and  Models        283 


14. 


Xmin  =  -30 
Xmax  =  30 
Xscl  =  5 
Ymm  =  -10 
Ymax  =  50 
Yscl  =  5 


Note  that  3;  =  10  when  x  =  Ooxx=  10. 


16. 


j\ 

J 

(a)  (-0.5,  >-)  =  (-0.5,2.47) 

(b)  {x,  -4)  =  (- 1.65,  -4)  and  (x,  -4)  =  (1,  -4) 


18.  y'^  =  :?  -  Ax 

^'-intercept:   y^  =  (fi  -  4(0) 
y  =  0;  (0,  0) 

jc-intercepts:   0  =  x'  —  4;c 

0  =  x{x-  2){x  +  2) 
x  =  0,  ±2;  (0,  0),  (±2,  0) 


20.  y={x-  1)7^2  +  1 


y-intercept:       y  =  (0  -  1)V0^  +  1 
y=  -1;(0, -1) 


x-intercepts:      0  =  {x  -  1)V?+T 
x=  1;(1,0) 


22.  y 


x^  +  Zx 
[3x  +  \Y 


y-intercept:  y  = 


0^  +  3(0) 


[3(0)  +  1? 
y  =  0;  (0, 0) 

x^  +  7)x 


x-intercepts:   0  =  7; — -— 

(3x  +  1 


0 


x{x  +  3) 


(3x  +  \y 

x  =  0, -3;(0,  0),  (-3,0) 


24.  >-  =  2x  -  Jx^  +  1 

y-intercept:  y  =  2(0)  -  VO^  +  1 
>.=  -1;(0,-1) 


x-intercepts:      0  =  2x  —  Vx^  +  1 

2x=  Vx^  +  1 
4x2  =  x2  +  1 
3x2  =  1 


x^  =- 

3 


73 


'  =  #(#» 


Note:  X  =  —  V3/3  is  an  extraneous  solution. 


26.  >>  =  x^  -  X 

No  symmetry  with  respect  to  either  axis  or  the  origin. 


28.  Symmetric  with  respect  to  the  origin  since 
i-y)  =  (-x)3  +  (-x) 
—y  =  — x^  —  X 
y  =  }?  +  X. 


30.  Symmetric  with  respect  to  the  x-axis  since 
x(-yY  =  xy2  =  _  10. 


32.  Symmetric  with  respect  to  the  origin  since 
(-x)(-^)  -  V4  -  (-x)-  =  0 

xy  -  V4--x2  =  0. 


284        Chapter  P        Preparation  for  Calculus 


34.  V 


a:2  +  1 


since  y 


is  symmetric  with  respect  to  the  v-axis 
i-xY-  x^ 


{-xY  +  1    .^2  +  r 


36.  I);]  —  x  =  3  is  symmetric  with  respect  to  the  x-axis 
since  \—y\  —  x  =  ?> 

\y\-x  =  3. 


38.. =  -2+2 

Intercepts: 

(4,0),  (0,2) 
Symmetry:  none 


40.  3;  =  f;c  +  1 
Intercepts: 

(0,1),  (-1,0) 

Symmetry:  none 


42.  y  =  x^  +  3 
Intercept:  (0,  3) 
Symmetry:  )'-axis 


44.  y  =  2x2  +  X  =  ^(2;f  4.  1) 
Intercepts: 

(0,0),  (-io) 
Symmetry:  none 


50.  X  =  y2  -  4 
Intercepts: 

(0,2),  (0,-2),  (-4,0) 
Symmetry:  x-axis 


(-4,  Oj 


46.  y  =  x^  -  4x 
Intercepts: 

(0,0),  (2,0),  (-2,0) 

Symmetry:  origin 


52.  y 


10 


x^+  1 


Intercepts:  (0, 10) 
Symmetry:  y-wdi 


-6-4-2  2       4       6 


48.  y  =  V9  -x2 
Intercepts: 

(-3,0),  (3,0),  (0,3) 
Symmetry:  y-axis 
Domain:  [—3,  3] 


54.  .V  =  |6  -  x| 
Intercepts: 

(0,  6),  (6,  0) 

Symmetry:  none 


Section  p.  1        Graphs  and  Models       285 


56.  x'^  +  Ay-  =  '^^>y  =  ± 


Va^I? 


Intercepts: 

(-2,0),(2,0),(0, -1),(0,  1) 
Symmetry:  origin  and  both  axes 
Domain:  [—2,  2] 


<-.o^ 

(0,1) 

^ 

(0,-1) 

58.  3;c  -  4y2  =  8 
Af  =  -ix 


y  =  ±J\x-2 

Intercept:  Is-  0/ 
Symmetry:  jc-axis 


(y^^ 

'^~^-- 

60.  y  -  (x  +  jjU  -  2)(j:  -  j)  (other  answers  possible) 


2;c-  13 


AX      jy  — 

Lj=f  y 

3 

5x  +  3y  = 

l=>y  = 

1  - 
3 

i£ 

2x-  n 

1  -  5x 

3 

3 

2x-  13  = 

1  -  5x 

7.t  = 

14 

X  = 

2 

The  corresponding  y- 

value 

isy  = 

Point  of  intersection: 

(2,- 

-3) 

-3. 


62. 

Some  possible  equations: 

x  =  y^ 

x=\y\ 

;c  =  /  +  1 

jc^  +  >^  =  25 

66. 

5x  -  ey  =  9  => 

_5x 

-  9 

6 

-7a:  +  3y  =  -18 

^y  = 

7a:- 
3 

J8 

5a:  -  9       Ta  - 

18 

6                3 

5x  -  9  =  14.r  - 

-  36 

27  =  9a: 
a:  =  3       • 
The  corresponding  v- value  is  y  =  1. 
Point  of  intersection:  (3,1) 


68.  x  =  3-f=>f  =  3-x 

y  =  X  —  1 
3  -  A  =  U  -  1)2 
3  -  A  =  A-  -  2i:  +  1 

0  =  .r^  -  A  -  2  =  (x  +  l)(x  -  2) 

X  =  —  1  or  X  =  2 
The  corresponding  y- values  are  y  =  -  2  and  y  =  1 . 
Points  of  intersection:  (-  1,  -2),  (2,  1) 


70.   x2  +  y2  =  25  ^  >-  =  25  -  .r= 
2x  +  y  =  10=s.y  =  10  -  2x 
25  -  x=  =  (10  -  2r)= 
25  -  X-  =  100  -  40x  +  4x- 

0  =  5.v^  -  40x  +  75  =  5(x  -  3)(x  -  5) 
X  =  3  or  X  =  5 
The  corresponding  y-values  are  y  =  4  and  y  =  0. 
Points  of  intersection:  (3.  4).  (5, 0) 


286        Chapter  P        Preparation  for  Calculus 


72,  y  =  ^  -  4x 
y=-{x  +  2) 

)?  -  Ax=  -  (x  +  2) 
.r^  -  3x  +  2  =  0 
{x  -  \Y{x  +  2)  =  0 
x=l     or    X  =  —2 

The  corresponding  y-values  are  >>  =  —  3  and  y  =  0. 
Points  of  intersection:  (1,  -3),  (-2,  0) 


74. 


y  =  x^  -  2x2  +  1 
y  =  1  -  x2 


1  -  x2  =  x^  -  2x2  +  1 

0  =  x^  -  x2 

0  =  x2(x  +  l)(x  -  1) 

X  =  -  1,  0,  1 
(-1,0),  (0,1),  (1,0) 


"^A 

(0.1)/ 

(-1.0)/" 

Yi.o) 

76.  y  =  fcc  +  5  matches  (b). 

Use  (1,  7):  7  =  k{\)  +  5  =>  fc  =  2,  thus,  y  =  2x  +  5. 

y  =  x^  +  A;  matches  (d). 

Use(l,  -9):  -9  =  (1)^  ^k=^k=  -10,  thus, );  =  x-  -  10. 

y  =  fcc^''2  matches  (a). 

Use  (1,  3):  3  =  kiXf''^  =^  k  =  3,  thus.y  =  3x^/2. 

xy  =  fc  matches  (c).  '  • 

Use  (1,  36):  (1)(36)  =  it  =>  A:  =  36,  thus,  xy  =  36. 


78.  (a)  Using  a  graphing  utility,  you  obtain 

y  =  -0.1283t2  +  11.0988f  +  207.1116 

(c)  For  the  year  2004,  r  =  54  and 
y  =  432.3  acres  per  farm. 


(b)       500 


80.  (a)  If  (x,  y)  is  on  the  graph,  then  so  is  (— x,  y)  by  y-axis  symmetry.  Since  (— x,  y)  is  on  the  graph,  then  so  is  (— x,  —y)  by 

X-axis  symmetry.  Hence,  the  graph  is  symmetric  with  respect  to  the  origin.  The  converse  is  not  true.  For  example,  y  =  x^ 
has  origin  symmetry  but  is  not  symmetric  with  respect  to  either  the  x-axis  or  the  y-axis. 

(b)  Assume  that  the  graph  has  x-axis  and  origin  symmetry.  If  (x,  y)  is  on  the  graph,  so  is  (x,  — y)  by  x-axis  symmetry.  Since 
(x,  -y)  is  on  the  graph,  then  so  is  (-x,  -  (-y))  =  (-x,  y)  by  origin  symmetry.  Therefore,  the  graph  is  symmetric  with 
respect  to  the  y-axis.  The  argument  is  similar  for  y-axis  and  origin  symmetry. 


82.  True 


84.  True;  the  x-intercept  is 


Section  P.2        Linear  Models  and  Rates  of  Change        287 


Section  P.2       Linear  Models  and  Rates  of  Cliange 


2.  m  =  2 


4.  OT  =  -  1 


£  40 

6.  m  =  -T 


10.  m 


4-2 
-2  -  1 

_2 
3 


J.-2.  4) 


-2 -(-2) 

12.  m  = ; =  0 

4—1 


H 1 1 1 l-»-i 


(3,-2)  (4,-2i 


14.  m 


(3/4) -(-1/4) 
(7/8)  -  (5/4) 

1  8 


-3/8 


16.  Since  the  slope  is  undefined,  the  line  is  vertical  and  its  equation  is  x  =  —3.  Therefore,  three  additional  points  are  (—3.  2), 
(-3,  3),  and  (-3,  5). 

18.  The  equation  of  this  hne  is 
y  +  2  =  2(.v  +  2) 
y  =  2j:  +  2, 
Therefore,  three  additional  points  are  (-3, -4),  (- 1,  0),  and  (0,  2). 


20.  (a)  Slope  = 


^  =  1 

Ax  ~  3 


By  the  Pythagorean  Theorem. 
.r=  =  30^  +  10^  =  1000 
.t  =  31.623  feet. 


22.  (a)  m  =  400  indicates  that  the  revenues  increase  by  400  in  one  day. 

(b)  m  =  100  indicates  that  the  revenues  increase  by  100  in  one  day. 

(c)  m  =  0  indicates  that  the  revenues  do  not  change  from  one  day  to  the  next. 


288        Chapter  P        Preparation  for  Calculus 


24.  6;c  -  Sy  =  15 

6  -, 

Therefore,  the  slope  is  m  =  j  and  the  y-intercept  is 
(0,  -3). 


26.  y  =  -  1 

The  line  is  horizontal.  Therefore,  the  slope  is  wz  =  0  and 
the  y-intercept  is  (0,  - 1). 


28.         jc  =  - 1 

x+  1  =0 


(-1,2) 


30. 


y  =  4 
4  =  0 


-3      -2      -1 


(0,4) 


32.  y  -  4  =  -f  (x  +  2) 

5y  -  20  =  -Ix  -  6 
3;c  +  5y  -  14  =  0 


4  -  (-4)       8       - 

y  -  4  =  2(;c  -  1) 
y  -  4  =  Zx  -  2 

0  =  Ix  -  y  +  2 


38.  /n  = 


6-2 


-4   -3   -2-1  12 


40.  wi  =  0 

y=-2 
y +  2  =  0 


-I — I — I — I- 


12         3         4 


(1,  -2)     (3.  -2) 


42.  m  = 


(3/4) -(-1/4) 
(7/8)  -  (5/4) 

1  8 


-3/8 


1 


^  +  4        3V-      4/ 
12y  +  3  =  -32jc  +  40 
32;c  +  12y  -  37  =  0 


44.  m  —  —- 


y  =  — X  +  b 
a 


~x  +  y  =  b 


a      b 


Section  P.2        Linear  Models  and  Rates  of  Change       289 


=  I 


—  Zx      y 

~1         2 

lx  +  y=  -1 
3x  +  y  +  2  =  0 


.  ^  +  ^  = 

1 

a      a 

-3+1  = 

1 

a        a 

]_  _ 

1 

a 

a  = 

1  =>  .r  +  V  =  1 

X  +  :y  -  1  =  0 

50.         X  =  4 

;c-4  =  0 


52.  y  =  \x-\ 

3>'  -  ;c  +  3  =  0 


54.  y  -  1  =  3(;c  +  4) 
>>  =  3;c  +  13 


56.  .t  +  2v  +  6  =  0 

y  ~  ~2^  "  3 


58. 


The  lines  do  not  appear  perpendicular. 


y 

/ 

/\ 

The  lines  appear  peqjendicular. 


The  lines  are  perpendicular  because  their  slopes  2  and  -5  are  negative  reciprocals  of  each  other. 
You  must  use  a  square  setting  in  order  for  perpendicular  lines  to  appear  perpendicular. 


290        Chapter  P        Preparation  for  Calculus 


60.  X  +  V  =  7 

y  =  -x  +  7 
m=  -\ 

(a)  y-2=-lU  +  3) 
y-l=  -x-l 

X  +y  +  \  =0 

(b)  y  -  2  =  lU  +  3) 
y  -  2  =  ;c  +  3 

x-y  +  5  =  0 


62. 

Ix  +  Ay 

=  7 

y 

=  -!.+ 

7 
4 

m 

3 

~        4 

(a) 

y-4  = 

-|(x 

+  6) 

4y  -  16  = 

-3;c 

-  18 

3x  + 

4^  +  2  = 

0 

(b) 

y-A 

=  !u 

+  6) 

3y-  12 

=  4jc  +  24 

4x- 

3y +  36 

=  0 

64.  (a)  y  =  0 

(b);c=-l=>.:c+l=0 


66.  The  slope  is  4.50. 

Hence,  V  =  4.5(?  -  1)  +  156 
=  4.5r  +  151.5 


68.  The  slope  is  -5600.  Hence,  V  =  -5600(f  -  1)  +  245,000 

=  -5600f  +  250,600 


70. 


^ 

fV'3-0' 

l\ 

1\ 

You  can  use  the  graphing  utility  to  determine  that  the  points  of  intersection  are  (0,  3)  and  (3,  0).  Analytically, 
X-  -  Ax  +  3  =  -x^  +  2x  +  3 
2jc'  —  6jr  =  0 
2x(x  -  3)  =  0 

X  =  0  ^  y  =  3  =>  (0,  3) 

•  ;c  =  3  ^  y  =  0  =»  (3,  0). 

The  slope  of  the  line  joining  (0,  3)  and  (3,  0)  is  m  =  (0  -  3)/(3  -  0)  =  —  1.  Hence,  an  equation  of  the  line  is 

>--  3  =  -1(a:-  0) 

y  =  -x  +  3. 


72. 

/Kl 

-6 

7  - 

-  4 
0 

10 

7 

mj 

11  - 

-5 

-  4 

-  0 

7 
5 

m, 

#  /Wj 

The  points 

are 

not  coUinear. 

Section  P.2        Linear  Models  and  Rates  of  Change        291 


74.  Equations  of  medians: 


y  =  -x 


3a  +  b 
c 


(x  +  a) 
(x-a) 


■'       -3a +  b 
Solving  simultaneously,  the  point  of  intersection  is 


m- 


(-a.O)       ,  (0.0)    (a.O) 


(b  c\      I     a^  -  lP-\ 
76.  The  slope  of  the  line  segment  fi-om  I  -,  - 1  to  I  fc, I  is: 

[(g^  -  b'-)/c\  -  (c/3)       (3a"  -  3fc^  -  c^)/(3c)       3a'  ~  3b^  -  cr 


b  -  (b/3) 


{2b)/3 


2bc 


The  slope  of  the  line  segment  from  I  -,  -  I  to  ( 0, 


b  c 


2c 


[(-g"  +  fc-  +  c^)/(2c)]  -  (c/3)  _  (-3a"  +  31^  +  3c-  -  lc')/{bc)      3a'  -  3b'  -  c' 


"^  0-(V3) 

Therefore,  the  points  are  collinear. 


-bl3 


2bc 


78.  C  =  0.34x  +  150.  If  .r  =  137,  C  =  0.34(137)  +  150  =  $196.58 


80.  (a)  Depreciation  per  year: 
^  =  $175 

>-  =  875  -  175a: 
where  0  <  x  <  5. 
db)  y  =  875  -  175(2)  =  $525 


82.  (a)  V  =  18.91  +  3.97.i:     (x  =  quiz  score,  >>  =  test  score) 

(b)    "M 


(c)    200  =  875  -  175x 
175;c  =  675 

X  =  3.86  years 

(c)  ]fx  =  17,y  =  18.91  +  3.97(17)  =  86.4. 

(d)  The  slope  shows  the  average  increase  in  exam  score 
for  each  unit  increase  in  quiz  score. 

(e)  The  points  would  shift  vertically  upward  4  units.  The 
new  regression  line  would  have  a  y-intercept  4  greater 
than  before:  v  =  22.91  +  3.97.r. 


84.  4.1  +  3y  -  10  =  0  =>  c/ 


|4(2)  +  3(3)  -  10|  _  7 

Va^TY-       ~  5 


M.  x+  \=Q^>d  = 


|1(6)  +  (0)(2)  +  1| 
^1-  +  0" 


=  7 


88.  A  point  on  the  line  3x  -  4.v  =  1  is  (-  1,  -  1).  The  distance  from  the  point  (-  1,  -  1)  to  3.v  -  4v  -  10  =  0  is 

1-3  +  4-  10|       9 


292        Chapter  P        Preparation  for  Calculus 


90.  y  =  ntx  +  4=>mx  +  (-\)y  +  4  =  0 

|Aci  +  gy,  +  C\  ^  \m3  +  (- 1)(1)  +  4| 


^  |3m  +  3| 

Vm^  +  1 

The  distance  is  0  wlien  w  =  —  1.  In  this  case,  the  line  y  =  —x  +  4  contains  the  point  (3,  1). 


92.  For  simplicity,  let  the  vertices  of  the  quadrilateral  be 
(0,  0),  (a,  0),  (b,  c),  and  (d,  e),  as  shown  in  the  figure.  The 
midpoints  of  the  sides  are 


l» 


a  +  bc\lb  +  dc  +  e\       ^Id  e 


The  slope  of  the  opposite  sides  are  equal: 

c  +  e 


0 


a  +  b 


b  +  d 


£ 

-1  =  £ 

d      b 


0 


c  +  e 


a  +  b      b  +  d 


111  1 

Therefore,  the  figure  is  a  paralleogram. 


(^■^) 


94.  If  ffZi  =  —  l/m,,  then  mjOTj  =  ~  1-  Let  Lj  be  a  line  with 
slope  mj  that  is  perpendicular  to  Ly  Then  miWij  =  —  1. 
Hence,  m2  =  m-^=^  L^  and  Lj  are  parallel.  Therefore,  Lj 
and  Z,j  are  also  perpendicular. 


96.  False;  if  m,  is  positive,  then  m^=  -  l/m^  is  negative. 


Section  P.3       Functions  and  Their  Graphs 


2.  (a)  f(-l)  =  V-2  +  3  =  yr  =  1 
(b)  /(6)  =  V6T3  =  79  =  3 

(c)  /(c)  =  v^n 


(d)  /(jc  +  Ax)  =  Jx  +  Kx  +  3 


45 


4.  (a)   ^(4)  =  4^(4  -  4)  =  0 

(b)  ^(1) = (im  -  4) = !(-!) 

(c)  gic)  =  c^{c  -  A)  =  c^  -  Ac^ 

(d)  g(t  +  4)  =  (r  +  4)2(f  +  4-4) 

=  (r  +  A)h  =  fi  +  %t^+\6t 


6.  (a)  /(tt)  =  siniT  =  0 

(lTr\        .  (Itt 


(Of 


ns 


73 
2 


(b)/l 


t)  =  ^^l' 


4 


■v^ 


8. 


/(;c)  -/(I)       3;c  -  1  -  (3  -  1)  _  3(;c  -  1) 


1 


1 


1 


=  3,x^  1 


10.  — — =  ; =  ; =  x[x  +  \),x  i=  1 

X  —  \  X  —  I  X  —   1 


Section  P. 3        Functions  and  Their  Graphs       293 


12.  gix)  =x^-5 

Domain:  (— oo,  oo) 
Range:  [-5,  oo) 


14.  h{t)  =  cot  t 

Domain:  all  t  i^  k-rr,  k  an  integer 
Range:  (-00,00) 


16.  g{. 


X  -  1 

Domain:  (-00,  1),  (1,  00) 
Range:  (-00,  0),  (0,  00) 


18.  f(x)  = 


x'^  +  2,x  <  \ 
2jf2  +  2,  ;c>  1 

(a)  /(-2)  =  (-2)=  +  2  =  6 

(b)  /(O)  =  02  +  2  =  2 

(c)  /(I)  =  1^  +  2  =  3 

(d)  f{s^  +  2)  =  2(52  +  2)2  =  2j^  +  8^2  +  10 
(Note:  j2  +  2  >  1  for  all  s) 

Domain:  (—00,  00) 
Range:  [2,  00) 


20.  fix)  = 


Vx  +  4,x  <  5 
(x  -  5)2,  X  >  5 

(a)  /(-3)  =  V-3  +  4  =  yr  =  1 

(b)  /(O)  =  VoT^  =  2 


(c)  /(5)  =  ym  =  3 

(d)  /(lO)  =  (10  -  5)2  =  25 
Domain:  [-4,  00) 
Range:  [0,  00) 


22.  g(x)  =  - 

Domain:  (-00,  0).  (0,  00) 
Range:  (- 00,  0),  (0,  00) 


24.  fix)  =  ;x3  +  2 
Domain:  (—00,  00) 
Range:  (—00,  00) 


26.  fix)  =x+  y4-x2 
Domain:  [—2,  2] 
Range: 

[-2,272]  ==[-2,2.83] 
y-intercept:  (0,  2) 
x-intercept:  ( -  V2,  o) 


(-v/2.0> 


28.  Me)  =  -5cos^ 

Domain:  (-00,  00) 
Range:  [-5,5] 


30.  7x2-4 


0: 


V^ 


y  is  a  function  of  x.  Vertical  lines  intersect  the  graph 
at  most  once. 


32.  x2  +  v2  =  4 


y  =  ±74  -  X- 

y  is  not  a  function  of  x.  Some  vertical  lines  intersect 
the  graph  twice. 


34.  x2  +  y  =  4  =>  y  =  4  —  .r2 

y  is  a  function  of  x  since  there  is  one  value  of  y  for 
each  X. 


36.  xh-  -  .r2  +  4v  =  0  = 


.r2  +  4 

y  is  a  function  of  x  since  there  is  one  value  of  y  for 
eachx 


294        Chapter  P        Preparation  for  Calculus 


38.  Piix)  =  x'  -  X  +  1  has  one  zero.  /JjW  =  x^  -  x  has 
three  zeros.  Every  cubic  polynomial  has  at  least  one  zero. 
Given  p(x)  =  Ax^  +  Sx^  +  Cx  +  D,  we  have  p  ->  -  oo  as 
x-^  — oo  andp— >oo  asx— >oo  if  i4  >  0.  Furthermore, 
p— >oo  asx— >  — oo  and/3— >  —  oo  as  X— >oo  if  A  <  0. 
Since  the  graph  has  no  breaks,  the  graph  must  cross  the 
X-axis  at  least  one  time. 


r^ 


40.  The  function  is/(x)  =  cx.  Since  (1,  1/4)  satisfies  the 
equation,  c  =  1/4.  Thus,/(x)  =  (l/4)x. 


42.  The  function  is  h(x)  =  c-y\x\.  Since  (1,  3)  satisfies  the 
equation,  c  =  3.  Thus,  h(x)  =  3  V]x[. 


2  —  0       1 
44.  The  student  travels     _      =  -  mi/min  during  the  first  46.  (a) 


4  minutes.  The  student  is  stationary  for  the  following 

6-2 
2  minutes.  Finally,  the  student  travels 


during  the  final  4  minutes. 


10 


1  mi/min 


,. 

500- 

^ 

400- 

X 

^ 

V 

300- 

y 

200' 

f' 

100- 

10 

20 

30 

40 

50 

(b)  A(15)  ==  345  acres/farm 


48.  (a)  g(x)=/(x-4) 
g(6)=/(2)  =  1 
g(0)=/{-4)  =  -3 
Shift /right  4  units 


(b)  g(x)=/(x  +  2) 
Shift/left  2  units 


(c)  g(x)=/(x)+4 

Vertical  shift  upwards 
4  units 


(d)  g(x)=/(x)-  1 

Vertical  shift  down  1  unit 


(e)  g{x)  =  2/(x) 

g{2)  =  2/(2)  =  2 
g(-4)  =  2/(-4)  = 


(0  gW  =  5/W 
g(2)  =  ^/(2)  =  i 
g(-4)  =  i/{-4)  = 


(-4.-6) 


50.  (a)  h(x)  =  sin(x  -I-  (n/l))  +  1  is  a  horizontal  shift  ir/2  units  to  the  left,  followed  by  a  vertical  shift  1  unit  upwards. 
fb)  h(x)  =  -  sin(x  -  1)  is  a  horizontal  shift  1  imit  to  the  right  followed  by  a  reflection  about  the  x-axis. 


Section  P. 3        Functions  and  Their  Graphs        295 


52.  (a)/(^(l))=/(0)  =  0 

(b)  g(f(\))  =  g(l)  =  0 

(c)  g{fm  =  g{Q)  =  -  1 
(d)/(5(-4))=/(15)=  715 


(e)/(^W)=/(x2-  \)  =  J^^X 

(f)  gifbc))  =  g{J~x)  =  {J~xf  -  \  =  .X  -  \     {x  >  0) 


54.  fix)  =  X'  -  ).,g(x)  =  cosj: 

{f'g){x)=Mx))  =/(cos.v)  =  cos^v  -  1 
Domain:  (—00,00) 
{g'f){x)=g{x^-  l)  =  cos(x2-  1) 
Domain:   (  —  00,  ca) 
NoJ'g^  g'f. 


56.  (/og)(A)  =f{V^T2)  =  -^1= 

~Jx  +  2 


Domain:  (—2,  00) 


=/)W 


.^=7^ 


2x 


You  can  find  the  domain  of  g  °/by  determining  the  intervals  where  (1  +  2x)  and  x  are  both  positive,  or  both  negative. 


-2      -1  _i  0       1       2 


Domain:  (  — 00,  —  jj,  (0,  00) 


58.  (a)     25 


60.  f(-x)  =   If^  =  -  l/^  =  -fix) 
Odd 


(b)  H' 


1.6 


0.0021  ^)-  +  0.005(^ 


0.029 


=  0.000781  25a- 2  +  0.003125a  -  0.029 


62.  /(-a)  =  sin^(-.v)  =  sin(-A)  sin(-.t)  =  (-sin.r)(-sin  a)  =  sin^A 
Even  >  ( 

64.  (a)  If/ is  even,  then  (-4,  9)  is  on  the  graph. 

66.  /(-a)  =  a,„(-Af "  +  a2„_2(-AP"-^  +  •  ■  ■  +  ^.(-a-)^  +  a^ 


(b)  If/ is  odd,  then  (-4,  -9)  is  on  the  graph. 


=  /(-v) 


Even 


68.  Let  F(a)  =  /(.v)g(.v)  where/is  even  and  g  is  odd.  Then 

F(-a)   =/(-.v)g(-A)   =/(A)[-g(A)]   =    ~fix)g(x)   =    -Fix). 

Thus,  Fix)  is  odd. 


296        Chapter  P        Preparation  for  Calculus 


70.  (a)  Let  F{x)  =  fix)  ±  g{x)  where/and  g  are  even.  Then,  F{-x)  =  f(~x)  ±  g{-x)  =  f{x)  ±  g(x)  =  F(x). 
Thus,  F{x)  is  even. 

(b)  LetFW  =fix)  ±  ^W  where  fandg  are  odd.  Then,  F(-x)  =  f{- x)  ±  g(- x)  =  -f(x)  +  g{x)  =  -F{x). 
Thus,  F{x)  is  odd. 

(c)  Let  FW  =  fix)  ±  gix)  where  f  is  odd  and  g  is  even.  Then,  F(-x)  =  fi-x)  ±  gi-x)  =  -fix)  ±  gix). 
Thus,  Fix)  is  neither  odd  nor  even. 


72.  By  equating  slopes. 


y-2  _  0- 2 
0-3       X- 3 

6 
X-  3 

6 


74.  True 


y-2 


y  = 


x-2, 


+  2  = 


2x 
X-  ^' 


=  Jx^  +  y^  =  -v/jc^  + 


Ix      \2 


X-2, 


76.  False;  let/W  =  x^.  Then/(3x)  =  ilxf  =  9x^  and  3/W  =  3;^^.  Thus,  3/U)  ^  /(3x). 


Section  P.4       Fitting  Models  to  Data 


2.  Trigonometric  function 


4.  No  relationship 


6.  (a)     20 


No,  the  relationship  does  not  appear  to  be  linear. 

(b)  Quiz  scores  are  dependent  on  several  variables  such  as 
study  time,  class  attendance,  etc.  These  variables  may 
change  from  one  quiz  to  the  next. 


8.  (a)  s  =  9.1t  +  0.4 

(b)  45 


The  model  fits  well, 
(c)  If  /  =  2.5,  s  =  24.65  meters/second. 


10.  (a)  Linear  model:  H  =  -0.3323/  +  612.9333 
(b)    600 


The  fit  is  very  good, 
(cj  When  t  =  500, 

H  =  -0.3323(500)  +  612.9333  «  446.78. 


12.  (a)  S  =  180.89jc2  -  205.79;c  +  272 

(b)      25000 


(c)  When  x  =  2,  5  =  583.98  pounds. 


Review  Exercises  for  Chapter  P       297 


14.  (a)  t  =  0.0027 1^2  -  0.05295  +  2.671 

(b)     21 


(c)  The  curve  levels  off  for  s  <  20. 

(d)  t  =  0.002^2  +  0.0346i  +  0.183 


The  model  is  better  for  low  speeds. 


18.  (a)  H{t)  =  84.4  +  4.28  sinf  ^  +  3.86 
One  model  is 


TTt 


C{t)  =  58  +  27sin(— +  4.1 


(b)    100 


20.  Answers  will  vary. 


16.  (a)  T=  2.9856  x  lO'V^  _  0.0641 /j^  +  5.2826p  +  143.1 

(b)       350 


(c)  For  T  =  300°F,  p  =  68.29  pounds  per  square  inch. 

(d)  The  model  is  based  on  data  up  to  100  pounds  per 
square  inch. 


(C)       100 


(d)  The  average  in  Honolulu  is  84.4. 
The  average  in  Chicago  is  58. 

(e)  The  period  is  12  months  (1  year). 

(f)  Chicago  has  greater  variability  (27  >  4.28). 


Review  Exercises  for  Chapter  P 

2.  y  =  (.t  -  l)(.t  -  3) 

;r  =  0  ^  .V  =  (0  -  1)(0  -  3)  =  3  ^  (0,  3)       v-intercept 

;y  =  0  ^  0  =  U  -  l)(x  -  3)  =>  .V  =  1,  3  =>  (1,  0),  (3,  0)      A-intercepts 


4.  XV  =  4 

X  =  0  and  y  =  0  are  both  impossible.  No  intercepts. 


6.  Symmetric  with  respect  to  -v'-axis  since 

y  =  (-x)-*  -  (-x)-  +  3 
v  =  x"  -  x~  +  3. 


298        Chapter  P        Preparation  for  Calculus 


8.  4x  -2y  =  6 

y  =  2x  -  3 
Slope:  2 
y-intercept:  —3 


10.  0.02X  +  0.15y  =  0.25 
2x  +  15y  =  25 


12.  y  =  x{6-  x) 


y  =  -■i5-«  + 


Slope:  -fj 
y-intercept:  j 


14.  y  =  |;c  -  4|  -  4 


16.  y  =  Si/x 


Xmin  =  -40 
Xmax  =  40 
Xscl  =  10 
Ymin  =  -40 
Ymax  =  40 
Yscl  =  10 


18.      •  y  =  ;t  -H 

(x+  I)  -x^  =  7 

0  =  x'-  -  a:  4-  6 

No  real  solution 
No  points  of  intersection 
The  graphs  of  y  =  Jt  -I-  1  and 
y  =  x^  +  7  do  not  intersect. 


20.  y  =  kx^ 

(a)  4  =  kilf  =^k  =  4andy  =  4x^ 
(c)  0  =  M0)3  =>  any  A-  will  do! 


22. 


12- 
10- 

8-- 

S- 

4- 
2-- 


H — I — I — I — I h- 

12     3     4     5     6 


(7,  12) 


—h-»-' 
(7,-1) 


The  line  is  vertical  and  has  no  slope. 


24. 


(b)  1  =  k(-2y  =^k=  -^  andy  =  -jx^ 
(d)  -I  =  k{-iy=^k=  l=^y  =  x^ 

3-(-l)        3-6 


-3  -  r        -3  - 
4  -3 


-3-f      -11 
-44  =  9  -^  3r 
-53  =  3r 


Review  Exercises  for  Chapter  P       299 


26.  J,  -  6  =  OU  -  (-2)) 

y  =  6  Horizontal  line 


(-2,6) 


I    I    I    I    I    I  >  - 


28.  m  is  undefined.  Line  is  vertical. 

x  =  5 


6-- 

4 


-4-2       -  ■       2       4 
-2-- 


(5.4) 


30.  (a) 


y-3 


r(-t  -  1) 


Sy  -  9  =  -2;c  +  2 
2x  -H  3y  -  1 1  =  0 
(b)  Slope  of  perpendicular  line  is  1. 

>-  -  3  =  lU  -  1) 
y  =  X  +  2 
Q=  X-  y  +  2 
4-3       . 


(c) 


2  -  1 
y  -  3  =  l(x  -  1) 
y  =  x  +  2 
Q  =  X- y  +  2 
(d)  y  =  3 

y-  3  =  0 


32.  (a)  C  =  9.25r  +  13.50f  +  36,500 
=  22.75f  +  36,500 

(b)  /?  =  30f 

(c)  30r  =  22.75r  +  36,500 
7.25r  =  36,000 

r  «  5034.48  hours  to  break  even. 


34.  X-  -  V  =  0 

Function  of  x  since  there  is  one  value  for  v  for  each  x. 


36.  X  =  9  -  r 

Not  a  function  of  x  since  there  are  two  values  of  y  for 
some  x. 


38.  (a)  /(-4)  =  (-4)2  +  2  =  18    (because  -4  <  0) 
(b)  /(O)  =  |0  -  2|  =  2 
(c)/(l)=  |1  -2|  =  1 


40.  f(x)  =  1  -  .r=  and  g{x)  =  Iv  +  1 

(a)  f[x)  -  gix)  =  (1  -  .r^)  -  (2r  +  \)  =  -x~  -  Ix 

(b)  f(x)g{x)  =  (1  -  .v-)(2v  +  1)  =  -It^  -  .r=  +  Ir  -I-  1 

(c)  g{f{x))  =  ^(1  -  .X-)  =  2(1  -  .v^)  +  1  =  3  -  li- 


300        Chapter  P        Preparation  for  Calculus 


42.  f(x)  =  x^  -3.xP- 


(a)  The  graph  of  g  is  obtained  from/by  a  vertical  shift 
down  1  unit,  followed  by  a  reflection  in  the  jc-axis: 

gix)  =  -[/W  -  1] 
=  -x^  +  3x^+  I 

(b)  The  graph  of  g  is  obtained  from /by  a  vertical  shift 
upwards  of  1  and  a  horizontal  shift  of  2  to  the  right. 

g(x)=f{x-2)  +  1 

=  (x-  2)3  -  3(x  -2)2+1 


44,  (a)  fix)  =  x^x  -  6f 


(b)  gix)  =  Jt3(x  -  6)2 

300 


Ai 

^   / 

(c)  hix)  =  x^U  -  6)3 

200 


4   ■ — ^-r— .     ,./     , .    10 


46.  For  company  (a)  the  profit  rose  rapidly  for  the  first  year, 
and  then  leveled  off.  For  the  second  company  (b),  the 
profit  dropped,  and  then  rose  again  later. 


Problem  Solving  for  Chapter  P 


48.  (a)  y  =  -  1.204.t  +  64.2667 

(b)         70 


(c)  The  data  point  (27,  44)  is  probably  an  error. 
Without  this  point,  the  new  model  is 

y  =  -1.4344JC  +  66.4387. 


2.  Let  y  =  mx  +  1  be  a  tangent  line  to  the  circle  from  the  point  (0,  1).  Then 
x^  +  iy+l)^=l 
x^  +  imx+  I  +  l)^=  \ 
irrfi  +  \)x'^  +  4mx  +  3  =  0 
Setting  the  discriminant  b^  —  4ac  equal  to  zero, 
16m^  -  Airrr  +  1)(3)  =0 
\6m-  -  I2m^  =  12 
4m^  =  12 
m  =  ±y3 
Tangent  lines:  y  =  V^x  +  1  and  v  =  -  V^x  +  1. 


Problem  Solving  for  Chapter  P        301 


4.  (a)  /(x  +  1) 


(b)  f(x)  +  1 


(c)  lf{x) 


(d)  f{-x) 


(e)  -/W 


(0  i/wi 


4- 


:Y^^y: 


(g)  /(ki) 


6.  (a)  4y  +  3;c  =  300  =>  v 


300  -  3a- 


w  ^        /-,  .        /'300  -  3.x\       -3.V-  +  300x 
Aix)  =  x(2y)  =  xl^ j  = 

Domain:  0  <  x  <  100 


(b) 


25        50        75        100 


(c)  A(x)  =  --{x-  -  IOOa) 


=  --(x^  -  lOOx  +  2500)  +  3750 


Maximum  of  3750  ft"  at  x  =  50  ft,  >-  =  37.5  ft. 


=  --(x  -  50)=  +  3750 

A(50)  =  3750  square  feet  is  the  maximum  area, 
where  x  =  50  ft  and  v  =  37.5  ft. 


302        Chapter  P        Preparation  for  Calculus 


8.  Let  d  be  the  distance  from  the  starting  point  to  the  beach, 
distance 


Average  velocity  = 


time 
2d 


120      60 


120      60 
=  80  km/hr 


12        3        4        5 


3-21  1 

(a)  Slope  =  =  -  Slope  of  tangent  line  is  greater  than  — 

2-11  1 

(b)  Slope  =     _     =  -  Slope  of  tangent  line  is  less  than  -. 

,  ,  ^,  2.1  -  2       10  ^,  ^  ,.      .  ^      10 

(c)  Slope  =  — =  — .  Slope  or  tangent  Ime  is  greater  than  — . 


(d)  Slope  =     (4  +  ;,)_4 


vm-  2 


,  ,   V4  +  /!  -  2       V4  +  /!  -  2     V4  +  /!  +  2 

(e)  = •  — == 

h  h  V4  +  /!  +  2 

_      (4  +  /;)  -  4 


//(V4  +  /I  +  2) 
1 


JA  +  h  +  2 


hi-Q 


As  /!  gets  closer  to  0,  the  slope  gets  closer  to  — .  The  slope  is  -  at  the  point  (4,  2). 


Problem  Solving  for  Chapter  P        303 


12.  (a) 


kl 


U-4)2+/  =  feV  +  )^) 

(A:2  -  ly  +  {k^  -  l)f  +  &x  =  16 

If  k  =  1,  then  ;c  =  2  is  a  vertical  line.  So,  assume  /c'  -  1  ¥=  0.  Then 

(  4     V        ,  16  16 

U  +  t; — 7  1   +y^  =  - r  + 


k^-  1 


x  + 


A:2-  1 


+  /  = 


fc2  -    1  (F  -    1)2 

Ak 


k^-    1 


,  Circle 


(b)  Ift  =  3,  (;t  +  ^)" +  /  =  (!)' 

(c)  For  large  k,  the  center  of  the  circle  is  near  (0,  0),  and  the  radius  becomes  smaller. 


14.  fix)  =y  = 


1 


1  -  X 

(a)  Domain:  all  -t  t^  1 
Range:  all  v  t^^  0 
1 


(b)  fifix))  =/l 


1  -  x 


1  \  -  X      x-\ 


1   —  .V  —   1  —X  X 


\  -  x)  \  -  X 


Domain:  all  x  i^  0,  1 
(x-  1 


(c)  f{f{f{x)))=f\ 


1 


1 


X     j  (x-  W        1 

X       I  X 


Domain:  all  x  t^  0,  1 
(d)  The  graph  is  not  a  line.  It  has  holes  at  (0,  0)  and  (1,  1). 


{ 1 — »-^ 


CHAPTER     1 
Limits  and  Their  Properties 


Section  1.1      A  Preview  of  Calculus    305 

Section  1.2      Finding  Limits  Graphically  and  Numerically    305 

Section  1.3      Evaluating  Limits  Analytically 309 

Section  1.4      Continuity  and  One-Sided  Limits     315 

Section  1.5      Infinite  Limits      320 

Review  Exercises      324 

Problem  Solving 327 


CHAPTER     1 
Limits  and  Their  Properties 

Section  1.1       A  Preview  of  Calculus 

Solutions  to  Even-Numbered  Exercises 


2.  Calculus:  velocity  is  not  constant 

Distance  =  (20  ft/sec)(15  seconds)  =  300  feet 


4.  Precalculus:  rate  of  change  =  slope  =  0.08 


6.  Precalculus;  Area  =  tt[J2)' 


8.  Precalculus:  Volume  =  7r(3)-6  =  54tt 


10.  (a)  Area  "5+-  +  -  +  -«  10.417 

(b)  You  could  improve  the  approximation  by  using  more  rectangles. 


Section  1.2       Finding  Limits  Graphically  and  Numerically 


X 

1.9 

1.99 

1.999 

2.001 

2.01 

2.1 

fix) 

0.2564 

0.2506 

0.2501 

0.2499 

0.2494 

0.2439 

lim  ^ 7  =  0.25       (Actual  limit  is  3.) 

x-^2  X 4 


4. 


X 

-3.1 

-3.01 

-3.001 

-2.999 

-2.99 

-2.9 

fix) 

-0.2485 

-0.2498 

-0.2500 

-0.2500 

-0.2502 

-0.2516 

lim  :; «=  -0.25      (Actual  limit  is  -j) 

->-3  .T  +   3  ^ 


6. 


X 

3.9 

3.99 

3.999 

4.001 

4.01 

4.1 

fix) 

0.0408 

0.0401 

0.0400 

0.0400 

0.0399 

0.0392 

lim  ^^ —, =»  0.04       (Actual  limit  is  ^.) 

j:->4  X  -  4 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

0.0500 

0.0050 

0.0005 

-0.0005 

-0.0050 

-0.0500 

cos  X  —  I 
lim '■ «  0.0000      (Actual  limit  is  0.)  (Make  sure  vou  use  radian  mode.) 

.C-.0  X 


305 


306        Chapter  1        Limits  and  Their  Properties 


10.  lim  (;c^  +  2)  =  3 

jr-»l 


12.  lim/(x)  =  lim  (;c^  +  2)  =  3 


14.  lim 


1 


■  does  not  exist  since  the 


3  a:  -  3 

function  increases  and  decreases 
without  bound  as  x  approaches  3. 


16.  lim  sec  X  =  1 


18.  lim  sin(7rx)  =  0 


20.  C{t)  =  0.35  -  0.121- (f-  1) 
(a) 


(b) 

I 

3 

3.3 

3.4 

3.5 

3.6 

3.7 

4 

C{t) 

0.59 

0.71 

0.71 

0.71 

0.71 

0.71 

0.71 

lim  CW  =  0.71 

(c) 

t 

3 

2.5 

2.9 

3 

3.1 

3.5 

4 

C{t) 

0.47 

0.59 

0.59 

0.59 

0.71 

0.71 

0.71 

lim  C{t)  does  not  exist.  The  values  of  C  jump  from  0.59  to  0.71  at  f  =  3. 

f— *3.5 


22.  You  need  to  find  S  such  that  0  <  |x  —  2|  <  5  implies 
[fix)  -  3|  =  1^2  -  1  -  3|  =  1^2  -  4|  <  0.2.  That  is, 

-0.2  <  x2  -  4  <  0.2 
4  -  0.2  <      x^      <  4  +  0.2 
3.8  <      x^      <  4.2 
JJI  <       X       <  JA2 

Vl8  -  2  <  X  -  2  <  V4I  -  2 

So  take  S  =  742  -  2  «  0.0494. 
ThenO  <  |x  -  2|  <  8  implies 

-{742  -  2)  <  X  -  2  <  742  -  2 
73^  -  2  <  X  -  2  <  742  -  2. 
Using  the  first  series  of  equivalent  inequalities,  you  obtain 

|/(x)  -  3|  =  |x2  -  4|  <  0.2. 


2^-  IT.    '-2 


-f 


-f 


f  (.  -  4) 


<  0.01 


<  0.01 


<  0.01 


0  <  |x  -  4|  <  0.02  =  5 
Hence,  if  0  <  |x  -  4|  <  8  =  0.02,  you  have 


\U  -  4) 


-f 


<  0.01 


<  0.01 


<  0.01 


|/(x)  -L\<  0.01 


Section  1.2        Finding  Limits  Graphically  and  Numerically        307 


26.  lim  (x^  +  4)  =  29 

\(x^  +  4)  -  29|  <  0.01 

|a:2  -  25|  <  0.01 

|(x  +  5){x  -  5)1  <  0.01 

0.01 


5    < 


U  +  5 


If  we  assume  4  <  x  <  6,  then  5  =  0.01/11  =  0.0009. 
Hence,  if0<|jr-5|<6  =  —rr-,  you  have 


1 


|.x-  5||a;  +  5|  <  0.01 

|;c2  -  25|  <  0.01 

(x^  +  4)  -  29|  <  0.01 

|/(x)  -  L\  <  0.01 


(0.01) 


28.    lim  (2;c  +  5)  =  -  1 

a:— >-3 

Given  e  >  0: 

|(2r  +  5)-(-l)|  <  e 
|2x  +  6|  <  e 

2\x  +  3|  <  6 

|;t  +  3|  <|=6 
Hence,  let  5  =  e/2. 
Hence,  if  0  <  |jr  +  3|  <  5  =  -,  you  have 

1^  +  31  <  I 

i2x  +  6|  <  e 

|(2x  +  5)-(-l)|  <  6 

l/W  -L\<e 


30.  lim  %x  +  9)  =  5(1)  +  9  =  f 
Given  e  >  0: 

|V3^  +  9j  -  y|    <   6 

i|x-l|<e 

k-l|<56 
Hence,  let  6  =  (3/2)e. 
Hence,  if  0  <  |j:  —  1 1  <  S  =  je,  you  have 

\x  -    \\    <   ^€ 


32.  lim(-l)  =  -1 

JC— ^2 

Given  e  >  0:    |-1  -  (-1)|  <  e 
0  <  e 
Hence,  any  5  >  0  will  work. 
Hence,  for  any  5  >  0,  you  have 

|{-l)-(-l)|  <e 
l/W  -  i|  <  e 


|(|j:  +  9)-f|  <  e 
l/W  -  L|  <  6 


34.  lim  v^  =  74  =  2 

Jr— >4 

Given  e  >  0:  |V^  -  2|  <  e 

|V5  -  2|  |v^  -I-  2I  <  e|  V^  +  2I 
|x  -  4|  <  e|7c  +  2I 
Assuming  1  <  a-  <  9,  you  can  choose  5  =  3e.  Then, 
0  <  \x-  A\  <  5  =  3e  =>   |.r  -  4|  <  e|  Va  +  2I 
=>  ITx-  -  2I  <  e. 


36.  lim  |.v-  3|  =0 
Given  6  >  0: 

|(.r  -  3)  -  0|  <  e 

|.T-  3|  <  e=  5 
Hence,  let  8  =  e. 

Hence  for  0  <  |.r  -  3 1  <  6  =  e.  you  have 
|.v  -  3|  <  6 
||..-3|  -0|  <6 
|/(.t)  -L\<e 


308        Chapter  1        Limits  and  Their  Properties 


38. 

lim  {x^ 
Given  e 

+  3x) 
>  0: 

=  0 

\{^ 

+  3x)  - 

-  0| 

< 

e 

\x{x^ 

3)1 

< 

6 

k- 

^-3| 

< 

w 

If  we  assume  -  4  <  x  <  —  2,  then  5  =  e/4. 
Hence  for  0  <  |j:  —  (— 3)|  <  5  =  t.  you  have 


\x  +  3\  <-e  <  i-j-e 
'  A         \x\ 


\x{x  +  3)1  <  e 

|x2  +  3;t  -  0|  <  6 

l/W  -  L|  <  e 


40.  /W  = 


x-Z 


x^  -  Ax  +  l, 


V 

h 

lim/W  =  - 


The  domain  is  all  x  i=  1,  3.  The  graphing  utility  does  not 
show  the  hole  at  (3, 5). 


42.  fix)  =  V4 
x'^  —  9 

Mm  fix)  =  - 

j:— »3  0 


3 
9 ' 


44.  (a)  No.  The  fact  that/(2)  =  4  has  no  bearing  on  the  exis- 
tence of  the  limit  of /W  as  x  approaches  2. 

(b)  No.  The  fact  that  lim/(x)  =  4  has  no  bearing  on  the 
value  of /at  2. 


The  domain  is  all  a:  #  ±  3.  The  graphing  utility  does  not 
show  the  hole  at  (3,  g). 


46.  Let  p(x)  be  the  atmospheric  pressure  in  a  plane  at 
altitude  x  (in  feet). 

lim  p(x)  =  14.7  lb/in2 


48.  0.002 


Using  the  zoom  and  trace  feature,  5  =  0.001.  That  is,  for 


0  <  Ix  -  21  <  0.001, 


x-2 


-  4 


<  0.001. 


50.  True 


52.  False;  let 


f{x)  = 


Ax,     x  +  A 


10, 


lim/(x)  =  lim  (x2  -  4a;)  =  0  and/(4)  =  10  ^t  0 

j:-»4  jr->4 


54.  lim 


^ 


\2 


J:->4  X  -  a 


=   1 


n 

4  +  [0.1]" 

/(4  +  [0.1]") 

1 

4.1 

7.1 

2 

4.01 

7.01 

3 

4.001 

7.001 

4 

4.0001 

7.0001 

n 

4  -  [0.1]" 

/(4  -  [0.1]") 

1 

3.9 

6.9 

2 

3.99 

6.99 

3 

3.999 

6.999 

4 

3.9999 

6.9999 

Section  1.3        Evaluating  Limits  Analytically       309 


56.  fix)  =  mx  +  b,  m  i^  Q.l^X  e  >  Qhe  given.  Take  5  =  -j — r. 

\m\ 


IfO  <\x-  c\  <  8  =  7—7,  then 


\m.\\x  —  c\  <  e 
\mx  —  mc\  <  e 
\{mx  +  b)  -  (mc  +  b)\  <  e 
which  shows  that  lim  (mx  +  b)  =  mc  +  b. 


58.  lim  g{x)  =  L,L  >  0.  Let  e  =  jL.  There  exists  5  >  0 
such  that  0  <  |a:  -  0|  <  8  implies  \g{x)  -  L\  <  e  =  jL. 
That  is, 


-5L  <  gix)  -  L  <  {l 

\l  <      gix)      <  jL 


Hence  for  x  in  the  interval  ic  —  S,  c  +  S),  x  ¥=  c, 
gix)  >\l>Q. 


Section  1.3      Evaluating  Limits  Analytically 


2.     10 


(a)  lim  gix)  =  2.4 

(b)  lim^U)  =  4 

x—*0 


(a)  lim/(f)  =  0 

/->4 

(b)  lim /(f)  =  -5 


«W  =        \._a 


.t-9 


/(r)  =  fk  -  4| 


6.    lim  x3  =  (-2)3  = 

a:-»-2 


8.    lim  (3x  +  2)  =  3(-3)  +  2  =  -7 

x-»-3 


10.  lim(-r^+  1)  =  -(1)^+  1  =  0 

X-*l 

2  2 


14.    lim 


3X  +  2       -3  +  2 


-2 


12.  lim  (3.^3  -  2r=  +  4)  =  3(1)^  -  2(1)"  +  4  =  5 


:t-^3  ;c  +  5  3  +  5         8 


ifi    I-      V^^^       V3  +  1  , 

18.  Imi —  =  -z :-  =  -2 

a:->3    X  -  4  3-4 


20.  lim4/;c  +  4  =  ^4  +  4  =  2 

x->4 


22.  lim  i2x  -  ly  =  [2(0)  -  1]'  =  -1 


24.  (a)    lim  fix)  =  (-3)  +  7  =  4 

(b)  lim  gix)  =  4^  =  16 

(c)  lim  gifix))  =  ^(4)  =  16 

x—*-3 


26.  (a)  lim/(jc)  =  2(4^)  -  3(4)  +  1  =  21 


(b)  lim  gix)  =  ^21  +6  =  3 

(c)  \\mgifix))  =  gi2l)  =  3 

x-*4 


28.  lim  tan  X  =  tan  77  =  0 

x-*ir 


30.  lim  sm  ^:—  =  sm  —  =  1 

j:-»1  2  2 


32.  lim  cos  3x  =  cos  Stt  =  -  1 

x—*lr 


34.     lim    cos  X  =  cos  ^;r  =  X 

j->57r/3  3  2 


«     ,.  /tT.xA  777        -2v^ 

36.  lim  sec  —-    =  sec  — -  =  — :; — 

j-»7       V  6  /  6  3 


310        Chapter  1        Limits  and  Their  Properties 


38.  (a)  lim  [4/W]  =  41im/(;c)  =  4  -    =  6 

x^c  j:— *c  \Z/ 

(b)  lim  [fix)  +  g{x)]  =  lim/(x)  +  lim  g{x)  =  ^  +  \=2 

x—^c  j:-+c  x-*c  L         L 


(c)  lim  \S{x)g{x)-\  =  riim/Wiriim  g{x)\ 


IB=! 


40.  (a)  XxmlfJQ)  =  3/lim/(x)  =  l/in  =  3 

Jf-»C 

(c)  lim  [/W]2  =  [lim/(x)l2  =  (27)2  ^  729 

(d)  lim[/(;c)]2/3  ^  riin,/(;c)]2/3  =  (27)2/3  =  9 


X^  -  Zx 
42.  /W  =  j:  —  3  and  h{x)  = agree  except  at  j:  =  0 


1  ;c 

44.  g{x)  = 7  and/U)  =  -; agree  except  at  j;  =  0. 

X  —  I  x'-  —  X 


(a)  lim  h{x)  =   lim  f{x)  =  -5 

jr->-2  jc-*-2 

(b)  lim/iW  =  lim/W  =  -3 


(a)  lim/(x)  does  not  exist. 

jr-»l 

(b)  lim/(;c)=  -1 

JC-^O 


2;t2  -  X  -   3 

46.  /(x)  = — and  g{x)  =  2x  —  3  agree  except  at 


JC^  +   1 

48.  /(j:)  =  — — —  and  g{x)  =  j?  —  x  -\-  1  agree  except  at 
x=  -1. 


lim  f{x)  =   lim  g{x)  =  -5 


lim  f{x)  =   lim  g(x)  =  3 

J—*  -  1  JT— »  -  1 


/ 


/[ 


\ 


,.    ,.      1-  X                 -{x-  2) 
50.  lim  -:; =  lim  • ^ — 


;c-*2;c2-4      x^2  (a:  -  2)(a:  +  2) 


=  lim 


-1 


j:->2  X  -V  1 


^^    ,.     ;c-  -  5;c  +  4       ,.      (x  -  4)(;c  -  1) 

52.  hm  — — =  hm  7 -(7 -( 

x->4  x2  -  2x  -  8      x^A  [x  -  4)(;c  +  2) 

=  lim  7 rr  =  ~  =  x 

x-»4  U  +  2)       6       2 


,.    ,.      JlVx-Ji       ,.      V2  +  a;  -  V2     V2  +  ;t  +  v^ 

54.  lim =  lim •  — ,         ^ 

^^0  X  x-^  X  Jl  +  X  +  J2 

2+X-2  ,.  1 

=  lim  7 — ,  ;=A—  =  lim 


1  72 


^-»o(V2  +  X+  J7)x      ^-^0  J2  +  X  +  J2      ijl        4 


,,   ,.     v7TT-2      ,.     Vx  +  1  -  2     Vx  +  1  +  2      ,. 
56.  hm ; =  lim ;: •  — ,         — -  =  hm  ■ 


A-  3 


lim  - 


^**"  -^  ~    I'l"  -^-  .  T^   —    11111    ,  TTr       ;  TT   —    11111         ,  T" 

x-^i       X  -  3  x^i       X  -  3  Vx+  1  +  2      -.-^3  (x  -  Z\jx  +  1  +  2]      :c^3  vTTT  +  2 


_J j_  4  -  (x  +  4) 

.„    ,.     A  +  4      4       ,.        4(x  +  4)         ,.          -1  1 

58.  hm =  hm  — ^^ '—  =  hm  -7 — -— r  =  -  — 

x^o         X             x-^0          X              x->o  4(x  +  4)  16 


„     ,.      (x  +  Ax)2  -  x2       ,.      x^  +  2xAx  +  (Ax)2  -  x2       ,.      Zb;(2x  +  Ax)       ,.     ,,         ,  .      ^ 
60.    hm  -^ =  hm  — ^ — =  hm  — ^^-r =  hm  (2x  +  Ax)  =  2x 

Aar-^O  Ax  Ax->0  Ax  Ax-»0  Ax  Ai^O 


Section  1.3        Evaluating  Limits  Analytically        311 


^     ,.      U  +  Ajc)3  -  x3        ,.      x^  +  3x'\x  +  3x{Axy  +  (Axf  -  jc' 

62.    lim  -. =   lim 

Ax->o  Ajc  '^->0  Ax 


,.      Ax{3x^  +  3xAx  +  (Ax)^)       ,.      ,,  ,      ,    .         ,.   ,,,      ,  , 
hm  — ^^ ; ^^ — —  =   hm  (3r=  +  3xAx  +  (Ax)^)  =  3x^ 

Aar-»0  A.V  Ax->0 


64.  fix) 


A-  Jx 
X  -  16 


X 

15.9 

15.99 

15.999 

16 

16.001 

16.01 

16.1 

/w 

-.1252 

-.125 

-.125 

7 

-.125 

-.125 

-.1248 

Analytically,    lim 


(4-v^ 


.r-16   X  -    16  x^\(,[J~y_  +  4)(^  _  4) 

=  lim  — F =  --. 

-'-'IS  Jx-v  A         8 


It  appears  that  the  limit  is  -0.125. 


66.  lim ^  =  80 

j:->2    X  —   L 


X 

1.9 

1.99 

1.999 

1.9999 

2.0 

2.0001 

2.001 

2.01 

2.1 

fix) 

72.39 

79.20 

79.92 

79.99 

7 

80.01 

80.08 

80.80 

88.41 

,     ,    .    „      ,.     .r5  -  32       ,.     ix  -  2)(.x^  +  2x3  +  4x2  +  8x  +  16) 
Analytically,  lim —-  =  lim r 

■^  -^     x^2    X  -  2  x^2  X  -   2 

=  lim  (x"  +  2x'  +  4x^  +  8x  +  16)  =  80. 

j-»2 

(Hint:  Use  long  division  to  factor  x^  -  32.) 


3(1  -  cos.x) 


68.  lim  =^ ^^^^^  =  lim  [sf^-^^^)]  =  (3)(0)  =  0 


„.    ,.     cose  tan  0      ,.     sm  0 
70.  lim =  hm  — ;—  =  1 

8->0  0  B->0       6 


_^    ,.     tan"x      ,.       sin-x 

72.  lim =  hm ^—  =  lim 

x->0       X  Jr->0  X  cos'  X         .t->0 


sinx      sin  x  1 
X        cos-  X  J 


74.   lim  (^  sec  (^  =  tt(—  1)  =  —  tt 


=  (1)(0)  =  0 


-.     ,.         1  —  tanx  ,.  cosx  — sinx 

76.    lim   -: =    hm 


Jr-.7r/4  sin  X  —  cos  X        x-^it/4  Sin  X  cos  X  —  COS"  X 

(sinx  —  cos.v) 


=    lim 


v/4  cos  x(sin  X  —  cos  x) 
1 


=    lim 

x->it/4  cosx 


=    lim   (-secx) 

.r— nr/4 

=  -72 


_„    ,.      sin  2x 
78.  hm    .    ., 
x-iO  sm  3x 


r  Vsinlv 
=  hm    2  -r — 
-t-»o  L  V    Iv 


'-'"\]m-M>-\ 


312        Chapter  1        Limits  and  Their  Properties 


SO.fih)  =  (1  +cos2/!) 


h 

-0.1 

-0.01 

-0.001 

0 

0.001 

0.01 

0.1 

m 

1.98 

1.9998 

2 

? 

2 

1.9998 

1.98 

r\/\r\ 


Analytically,  lim  (1  +  cos  2h)  =  \  +  cos(O)  =1  +  1=2. 


The  limit  appear  to  equal  2. 


82.  f(x) 


X 

-0.1 

-0.01 

-0.001 

0 

0.001 

0.01 

0.1 

fix) 

0.215 

0.0464 

0.01 

? 

0.01 

0.0464 

0.215 

Analytically,  lim^  =  lim^f^^^)  =  (0)(1)  =  0. 


j-jO  \     X 


The  limit  appear  to  equal  0. 


„.    ,.     fix +  h)- fix)              Jx  +  h-  J~x       ..      Jx  +  h 
84.  lim ; —  =  lim ; =  lim — 

/i->o  h  h->o  h  /i->o  h 


lim 


X  +  h  —  x 


lim  ■ 


^x  +  h  +  Jx 
Jx  +  h  +  Jx 

1 


''-*o  h[Jx  +  h  +  Jx)      '"^0  Jx  +  h  +  J~x      ijx 


„,    ,•    fix  +  h)  -  fix)      ,.     ix  +  h)-  -  4(x  +  h)  -  ix^  -Ax)       ,.  '  x^  +  2xh  +  h'^  -  4x  -  4h  -  x^  +  Ax 

86.  hm-^^ r — =^-^  =  hm  -^^— —, — ^^ =  Iim ; 

h->o  h  A->o  h  A-»o  h 

,.     hilx  +  /i  -  4)       ,.     ,^         ,        ,,       ^ 
=  hm  -^^ ; =  hm  (2x  +  /z  -  4)  =  2jc  -  4 


88.  iim  [b  -  \x-  a|]  <  lim/(jc)  <  lim  [b  +  \x  -  a|] 
b  <  Wmfix)  <  b 
Therefore,  lim/(;t)  =  b. 


90.  fix)  =  |.rsinji:| 

6 


lim  brsin;c   =  0 


92.  fix)  =  \x\  cos  X 


94.  hix)  =  X  cos  — 

X 


: 


Iim  X  cos  X  =  0 

jc->0 


lim   X  cos  -    =  0 

x-*0  \  X 


Section  1.3        Evaluating  Limits  Analytically        313 


x^  -  1 
96.  fix)  =  — — j-  and  g(x)  =  x  +  \  agree  at  all  points 

except  .X  =  1. 


98.  If  a  function /is  squeezed  between  two  functions  h  and  g, 
h{x)  <  fix)  <  gix),  and  fi  and  g  have  the  same  limit  L  as 
X— >c,  then  Vim  fix)  exists  and  equals  L. 


100.  fix)  =  x,  gix)  =  sin^  X,  hix) 


sm'-  X 


o^Tn 

A 

•y 

When  you  are  "close  to"  0  the  magnitude  of  g  is  "smaller" 
than  the  magnitude  of/ and  the  magnitude  of  g  is 
approaching  zero  "faster"  than  the  magnitude  of/. 
Thus,  |g|/|/|  ~  Owhen  jc  is  "close  to"  0 


102.  sit)  =  -  16r2  +  1000  =  0  when  r  =  J^      ^^^ 


16 


seconds 


..         ■'i     2     j      '^^  ,.         0-(-16r2+  1000) 

lim  ,  -p= =      lim  ,  -/== 

t^sVToh      5V10  _  J.  (-»5yio/2  5V10  _ 


16  f- 


lim 


125 


16 


lim 


t  +  ^Y.  -  ^) 


2     / 


■»5yio/2       SyiO  _  r->5yio/2 


5V10 


=      lim 

r^5yio/2 


■  leff  +  ^^^j  =  -SOyiO  ft/sec  =  -253  ft/sec 


104.  -4.9f-  +  150  =  0  when  t  = 
The  velocity  at  time  t  =  a\s 


/l50  ^       /l500 
4.9  ~  V    49 


=  5.53  seconds. 


,.     sia)  -  sit)      ,.     (-4.9a^  +  150)  -  (-4.9r  +  150)       ,.     -4.9(a  -  f)(a  +  r) 
lim =  lim =  lim- 

I-»n        a  —  t  r-»n  a  —  t  r->n 

=  lim  -4.9(a  +  t)  =  -2a(4.9)  =  -9.8a  m/sec. 


a  -  t 


Hence,  if  a  =  V 1500/49,  the  velocity  is  -9.8V1500/49  =  -54.2  m/sec. 


106.  Suppose,  on  the  contrary,  that  lim  gix)  exists.  Then,  since  Vim  fix)  exists,  so  would  lim  [fix)  +  gix)],  which  is  a 

.r— *c  .x—*c  x—*c 

contradiction.  Hence,  lim  ^(jc)  does  not  exist. 

x-*c 

108.  Given /(.x)  =  x",  n  is  a  positive  integer,  then 
limx"  =  limCxx""')  =  [limJflimx""'] 

=  c[lim  ixx"-^  =  c[lim.x][limx"--] 
=  c(c)lim  (xa:""')  =  •  ■  ■  =  c". 


110.  Given  lim/(x)  =  0: 

x—*c 

For  every  e  >  0,  there  exists  S  >  0  such  that  |/(x)  -  0|  <  ewheneverO  <  |x  -  c|  <  6. 
Now  |/(x)  -  0|  =  |/U)|  =  ||/(.r)|  -  0|  <  6  for  |x  -  c|  <  5.  Therefore,  lim  |/(.t)|  =  0. 


314        Chapter  1        Limits  and  Their  Properties 


112.  (a)  If  lim  \f{x)\  =  0,  then  lim  [-  |/(x)|]  =  0. 
-\f{x)\  <f{x)  <  l/WI 
lim[-|/U)|]  <  lim/W  <  lim|/W| 
0  <  Urn  fix)  <  0 

x—>c 

Therefore,  lim/(jc)  =  0. 
(b)  Given  \imf{x)  =  L: 

x—*c 

For  every  e  >  0,  there  exists  8  >  0  such  that  \f{x)  —  L\  <e  whenever  0  <  \x  —  c\  <  S. 
Since  \\f(x)\  ~  \L\\  <  \f{x)  -  L\<  e  for  \x  -  c\  <  8,  then  lim  |/(;c)|  =  \L\. 


114.  True,  lim  jc'  =  (P  =  0 

x->0 


116.  False.  Let  f{x)  = 


X  x  i'  I 
3  x=  1 


Then  \imf(x)  =  1  but /(I)  #  1. 

X—>1 


118.  False.  Let/{x)  =  {x'^  and  g{x)  =  x^.  Then/W  <  g{x) 
for  all  ;c  ^  0.  But  lim/(jc)  =  lim  gix)  =  0. 

J— *0  x-^O 


.--    ,.     1  —  COS  a:      ,.     1  —  cosx     1  +  cosx 
120.  lim =  hm 

j:-*0  X  j:-»0  X  1   +  COS  JT 


=  lim 


1 


=  lim 


i->o;c(l  +  cosj:)       .t"-5bj;(l  +  cosjc) 
sin  X         sin  x 


=  lim 

j->0     ;c 


1  +  cosj: 


lim 

x-»0      X 

(1)(0)  =  0 


lim—— 

jr-»0  1    +  cos 


l] 


122.  fix) 


secx  —  1 


(a)  The  domain  of/ is  all  x  t^  0,  ir/l  +  mr. 

(b)        2 


^J 


The  domain  is  not  obvious.  The  hole  at  .jc  =  0  is  not 
apparent. 


(c)  lini/W  =  - 


(d) 


sec  x  —  I       sec  x  —  I     sec  j:  +  1 


sec^j:  —  1 


x^  sec  a;  +  1       j:^(secA:  +  1) 

tan^  X  1     fsin-x\        1 


Hence,  lim 


;c^(secAr+  1)      cos^j:\   x^    /secj:+  1 

sec  ;c  -  1  _  1     /sin^A:\        1 

'o       x^  x-^0  cos^  x\   7?   /sec X  +  1 


124.  The  calculator  was  set  in  degree  mode,  instead  of  radian  mode. 


Section  1.4        Continuity  and  One-Sided  Limits       315 


Section  1.4       Continuity  and  One-Sided  Limits 


2.  (a)     lim  /W  =  -2 


(b)    lim  f(x)  =  -2 


(c)    lim  /W  =  -2 

j:-»-2 

The  function  is  continuous  at 

x=  -2. 

ii,u  2-^       n,„        1 

1 

.'ilV  -  4  -  iii?*     x  +  2- 

4 

4,  (a)    lim^/U)  =  2 

(b)  lini  fix)  =  2 

l->-2" 

(c)  lim  fix)  =  2 

j:^-2 

The  function  is  NOT  continuous  at 
x=  -2. 


6.  (a)     lim  fix)  =  0 

(b)  lim  /U)  =  2 

Jc— »-l 

(c)  lim  /U)  does  not  exist. 

jr— »— 1 

The  function  is  NOT  continuous  at 

x  =  -1. 


,n    1-      v^-  2       ,.      Ji-2     Ji+2 
10.   hm —  =  lim 


j:->4-     X  —  4 


=  lim 


■"-    Jc-4       ^  +  2 

X-  A 


4    U-4)(y;  +  2) 


lim 


1 


1 


'-**'  J~x  +  1       4 


,-     ,.      k  -  2         ,.      X  -  2 
12.    lim  ■' -^  =   lim =  1 

jr->2*     X  —   2  x-»2*  X  —   2 


,  ^      ,.       (x  +  Ax)2  +  (a:  +  Ax)  -  (x^  +  x)        ,.       x~  +  2a;(Ax)  +  i^xf-  -^x  +  l^-x^-x 
14.    lim   T =    lim   


lim 

Aj->0* 


Ax 

2x(Ax)  +  (Ax)-  +  Ax 
Ax 


=    lim    (2x  +  Ax  +  1) 
=  2x  +  0+l=2x+l 


16.   lim  fix)  =   lim  (-x^  +  4x  -  2)  =  2 

x->2*  j->2* 

lim  fix)  =  lim  (x^  -  4x  +  6)  =  2 

a:->2"  x-»2" 


18.    lim  fix)  =  lim  (1  -  x)  =  0 


lim/(x)  =  2 

j->2 


20.    lim   sec  x  does  not  exist  since 

j:— >Tr/2 

lim     sec  x  and     lim     sec  x  do  not  exist. 

x->(,r/2)*  Ar-.(Tr/2)" 


22.   lim^  ilx  -  W)  =  2(2)  -2  =  2 


24.  lim    1 


=  !-(-!)  =  2 


26.  fix) 


X  +  1 


has  a  discontinuity  at  x  =  —  1  since /(-  1)  is  not  defined. 


28./(x)=    2, 


X  <   1 


X  =  1  has  discontinuity  atx  =  1  since /(I)  =  2+  lim/(x)  =  1. 
2x  -  1,       X  >  1 


30.  /(f)  =  3  -  V9  -  f^  is  continuous  on  [-  3,  3]. 


32.  ^2)  is  not  defined,  g  is  continuous  on  [—  1, 2). 


316       Chapter  1        Limits  and  Their  Properties 


34.  fix)  =  — is  continuous  for  all  real  x. 

x^  +  I 


36.  fix)  =  cos  —  is  continuous  for  all  real  x. 


38.  fix) 


— has  nonremovable  discontinuities  atx  =  I  and  x  =  —I  since  Vim  fix)  and  lim  fix)  do  not  exist. 

j:*-  —   1  jr-»l  x->-l 


X  -  3 
40.  fix)  =    ^  _     has  a  nonremovable  discontinuity  at  x  ■ 

atx  =  3  since 


lim/U)  =  lim =  -. 


—  3  since  lim  fix)  does  not  exist,  and  has  a  removable  discontinuity 


42.  fix)  = 


x  -  1 


U  +  2)U  -  1) 


has  a  nonremovable  discontinuity  atx  =  —2  since 
lim  fix)  does  not  exist,  and  has  a  removable  discontinu- 
ity  at  j:  =  1  since 

lim/(;c)  =  lim =  —. 


44.  fix) 


\x-  3| 
jc-  3 


has  a  nonremovable  discontinuity  at  j:  =  3  since  Vim  fix) 
does  not  exist.  ^^ 


46.  fix) 


-2x  +  3,      ;c  <  1 
x\  x  >  I 


has  a  possible  discontinuity  at  j:  =  1 . 
l./(l)  =  12=  1 

2.  A?--^^-*^  =  AT-  (-2x  +  3)  =  1 

lim  fix)  =  lim  x^  =  1 

3.  /(I)  =  lim/W 


lim/U)  =  1 


/is  continuous  at  a:  =  1,  therefore,  /  is  continuous  for  all  real  x. 


\-2x,  X  <  2 

48.  fix)  =  1  2  _'/!    _(_  1  o  ^^  ^  possible  discontinuity  at  j:  =  2. 

I  ^  T'*\      I       X  y  .-V     ."^     ^ 

1.  /(2)  =  -2(2)  =  -4 

lim  /W  =  lirn  i-2x)  =  -4  1  iini/(;c)  does  not  exist. 

lim  fix)  =  lim  (jc^  -  4;c  +  1)  =  -3j 
x^2*-'  ^  '     x^y^  '  -^ 

Therefore, /has  a  nonremovable  discontinuity  atx  =  2. 


50.  /W  =  \        6 


|;:-3|  <2 
U-  31  >  2 


1  <  X  <  5 
X  <  1  or  j:  >  5 


has  possible  discontinuities  at  x  =  \,x  =  5. 


l./(l)  =  csc|=2  /(5)  =  csc^  =  2 


lim/W  =  2 


2.  lim/W  =  2 

3.  /(I)  =  lim/U)  /(5)  =  lim/(x) 

x-*\  x-*5 

/is  continuous  dXx  =  \  and  jc  =  5,  therefore,/is  continuous  for  all  real  x. 


Section  1.4        Continuity  and  One-Sided  Limits       317 


52.  fix)  =  tan  -r-  has  nonremovable  discontinuities  at  each 
2k  +  1 ,  /:  is  an  integer. 


54.  fix)  =  7>  -\x\  has  nonremovable  discontinuities  at  each 
integer  L 


56.    lim/W  =  0 
lim  j{x)  =  0 

l-»0" 

/  is  not  continuous  at  x  =  —  4 


\ 

/ 

/ 

,.        ,  ,       ,.4  sin  AT 

58.   hm  g(x)  =  hm  =  4 

jr-»0"  x-»0"         X 


lim  gix)  =  lim  (a  —  2x)  =  a 

x-tO*  x->0' 


Let  a  =  4. 


60.  lim  gix)  =  lim 


x'-a^ 


J:->n    X  —  a 

lim  (a:  +  a)  =  2a 


Fbd  a  such  that  2a  =  8  =>  a  =  4. 


62.  figix)) 


Jx  -  1 


Nonremovable  discontinuity  at  j:  =  1.  Continuous  for  all  .t  >  1. 

Because/ -  g  is  not  defined  for  x  <  1,  it  is  better  to  say  that/  °  g  is  discontinuous  from  the  right  at  x  =  1. 


64.  figix))  =  sin.r2 

Continuous  for  all  real  x 


66.  hix)  = 


1 


U  +  l)(x  -  2) 
Nonremovable  discontinuity  at  x 


—  1  and  x  =  2. 


m 


fcos  .V  -  1     X  <  0 
68.  fix)  =  \        X 

[Sx.  x>  0 

/(O)  =  5(0)  =  0 

1-      ft  \       1-      (cosx  -  1) 

hm  /(x)  =   lim  =  0  -^ 

j:->0-  .t->0-  X 

lim  /(x)  =   lim  (5x)  =  0 

a:->0*  jr->0* 

Therefore,  lim/(x)  =  0  =  /(O)  and/ is  continuous  on  the  entire  real  line,  (x  =  0  was  the  only  possible  discontinuity.) 

x—*0 


.   .  ^r^    '^-^, 

/ 

70.  fix)  =  xVx  +  3 

Continuous  on  [-3,  oo] 


72./U)  =  ^       - 

VX 

Continuous  on  (0,  oc) 


318        Chapter  1        Limits  and  Their  Properties 


74.  f(x)  = 


x-1 


The  graph  appears  to  be  continuous  on  the  interval 
[—4,  4].  Since /(2)  is  not  defined,  we  know  that/has 
a  discontinuity  at  x  =  2.  This  discontinuity  is  removable 
so  it  does  not  show  up  on  the  graph. 


76.  fix)  =  x^  +  3a:  —  2  is  continuous  on  [0,  1]. 

/(0)=  -2and/(l)  =  2 

By  the  Intermediate  Value  Theorem,  fix)  =  0  for  at  least 
one  value  of  c  between  0  and  1. 


—  4  TTX 

78.  f(x)  = 1-  tan  —  is  continuous  on  [1,  3]. 

X  o 

/(I)  =  -4  +  tan  f  <  0  and /(3)  =  -^  +  tan  ^  >  0. 
o  3  o 

By  the  Intermediate  Value  Theorem,  /(I)  =  0  for  at  least 
one  value  of  c  between  1  and  3. 


80.  /(x)  =  x3  +  3x  -  2 

fix)  is  continuous  on  [0,  1]. 

/(0)=  -2and/(l)  =  2 

By  the  Intermediate  Value  Theorem, /(x)  =  0  for  at  least 
one  value  of  c  between  0  and  1.  Using  a  graphing  utility, 
we  find  that  x  =  0.5961. 


%2.  hie)=  \  +  e-zxaae 
h  is  continuous  on  [0,  1]. 
MO)  =  1  >  0  and /id)  « 


-2.67  <  0. 


By  the  Intermediate  Value  Theorem,  hid)  =  Q  for  at  least 
one  value  6  between  0  and  1.  Using  a  graphing  utility,  we 
fmd  that  d  =  0.4503. 


84.  fix)  =  x2  -  6x  +  8 
/is  continuous  on  [0,  3]. 
/(O)  =  8  and/(3)  =  - 1 

-1  <  0  <  8 
The  Intermediate  Value  Theorem  applies. 
^2  -  6x  +  8  =  0 
ix  -  2)(x  -  4)  =  0 
X  =  2  or  X  =  4 
c  =  2  (x  =  4  is  not  in  the  interval.) 
Thus,/(2)  =  0. 


86.  fix)  = 


x'-  +  x 


/is  continuous  on  [j.  4|.  The  nonremovable  discontinuity, 
X  =  1,  lies  outside  the  interval. 


/ 


35      . ,,..      20 
-and/(4)=y 


35       ^       20 


The  Intermediate  Value  Theorem  applies. 

x^  +  X        . 

x2  +  X  =  6x  -  6 
x2  -  5x  +  6  =  0 
(x  -  2)(x  -  3)  =  0 
X  =  2  or  X  =  3 
c  =  3  (x  =  2  is  not  in  the  interval.) 
Thus,/(3)  =  6. 


Section  1.4        Continuity  and  One-Sided  Limits       319 


88.  A  discontinuity  at  j:  =  c  is  removable  if  you  can  define 
(or  redefine)  the  function  at  j:  =  c  in  such  a  way  that  the 
new  function  is  continuous  at  ;c  =  c.  Answers  will  vary. 


(a)  fix) 

(b)  f(x) 


|x-2| 
X-  2 
sin(x  +  2) 

X  +  2 


(c)  fix) 


1,  ifx  >  2 

0,  if-2  <  X  <  2 

1,  ifx  =  -2 
0,  ifx  <  -2 


90.  If/ and  g  are  continuous  for  all  real  x,  then  so  is/  +  g  (Theorem  1.11,  part  2).  However, //g  might  not  be  continuous  if  g(x)  =  0. 
For  example,  let/(x)  =  xandg(x)  =  x^  —  1.  Then/and  g  are  continuous  for  all  real  x,  but//g  is  not  continuous  atx  =  ±1. 


1.04,  0  <  r  <  2 

92.  C  =  1 1.04  +  0.36[[r  -  ll,      r  >  2,  r  is  not  an  integer 
[l.04  +  0.36(f  -  2),      r  >  2,  f  is  an  integer 

Nonremovable  discontinuity  at  each  integer  greater  than  2. 


You  can  also  write  C  as 
C 


c 

.1 

4- 

3-- 

2- 

i4> 


1.04,  0  <  r  <  2 

1.04  -  0.36[2  -  r],      t  >  2 


94.  Let  sit)  be  the  position  function  for  the  run  up  to  the  campsite.  5(0)  =  0  (f  =  0  corresponds  to  8:00  a.m.,  5(20)  =  k  (distance 
to  campsite)).  Let  rit)  be  the  position  function  for  the  run  back  down  the  mountain:  Hff)  =  K  r(\Q)  =  0.  Let/(r)  =  sit)  —  r(t). 

When  t  =  0  (8:00  a.m.),    /(O)  =  5(0)  -  KO)  =  0  -  /t  <  0. 

Whenr  =  10(8:10  a.m.),    /(lO)  =  5(10)  -  r(IO)  >  0. 

Since /(O)  <  0  and /( 10)  >  0,  then  there  must  be  a  value  r  in  the  interval  [0,  10]  such  that /(f)  =  0.  If/(r)  =  0,  then 
sit)  —  rit)  =  0,  which  gives  us  sit)  =  rit).  Therefore,  at  some  time  f,  where  0  <  t  <  10,  the  position  functions  for  the 
run  up  and  the  run  down  are  equal. 

96.  Suppose  there  exists  x,  m  [a,  b]  such  that/(xi)  >  0  and  there  exists  x,  in  [a,  b]  such  that/Cx,)  <  0.  Then  by  the  Intermediate 
Value  Theorem, /(x)  must  equal  zero  for  some  value  of  x  in  [x,,  .r,]  (or  [x,.  xj  if  x,  <  x,).  Thus, /would  have  a  zero  in  [a.  b], 
which  is  a  contradiction.  Therefore,  /(.r)  >  0  for  all  x  in  [a,  b]  or  fix)  <  0  for  all  x  m  [a,  b]. 


98.  Ifx  =  0,  then/(0)  =  0  and  Vim  fix)  =  0.  Hence,/is 

„  x->0 

contmuous  at  x  =  0. 

If  X  T^  0,  then  lim/(f)  =  0  for  x  rational,  whereas 

t—*x 

lim/(f)  =  lim  kt  =  kx  i=  0  for  x  irrational.  Hence, /is  not 
continuous  for  all  x  ^  0. 


100.  True 

1.  /(c)  =  L  is  defined. 

2.  lim  /(x)  =  L  exists. 

Jr-*c 

3.  fie)  =  lim/(.v) 


All  of  the  conditions  for  continuits-  are  met. 


320 


Chapter  1        Limits  and  Their  Properties 


102.  False;  a  rational  function  can  be  written  as  P(x)/Q{x} 
where  P  and  Q  are  polynomials  of  degree  m  and  n, 
respectively.  It  can  have,  at  most,  n  discontinuities. 


104.  (a)      s 


10     IS     20    25     30 


(b)  There  appears  to  be  a  limiting  speed  and  a  possible 
cause  is  air  resistance. 


106.  Let  V  be  a  real  number.  If  >  =  0,  then  x  =  O.lfy  >  0,  then  let  0  <  Xg  <  7r/2  such  that  M  =  tan  Xq  >  y  (this  is  possible 
since  the  tangent  function  increases  without  bound  on  [0,  77-/2)).  By  the  Intermediate  Value  Theorem, /(x)  =  tan  x  is 
continuous  on  [0,  .^o]  and  0  <  >•  <  M,  which  implies  that  there  exists  x  between  0  and  Xq  such  that  tan  ;c  =  y.  The  argument 
is  similar  if  y  <  0. 

108.  1.  /(c)  is  defined. 

2.  hm/{A:)  =   lim  /(c  +  Ax)  =  /(c)  exists. 
[Let  a:  =  c  +  Ax  As;ic— >c,  A;c-^0] 

3.  lim/(x)=/(c). 

Therefore, /is  continuous  at  JT  =  c. 

110.  Define /(jc)  =  /^(.t)  —  f^ix).  Since /i  and/,  are  continuous  on  [a,  b],  so  is/ 
f(a)  =Ua)  -f,{a)  >  0     and    f{b)  =  fp)  -  Mb)  <  0. 
By  the  Intermediate  Value  Theorem,  there  exists  c  in  [a,  b]  such  that /(c)  =  0. 
/(c)  =  Mc)  -  /,(c)  =  0  =>  /,(c)  =  /2(c) 

Section  1.5       Infinite  Limits 


2.     lim =  oo 

x-»-2*  X  +  2 


lim 


2-;c  +  2 


4.    lim   sec  -—  =  oo 

x->-2+  4 


lim    sec  -—  =  —  oo 
x-*-2-         4 


6.  fix 


X 

-3.5 

-3.1 

-3.01 

-3.001 

-2.999 

-2.99 

-2.9 

-2.5 

fix) 

-1.077 

-5.082 

-50.08 

-500.1 

499.9 

49.92 

4.915 

0.9091 

\im  fix)  =  —oo 


lim  fix)  =  oo 


Section  1.5        Infinite  Limits       321 


8. /W  =  sec- 


X 

-3.5 

-3.1 

-3.01 

-3.001 

-2.999 

-2.99 

-2.9 

-2.5 

fix) 

-3.864 

-19.11 

-191.0 

-1910 

1910 

191.0 

19.11 

3.864 

\\m  f(x)  =  -oo 
lim  fix)  =  oo 

jr-*— 3'*' 


10.    lim 


.'-^r  (x  -  2)5      ^ 

lim  7 rrr  =  —  oo 

x-^2-  ix  -  2)3 

Therefore,  .r  =  2  is  a  vertical  asymptote. 


14.  No  vertical  asymptote  since  the  denominator  is  never  zero. 


,^     ,■         2+j:  ,.         2+x 

12.    hm  -r- =    lim r  =  oo 

x->o-  ;t-(l  -  x)      x-^o*  x-i\  -  x) 

Therefore,  x  =  0  is  a  vertical  asymptote. 

,.         2+x 

hm  -:n- :  =  oo 


/-^i-;c2(l  -  x) 

V         2+.X 
iim  -57; r 


—  —00 


Therefore,  x  =  1  is  a  vertical  asymptote. 
16.     lim    his)  =  —00  and    lim    his)  =  00. 

J— *-5  5— >-5* 

Therefore,  s  =  -  5  is  a  vertical  asymptote, 
lim  his)  =  —  00  and  lim  his)  =  00. 

s—^5  s—*5  * 

Therefore,  .r  =  5  is  a  vertical  asymptote. 


18.  fix)  =  sec  TTt 


cos  TTX 


has  vertical  asymptotes  at 


2«  +  1 


-,  n  any  integer. 


22.  fix] 


4(.r-  +  .t  -  6)  4U  +  3)(.t  -  2) 


20.  gix)  = 


(l/2).t3  -  .t-  -  4.t  _  1  a:(.v-  -  2x  -  8) 
3x-  -  6.t  -  24     ~  6    j:-  -  2jc  -  8 


-JC, 


;c?t  -2,4 

No  vertical  asymptotes.  The  graph  has  holes  at  x 
and  x  =  4. 


T,xi=  -3.2 


.r(x3  -  Ix'  -  9x  +  18)      xix  -  2){x~  -  9)      xix  -  3)' 
Vertical  asymptotes  at  .r  =  0  and  .v  =  3.  The  graph  has  holes  at  jt  =  - 3  and  x  =  2. 


24.  hix)  = 


(x  +  2)(.t  -  2) 


f(f-2) 


;c3  +  2x-  +  .r  +  2       U  +  2)(.t2  +  1) 
has  no  vertical  asymptote  since 

lim  hix)  =    lim  ^ =  — -r. 

x-»-2  x-,-2X-  +    1  5 


f  =t  2 


^  '      (f  -  2)(r  +  2)it-  +  4)      (r  +  2)(f-  +  4)' 
Vertical  asymptote  at  r  =  —  2.  The  graph  has  a  hole  at 


322       Chapter  1        Limits  and  Their  Properties 


,„.      tan  0        sin  S   ,  .    , 

28.  g(0)  =  — —  = has  vertical  asymptotes  at 

V         6  cos  6 


30.    lim  - — ^V^  =   lim  U  -  7)  = 

jt->-l  X  +    \  Ar-»-l 


-8 


(2m  +   1)77         77 

6  = =  —  +  nv,  n  any  integer. 

There  is  no  vertical  asymptote  at  0  =  0  since 


tan  e 
hm— —  =  1. 

e->o     Q 


Removable  discontinuity  at  x  =  —  1 


,,     ,.      sm(:ic  +  1) 
32.    lim  — —^  =  1 

jr->-l        X  +    I 

Removable  discontinuity  at     ,3 
x=  -1 


34.   hm =  -00 

x->l*   I   —  X 


36.    lim 


x-*4-  x~  +  \6      2 


38.       lim 


6jc2  +  ;c  -  1 


lim 


3jc-  1       5 


x->-(i/2)*  Ax^  -  4x  -  i      j->-(i/2)+  2x  -  3 


40.  lim  ^-T^  =  \ 


42.    lim    x^  -  -    =  00 
x^o-  \  X 


44.      lim 


x-tMl)-^  cos  j: 


46.  lim  i^i^  =  lim  [(x  +  2)tan  ;c]  =  0 

;t->0     cot  X  x-»0 


48.      lim     x^  tan  ttj:  =  00  and     lim    x^  tan  ttj: 
Therefore,    lim    x^  tan  ttx  does  not  exist. 

a:->(l/2) 


50.  /U)    = 


X^-    1 

X^  +  X  +   I 


lim  /U)  =  lim  U  -  1)  =  0 

x-*l  x—*l 


52.  fix)  =  sec  - 


lim  fix)  =  —  00 


I 

J. 

Pi 

in 

54.  The  line  x  =  c  is  a  vertical  asymptote  if  the  graph  of/ 
approaches  ±co  asx  approaches  c. 


56.  No.  For  example,  fix)  = 
vertical  asymptote. 


•has  no 


58.  P 


lim  —  =  fe(oo)  =  00  (Tn  this  case  we  know  that  k  >  0.) 
V-.0*  V 


Section  1.5        Infinite  Limits       323 


,77       IOOtt  „  , 
60.  (a)  r  =  SOtt  sec-  -  =  -^—  ft/sec 
6  3 

(b)  r  =  50-n-  sec^  ^  =  200-77  ft/sec 

(c)  lim     [5077  sec-  6]  =  co 


62.  m  = 


Vl  -  (vVc^) 


lim  m  =  lim      ,        °  ^^ 


64. 

(a)  Average  speed  = 

Total  distance 
Total  time 

50  = 

2d 

id/x)  +  (d/y) 

50  = 

2xy 

y  +  x 

50}- 

f  50^  = 
50,v  = 
50.r  = 

2xy 

2xy  -  SOy 

2yU  -  25) 

X 

25;t 

-  25 

y 

Domain: 

X  >  25 

66. 

(a) 

A=^bh 

-¥' 

=  ^(10)(10tar 

50  tan  e  -  50  0 


Domain:     0 


X 

30 

40 

50 

60 

y 

150 

66.667 

50 

42.857 

(b) 


(c)    lim  —  =  oo 

x^25*  .X  —  25 

As  X  gets  close  to  25  mph,  y  becomes  larger  and  larger. 


(b) 


0 

0.3 

0.6 

0.9 

1.2 

1.5 

fie) 

0.47 

4.21 

18.0 

68.6 

630.1 

(c) 


(d)     lim    A  =  oo 

e->-ir/2" 


68.  False;  for  instance,  let 
x^-  1 


f(x) 


X  -  \ 


70.  True 


The  graph  of/has  a  hole  at  (1,  2),  not  a  vertical 
asymptote. 


72.  Let/(.r)  =  "J  and  gix)  =  -j,  and  c  =  0. 

lim  -^  =  oo  and  lim  —7  =  00,  but 

x-)0  AT  x->0  X 


1        1 


jt->o  v.-r      j:^/      j-»o 


i(^)  = 


-00  ^t  0. 


?{v) 
74.  Given  lim  f{x)  -  00.  let  ?  (.v)  =  1 .  then  lim  ^^-r-  =  0 

X  -tr  .1  ->c  J{X) 

by  Theorem  1.15. 


324        Chapter  1        Limits  and  Their  Properties 


Review  Exercises  for  Chapter  1 


2.  Precalculus.  L  =  J{9  -  If  +  (3  -  1)^  ==  8.25 


4. 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

1.432 

1.416 

1.414 

1.414 

1.413 

1.397 

Urn  fix)  =  1.414 


6.  six 


2x 
x-2 


(a)  lim  gix)  does  not  exist. 

jr-»2 


(b)  lim^W  =0 

x—*0 


8.  lim  7^  =  79  =  3. 

jr->9 

Let  6  >  0  be  given.  We  need 

I V5  —  3|  <  6  =>  \~/x  +  3||  VJ  "■  3|  <  e|  V5  +  3 1 

\x  -  9\  <  e\Vx  +  3\ 


Assuming  4  <  x  <  16,  you  can  choose  6  =  5e. 
Hence,  for  0  <  |j^  -  9|  <  S  =  5e,  you  have 

|;c  -  9|  <  56  <  \Vx  +  3|e 
I V5  -  3|   <  6 
l/W  -L\<e 


10.  Um  9  =  9.  Let  e  >  0  be  given.  5  can  be  any  positive 
number.  Hence,  for  0  <  |j:  —  5 1  <  5,  you  have 
|9  -  9|  <  e 
\f(x)  -  L|  <  e 


12.  Iim3|>'  -  ll  =  3|4-  ll  =  9 


14.  lim 


l->3    f  —  3  r-»3 


=  lim  (r  +  3)  =  6 


,^    ,.      V4  +  ;c  -  2       ,.      ^4  +  X  -  2     ^4  +  ;f  +  2 

16.  lim =  lim •     ,  — r 

j:-»o  j:  j^o  X  ^4  +  X  +  2 


1 


lim  -  , =  - 

^^0  V4  +  X  +  2       4 


18.  lim- 

j->0 


(i/Vi  +  s)-  ]  ^  ,.^  [(i/Vi  +5)  -  1  _  (i/Vi  +  j)  +  1 

^  (l/Vl  +  s)+  I. 


Um 


^^^^      [1/(1    +  .)]  -    1       ^   ^.^^^  -1 

^-^0  5[(i/v'T+7)+ 1]    ^™(i  +4(i/yrT7)+  1] 


20.    lim 


x^-2  a:-'  + 


=    lim 


(;t  +  2)ix  -  2) 
2  (x  +  2)(a:'-  -  2;c  +  4) 

x-2 


4x        4(7r/4) 

22.      um    =  — ; —  =  TT 

j>-^(jr/4)  tanx  1 


=   lim     ,    --, —    y 

x-.-2X^  -  2x  +  4 


4_ 

12 


Review  Exercises  for  Chapter  ]        325 


24.    lim 

A:t->0 


cos(7r  +  Ax)  +  1 
Ax 


lim 


cos  TT  COS  Ajf  —  sin  TT  sin  Ajc  +  1 


Ax 


(cos  Ax  - 
Ax 

=  -0  -  (0)(1)  =  0 


=   lim 

Ax-fO 


D]        ,.      r  .       sinAx] 
—    —  lim    sm  17 — : — 

J        Ax-.0|_  Ax    J 


26.  lim  [/(x)  +  2g{x)]  =  -I  +  2(f)  =  ^_ 


28.  f(x) 


X-  1 


(a) 


X 

1.1 

1.01 

1.001 

1.0001 

fix) 

-0.3228 

-0.3322 

-0.3332 

-0.3333 

lim 


1*    X  -  1 


=  -0.333     (Actual  limit  is  -|.) 


,        1-3/J  ,.  1-3/^       l+V^+ilGf 

lim —  =  lim  —  • -p — }   Jy 

x-,r  X  -  1         x-,V     X  -  1         1  +  3/^  +  (i/x}^ 


-™*  (x  -  l)[l  +  4/1  +  (^'] 


=  lim 


1 


'*   1  +  ^/5  +  (^' 


(b) 


30.  j(f)  =  0  =>  -4.9r-  +  200  =  0  =>  f=  »  40.816  ^  t  =  6.39  sec 
When  t  =  6.39,  the  velocity  is  approximately 

lim^^^^-=^  =  lim-4.9(^  +  r) 

t-*a        a   —   t  t—*a 

=    lim   -4.9(6.39  +  6.39)  =  -62.6m/sec. 


32.  lim  |.ic  -  IJ  does  not  exist.  The  graph  jumps  from  2  to  3 

X— *4 

at  X  =  4. 


34.    lim  g{x)  =1  +  1=2. 


36.    lim  f{s)  =  2 


38.  fix) 


"ix-  —  x  —  1 


lo, 


X  -  1 


X  ^    1 
x=  1 


3r^  -  t  -  2 
lim/(.x)  =  lim  — '—, — - 

.t-»l  .t-»l  X  —    1 

=  lim  (3x  +  2)  =  5  ^  0 

Removable  discontinuity  at  x  =  1 
Continuous  on  (-co,  1)  u  (1,  cx>) 


326       Chapter  1        Limits  and  Their  Properties 


40.  fix)  = 


5  -  X,       X  <2 
2jc  -  3,     X  >  2 


lim  (5  —  jc)  =  3 


lim    (2a:  -  3)  =  1 


Nonremovable  discontinuity  at  x  =  2 
Continuous  on  (-  oo,  2)  U  (2,  oo) 


n  ^/l 


lim 


1  +  -  =  oo 


Domain:  (-oo,  -  1],  (0,  oo) 

Nonremovable  discontinuity  at  x  =  0 
Continuous  on  (— oo,  —  1]  U  (0,  oo) 


44.  f{x)  = 


lim 


x+  1 
2x  +  2 

X  +  1         1 


:r-.-l  2{X  +1)  2 

Removable  discontinuity  atx  =  —I 
Continuous  on  (— oo,  —  1)  U  (-  1,  oo) 


46.  fix)  =  tan  2x 

Nonremovable  discontinuities  when 
(2n  +  l)7r 

Continuous  on 

/(2w  -  l)7r  (2n  +  Dtt' 
V        4        '         4 

for  all  integers  n. 


48.   lim  (x  +  1)  =  2 

lim  (x  +  1)  =  4 

jr-»3" 

Find  ii  and  c  so  that  lim  (x^  +  to  +  c)  =  2  and  lim  (x^  +  to  +  c)  =  4. 

Consequently  we  get        \  +  b  +  c  =  1       and   9  +  3i  +  c  =  4. 
Solving  simultaneously,  Z?         =  -  3    and  c  =  4. 


50.  C  =  9.80  +  2.50[-[-xI  -  1],  x  >  0 
=  9.80  -  2.50DI-xl  +  1] 
C  has  a  nonremovable  discontinuity  at  each  integer. 


52.  fix)  =  V(x  -  l)x 

(a)  Domain:  (-00,  0]u  [1,  oo) 

(b)  lim_/(x)  =  0 


(c)   lim^/(x)  =  0 


54.  hix)  = 


4x 


4-x2 
Vertical  asymptotes  at  x  =  2  and  x  =  —  2 


56.  fix)   =  CSC  TTX 

Vertical  asymptote  at  every  integer  k 


58.      lim 


(1/2)*  2x  -  1 


60.     lim    -J =    lim 


-=  -i 
-"1-  x"  -  1  "  x^-\-  i^  +  l)(x  -  1)  ~     4 


^,     ,.       x^  -  2x  +  1 

62.    hm   ; =  00 

j:-»-1*         X  +   1 


64.    lim 


^l/^F^^A 


,,     ,.      secx 

66.    lim  — ■ —  =  00 

JT-'O*       X 


68.   lim 


j:-»0"        X 


Problem  Solving  for  Chapter  1        327 


70.  f(x)  = 


tanlr 


X 

-0.1 

-0.01 

-0.001 

0.001 

0.01 

0.1 

fix) 

2.0271 

2.0003 

2.0000 

2.0000 

2.0003 

2.0271 

(a) 


, .     tan  2;c 
hm =  2 

Ji-»0        X 

(b)  Yes,  define 


/(. 


rtai 


tan  2x ,      X  i'  0 


x  =  0 
Now/(x)  is  continuous  atjc  =  0. 


Problem  Solving  for  Chapter  1 


2.  (a)   Area  APAO  =  ^bh  =  |(1)W  =  | 

Area  APBO  =  ^bh  =  |(1)().)  =  f  =  f 

^,     ,  ,      Area  APBO      a:72 

(b)  a(x)  = ,  „.  ^  =  — 7—  =  X 

'      Area  APAO       .x:/2 


X 

4 

2 

1 

0.1 

0.01 

Area  APAO 

2 

1 

1/2 

1/20 

1/200 

Area  APBO 

8 

T 

" 

1/2 

1/200 

1/20,000 

a{x) 

4 

2 

1 

1/10 

1/100 

(c)    lim  a(x)  =   lim  a:  =  0 

l->0*  jr->0* 


4.  (a)  Slope  = 


4-0  ^  4 
3  -0  ~  3 


3  3 

(b)  Slope  =  -  -    Tangent  line:  y  —  4  =  —  ^x  —  3) 


3         25 

-4^  +  T 


(c)  Let  e  =  (x,  y)  =  (.v,  V25  -  x^) 


725  -  .t^  -  4 
X-  3 


,.      V25  -X--4     V25  -  .r-  +  4 

(d)  lim  m^  =  lim r •  — ,  

.t_>3    -^      _j^3         .V  -  3  V25  -  .r=  +  4 

25  -  .v=  -  16 


=  lim 


3  (x  -  3)(V25  -  x^  +  4) 

,.  (3  -  x)(3  +  x) 

-'^3  (.V  -  3)(V25  -  .r=  +  4) 

,,„,       -(3+.T)  -6    _      3 

—  Mm  — ,  — 7  —  — — 

^^3  V25  -  x^  +  4      4  +  4  4 

This  is  the  slope  of  the  tangent  line  at  P. 


J  a  +  bx  -  J3       Va  +  to  -  V3     Va  +  to  +  V3 


■v  Va  +  to  +  V3 

(a  +  to)  -  3 


A:(Va  +  to  +  v^ 
Letting  a  =  3  simplifies  the  numerator. 
Thus, 


to 


,.    vT+to-  V3     ,.    

lim =  lim    /    .  = T^r 

•"^^o  .x:  -<^o.v(V3  +  to-  +  73) 


■*o  V3  +  to-  +  v/3' 


Setting  ■ 


73  +  V3 
Thus,  0  =  3  and  ii  =  6 


=  >/3,  you  obtain  b  =  6. 


8.    lim  fix)  =   lim  (a=  -  2)  =  a=  -  2 

x-tO-  .r->0- 

o-t  /  tan  .V 

lim  fix)  =   lim  =  a    because  lim =  1 

j:->o'  .t-i-o*tanj:         V  .>->o    x 

Thus, 

a-  —  2  =  a 

a~-  a-2  =  0 

{a  -  2)ia  +0  =  0 

a=  -1.2 


328        Chapter  I        Limits  and  Their  Properties 


10. 


-•     -2-- 

o«      - 


0> 

o« 


(a)  /(i)  =  W  =  4 

/{3)  =  i  =  0 

/(I)  =  lU  =  1 


(b)    lim  fix)  =  1 

lim /W  =  0 
lim/(jc)  =  -oo 

x—*0~ 

lim  fix)  =  oo 


(c)  /is  continuous  for  all 
real  numbers  except 

x  =  0,±l,  ±i±i.  . 


12.  (a)  V-  = 

192,000 


2      192.000  ,      2       .- 


=  v2  -  Vq^  +  48 


192,000 
'"      V  -  Vq-  +  48 

192,000 

lim  r  =  — r 

v->o         48  -  Vf,^ 


(b) 


Let  Vq  =  V48  =  4  V3  feet/ sec. 
,       1920 


1920 


+  Vq^  -  2.17 


Vo^  +  2.17 


14.  Let  a  T^  0  and  let  e  >  0  be  given.  There  exists  8,  >  0 
such  that  if  0  <  l;c  -  0|  <  S,  then  \fix)  -  i|  <  e. 
Let  8  =  5J\a\.  Then  for  0  <  |x  -  0|  <  S  =  8J\a\, 
you  have 


lax    <  8, 


l/M  -  L|  <  6. 
As  a  counterexample,  let  /U)  = 


Then  Wmfix)  =  1  =  L, 

but  \m\fiax)  =  liin/(0)  =  2. 


X7t  0 
x  =  0' 


1920 


v2  -  vo^  +  2.17 


1920 

hm  r  =  -—-z ^ 

v^o         2.17  -  v^ 


(c) 


Let  Vq  =  V2.17  mi/sec     (=  1.47  mi/sec). 
10,600 


Vo2  +  6.99 


lim  r  = 


10,600 
6.99  -  v„ 


Let  Vq  =  V6.99  =  2.64  mi/sec. 

Since  this  is  smaller  than  the  escape  velocity  for  earth, 
the  mass  is  less. 


CHAPTER     2 
Differentiation 


Section  2.1      The  Derivative  and  the  Tangent  Line  Problem    .  .  330 

Section  2.2      Basic  Differentiation  Rules  and  Rates  of  Change    338 

Section  2.3      The  Product  and  Quotient  Rules  and 

Higher-Order  Derivatives 344 

Section  2.4      The  Chain  Rule    350 

Section  2.5      Implicit  Differentiation    356 

Section  2.6      Related  Rates     361 

Review  Exercises 367 

Problem  Solving     373 


CHAPTER     2 
Differentiation 

Section  2.1       The  Derivative  and  the  Tangent  Line  Problem 

Solutions  to  Even-Numbered  Exercises 


2.  (a)  m 


1 


4 
(b)  m  =  1 


/(4)-/(3)       5  -  4.75 


4-3 


1 


0.25 


Th..e   /(4)-/(l),   /(4)-/(3) 
^"«-       4-1       >       4-3 

(b)  The  slope  of  the  tangent  line  at  (1,  2)  equals /'(I). 
This  slope  is  steeper  than  the  slope  of  the  line 
through  (1,  2)  and  (4,  5).  Thus, 


« 

-» 

^<;' -('«</•(.). 

6.  g{x)  =  -x+  I  IS  SL  line.  Slope  =  - 

8. 

Slop. . ,0.1).  lim  *  +  '^'-'<» 

Aa^o              Aj: 

,.      5  -  (2  +  Axy  -  1 
=  hm                , 

Ajr-»0                    Ax 

,.      5  -  4  -  4(Ax)  -  (Ax)'  -  1 
=   lim  1 

Ai->0                            Ax 

=   lim  (-4  -  Ajc)  =  -4 

Ax^O 

10.  Slope  at  (    2,7)-lim'^^-2  +  ^;)-'^(- 

-2) 

12. 

8(x}  =  -5 

,.      (-2  +  At)2  +  3  - 
=  lim  1 

Ar—O                     Af 

_7 

^'«  =  il5o^^^^^^ 

B                             ,.     4  -  4(Ar)  +  (Ar)2 
=  lim  T 

Ar->0                      .Af 

-  4 

=  lim-^-/-^) 

Ar->0             Ax 

=  lim  (-4  +  Ar)  =  -4 

=   lim  -^  =  0 

Ai:->0  Ax 

14.  fix)  =  3a:  +  2 

16 

.  fix)  =  9  -  |;c 

/'W=lim^(^^t^)-^« 

Ar-»0                    Ax 

/'(x)=lim^(^  +  ^)-/« 

■^               Ax->0                 Ax 

-  lim  '■^^'^  +  ^)  +  2]  -  [3x  +  2] 

Ar^O                                 AjC 

,.^^^  [9  -  (1/2)U  +  Ax)]  -  [9  -  (l/2);c] 

At-»0                                    Ax 

,.      3Ax 
=  lim  -; — 

Ai->0   Ax 

=  lim     --    =  -- 

Ac^o  V    2/          2 

=   lim  3  =  3 

AX-.0 

330 


Section  2. 1        The  Derivative  and  the  Tangent  Line  Problem        331 


18.  fix)  =l-x^ 

nx  +  ^x)-f{x) 

^(^^  =  i,'?o K^ 

,.      [1  -  {x  +  Axn  -  [1  -  x"] 

=   lim  : 

Aj-»o  Ax 

,.      I  -  x^  -  IxAx  -  [Axf  -  \  +  }? 

=  lim  ; 

Aa:->o  Hoc 

-2xAx  -  iiyx)'       ,.      ,    „         .X 
=   hm  : =   lim  (  —  2x  —  Ajc)  =  —2x 


20.  f{x)  =x^  +x^ 

■'  Ai-»0  Ax 

,.         [U  +  A.t)3   +  {x  +  Ax)2]   -  [x^   +  .t2] 

=  lim  : 

Ai-»0  Ax 


=   lim 


■T^  +  3.T^A.x  +  3x(Ax)-  +  (A-x)^  +  .^  +  ltA.r  +  (A.x)-  -  x-'  -  x^ 

Ax 


,.      S.x^A-x  +  3x(Ax)2  +  (A.x)'  +  IxAx  +  (A.x)- 
=   lim  -. 

A^-»0  Ax 

=  lim  (3x^  +  3xAx  +  (Ax)^  +  Ix  +  (Ax))  =  3x^  +  Zx 


22.  fix)  =  ^ 


fix)  =  lim 


=  lim 

A;[->0 


/(x  +  Ax)-/(x) 


A.X 


1 


1 


(x  +  Axf      x" 
Ax 


,.      X-  -  (x  +  Ax)^ 

~  lim  -: — ; .   .,  -, 

^x^o  Ax{x  +  Ax)  XT 


—  lim 


-2xA.x  -  (Ax)^ 
A^^o  A.x(x  +  Ax)V 

,.       -2x  -  Ax 

lim  7 — ,    K   \->  ■> 
tix-^o  (x  +  Ax)-x" 

-Ix 

X* 

_2_ 
x3 


24.  /(x)  =  -^ 

vx 


/'(x)  =   hm 

Ax— »0 


/(x  +  A.x)  -  /(x) 
Ax- 


=  lim 

Ax-»0 


Jx  +  A.X       J~x 
Ax 


=   lim 


4^  -  4Vx  +  A.X     (  Jx  +  Jx  +  Ax 


^-^0    AxVxVx  +  A.V       Vv'x  +  Jx  +  Ax 
Ax  -  4(x  +  A-x) 


=    lim 


A^^o  Axv^Vx  +  A.x(v''x  +  Vx  +  A.x) 

-^^o  VxVx  +  A.x(^/x  +  Vx  +  Axr) 

-4  _    -2 

v/xVx(Vx  +  v'x)       xvx 


332       Chapter  2        Differentiation 


26.  (a)  /(*)  =  ^2  +  2;c  +  1 

f{x  +  ^x)-fix) 
f{x)  =   lim  


,.      [{x  +  Ax)^  +  2{x  +  Ax)  +  l]-W  +  2x+  I] 
—   jjjj, 

Ar^O  Ax 


=   lim 

Ax-»0 


2xAx  +  (Axf  +  2Ax 
Ax 


=  lim  (2;c  +  A;c  +  2)  =  2;c  +  2 

Aji->0 

At  (-3,  4),  the  slope  of  the  tangent  line  is  w  =  2(-  3)  +  2  =  —4. 

The  equation  of  the  tangent  line  is 

y  -  4=  -4(x  +  3) 
y  =  -Ax  -  8. 


28.  (a)  fix)  =  x3  +  1 


f'(x)  =   lim 


fix  +  Ax) -fix) 
Ax 


=  lim 

Ai-^O 


lim 


[U  +  AxY  +  1]  -  (;c3  +  1) 
Ax 

jc^  +  3j:^(A;c)  +  3.t(Aj:)^  +  (Ax)^  +  1  -  x^  -  1 
Ax 


=  lim  [3x2  +  3^(^)  +  (^)2]  =  3^2 

Ar-»0 

At  (1, 2),  the  slope  of  the  tangent  line  is  m  =  3(1)^  =  3. 
The  equation  of  the  tangent  line  is 

:y  -  2  =  3(x  -  1) 
y  =  3x  -  1. 


(b) 


(-3,4rt 

/ 

\ 

(b) 


30.  (a)  fix)  =  Vx  -  1 

■'  Ax->0  Ax 


,.      Vx  +  Ax  -  1  -  Vx  -  1     /  Vx  +  Ax  -  1  +  Vx  -  1 

=   iim  : •    — .  = , 

t^^o  Ax  \Jx  +  Ax  -  1  +  Vx  -  1 

(x  +  Ax  -  1)  -  (x  -  1) 
'^^o  Ax(Vx  +  Ax  -T  +  Vx  -  l) 

1  1 


=   lim  — ,         , -        , 

Aat^  Vx  +  Ax  -  1  +  Vx  -  1       2Vx  -  1 

At  (5,  2),  the  slope  of  the  tangent  line  is 


1 


1 


til    —  , —      . 

2V5  -  1      4 
The  equation  of  the  tangent  line  is 


(b) 


y  -  2  =  -(x  -  5) 


Section  2. 1         The  Derivative  and  the  Tangent  Line  Problem        333 


32.  (a)  /W  =  ^^ 


(b) 


f'{x)  =   lim 


/(;c  + M-/U) 
Ax 


lim 

Ax-^O 


lim 


X  +  Ax  +  1      -t  +  1 
Ax 

(x  +  1)  -  (x  +  Ax  +  1) 


Ai^o  Ax(x  +  zlx  +  l)(x  +  1) 
Ax-^O      (x  +  Ax  +  l)(x  +  1) 

^        1 

At  (0,  1),  the  slope  of  the  tangent  line  is 

The  equation  of  the  tangent  line  is  y  =  —  x  +  1. 

34.  Using  the  limit  definition  of  derivative,  /'(x)  =  3x'.  Since 
the  slope  of  the  given  line  is  3,  we  have 

3x-  =  3 

x2  =  l=>x  =  ±1. 

Therefore,  at  the  points  (1,  3)  and  (-  1,  1)  the  tangent 
lines  are  parallel  to  3x  -  y  -  4  =  0.  These  lines  have 
equations 

.V  -  3  =  3(x  -  1)  and  y  -  1  =  3(x  +  1) 

y  —  3x  y  =  3x  +  4 


(0.  rp 

"^ 

\ 

36.  Using  the  limit  defmition  of  derivative,  fix)  = 


-1 


2(x  -  D''^- 


Since  the  slope  of  the  given  line  is  --,  we  have 


1 


1 


2(x  -  l)'-^  2 

1  =  (x  -  D^^^' 

1  =  X  -  1  =>  X  =  2 

At  the  point  (2,  1),  the  tangent  line  is  parallel  to 
X  +  2y  +  7  =  0.  The  equation  of  the  tangent  line  is 


y-l  =  --ix-2) 


y  =  -^x  +  2 


38.  h(-  1)  =  4  because  the  tangent  line  passes  through  (-  1,  4)         40.  /(x)  =  x-    =>  /'(x)  =  2x     (d) 
6-4         2       1 


hX-\)  = 


3-(-l)      4      2 


42.  /'  does  not  exist  at  x  =  0.  Matches  (c) 


44. 


Answers  will  var>'. 
Sample  answer:  y  =  x 


334        Chapter  2        Differentiation 


4^    .  ^  V       r     fix  +  2Ax)-f(x)       ..     f(x  +  ^x)-f{x) 

46.  (a)  Yes.  lim  r-- =   lim  -. =  /  (x) 

Ax^O  2Dx  Ax->0  Ax 

(b)  No.  The  numerator  does  not  approach  zero. 

f(x  +  Ax)-f{x-Ax)  fix  +  Ax)  -  fix)  -  fix  -  M  +  fix) 

(c)  Yes.    lim  — =   lim    — 

aj:-»o  2Aa;  Ai^o  2Aj: 


=   lim 

Al->0 


fix  +  Ax) -fix)      fix -Ax) -fix) 
lAoi  2i-Ax) 


=  \rix)+\f'ix)=f'ix) 
(d)Yes.  lim^^^-^y-^^^^^/'M 

AX-.0  AjC 

48.  Let  (jcq,  >(,)  be  a  point  of  tangency  on  the  graph  of/.  By  the  limit  definition  for  the  derivative,  fix)  =  2x.  The  slope  of  the  line 
through  (1,  -  3)  and  (xg,  yg)  equals  the  derivative  of /at  x^: 


% 


2Xn 


-3  -Jo  =  (1  -  JCo)2xo 


3      ;cq"-      2Xg 
-  2xo  -  3  =  0 


^r  2 
■^^0 


(Xg    -    3)(A;g    +     1)    =    0     =>     Xg    =    3,    -  1 

Therefore,  the  points  of  tangency  are  (3,  9)  and  (-  1,  1),  and  the  corresponding  slopes  are  6  and  -  2.  The  equations  of 
the  tangent  lines  are 

y  +  3  =  6U  -  1)       y  +  3  =  -2(x  -  1) 

y  =  6x  —  9  y  =  —2x  —  I 


50.  (a)  fix)  =  x2 


fix) 


lim 

Ax-fO 


=   lim 


=  lim 

Ajr->0 


=  lim 

Aj:-»0 


fix  +  Ax) -fix)  • 

Ax 

ix  +  Ax)^  -  x^ 
Ax 

x^  +  2xiAx)  +  iAx)^  -  x^ 
Ax 

Ar(2jc  +  Ax) 
Ax 


=  lim  (2x  +  Ax)  =  2x 

Aj->0 

At  X  =  - !,/'(-  1)  =  — 2  and  the  tangent  line  is 
y  -  1  =  -2(x  +1)       or      y  =  -2.x  -  1. 
At  X  =  0,/'(0)  =  0  and  the  tangent  line  is  y  =  0. 
Atx  =  1,/'{1)  =  2  and  the  tangent  line  is  y  =  2x 


\ 

/ 

\ 

\ 

For  this  function,  the  slopes  of  the  tangent  lines  are 
always  distinct  for  different  values  of  x. 


(b)  g'ix)  =  lim 


=  lim 

Ax^O 


=   lim 

Ai->0 


=   lim 

Ax->0 


g(x  +  Ax)  -  g(x) 
Ax 

(x  +  Ax)^  -  x' 
Ax 

x^  +  3x^(Ax)  +  3x(Ax)^  +  (Ax)^  -  x^ 
Ax 

Ax(3x^  +  3x(Ax)  +  (Ax)^) 
Ax 


=   lim  (3x2  +  2xiAx)  +  (Ax)^)  =  3x^ 

Ax->0 

At  X  =  - 1,  g'i—  1)  =  3  and  the  tangent  line  is 

y  +  1  =  3(x  +  1)       or      y  =  3x  +  2. 
At  X  =  0,  g'iO)  =  0  and  the  tangent  line  is  y  =  0. 

At  X  =  1,  g'il)  =  3  and  the  tangent  line  is 

y  -  1  =  3(x  -  1)     or    y  =  3x  -  2. 


For  this  function,  the  slopes  of  the  tangent  lines  are 
sometimes  the  same. 


Section  2.  J        The  Derivative  and  the  Tangent  Line  Problem       335 


52.  fix)  =  kx^ 

By  the  limit  definition  of  the  derivative  we  havsf'ix)  =  x. 


X 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

m 

2 

1.125 

0.5 

0.125 

0 

0.125 

0.5 

1.125 

2 

fix) 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

54.  g(x) 


fix  +  Om)-f(x) 
0.01 
=  {3Vx  +  0.01  -  3v/3)lOO 


56.  /(2)  =  ^23)  =  2,/(2.1)  =  2.31525 

/'(2)  »  "'f^  ~  ^  =  3.1525  [Exact:/'(2)  =  3] 


The  graph  of  g(x)  is  approximately  the  graph  of/'(x)- 


58.  fix)  =  --l>x  and/'U)  = -x~  -  l 


60.  fix)  =  ;c 


/(2  +  Ax)-/(2)                             (2  +  A^)+^^^ 
5a^  W ^^ U  -  2)  +  /(2)  = -^ ix  -  2)  +  - 

2(2  +  M-  +  2-5(2  +  M.  5       (2A.X  +  3)      _  ,.    ,   5 

2(2  +  Ax)  A.X  ^  ''2       2(2  +  Av)  '2 


(a)Ajt=      1:  5^,  =  -(jf- 2)  +-  =  -J:  + 


5       5         5 
2  =  6" -"6 


Ar  =  0.5:  5^  =  7(x  -  2)  + 


5       4 


:.v  +  — 


16,        ~~       5  ^  2^        41^ 

2  ~  21-^  "^42 

(b)  As  Aat— >0,  the  line  approaches  the  tangent  line  to/at  (2.  ?). 


/Vx  =  0.1:5^  =  -(.v-2)  +  -  =  -.  +  42 


r X 

Y 

)^/r\ 

62.  ^(.r)  =  .rCt  -  1)  =  x^  -  .t,  c  =  1 

»,x       ,.     six)  -  g(l)  X-  -  .t  -  0  ,.     .v(x  -  1) 

g  (1)  =  lim ; —  =  lim ; —  =  lim — 

J:->1        X  -   1  .t-.l        X  -  1  v-»:     X  -  1 


=  lim  X  =  1 


336        Chapter  2        Differentiation 


64.  f(x)  =  j^  +  Zx,c=  I 

r,„.      ,.      /(-t)-/(l)       ,.     x^  +  2x-Z       ,.      (x  -  1)U^  +  ^  +  3)       ,.     .2^    ■      ,.       - 
/  (1)  =  lim  ~ =  lim ; =  lim ; =  lim  (x^  +  x  +  ?>)  =  5 

x-,\  X  -    \  x->\  X  -    \  J->1  X  -    \  jr-»l 

66.  f(x)  =  -,  c  =  3 

X 

x->3       X  —  3  jr->3        jc  -  3  j:->3     3a:       X  —  1>      -r-»3  V    3;c/  9 

68.  gW  =  (x  + 3)'''3,c=  -3 

g'(-3)  =   lim  ^W^/ll^=   lim^-^^n'°=   l™  ^^ 
Does  not  exist. 


70.  f(x)  =  |j;  -  4|,  c  =  4 

^,(4)  =  ,im^W^=  lim ^^1^  =  lim  ^^^ 


^4        X  -  A  x^i         X  —  4  x^4    X  -  4 

Does  not  exist. 
72.  /(.t)  is  differentiable  everywhere  except  at  x  =  ±3.  (Sharp  turns  in  the  graph.) 
74.  f{x)  is  differentiable  everywhere  except  atx  =  1.  (Discontinuity) 
76.  fix)  is  differentiable  everywhere  except  at  x  =  0.  (Sharp  turn  in  the  graph) 
78.  fix)  is  differentiable  everywhere  except  at  jc  =  ±2.  (Discontinuities) 
80.  fix)  is  differentiable  everywhere  except  at  x  =  1.  (Discontinuity) 


82.  fix)  =  yp^ 

The  derivative  from  the  left  does  not  exist  because 

,.      /W-/(l)        ,.       Vl  -  x2  -  0        ,.       Vl  -x2     Vl  -;c2        ,.  1  +  r  .,,     ■     , 

lim ; —  =  lim  ; =  lim ; —  •     .  =  lim ,  =  —  oo.  (Vertical  tangent) 

x-^i'      x  —  I  x->i-        X  -  \  x->i-    j:  —  1        VI  -  Jc^      -t^'^      J\  —  x?- 

The  limit  from  the  right  does  not  exist  since/is  undefined  for  jt  >  1.  Therefore,/is  not  differentiable  at  x  =  1. 

X,    X  <   \ 
x^,  X  >  I 


84. /U)       ,, 


The  derivative  from  the  left  is 

,.       /U)-/(l)       ,.      x-1        ,.      ,       , 

lim ^ =   lim =   lim  1  =  1. 

x->i'       ;c  —  1  x^\~  X  —  I       x^i- 

The  derivative  from  the  right  is 

fix)  -/(I)       ,.      jc^  -  1        ,.      ,        ,,      ^ 
hm    =  -^-^-^^ — f!^  =  lim =   lim  ix  +  \)  =  2. 

jr-»r  X   —    1  Jr-»1*    X  —    I  Ar-»r 

These  one-sided  limits  are  not  equal.  Therefore,  /  is  not  differentiable  at  j:  =  1. 


Section!.]        The  Derivative  and  the  Tangent  Line  Problem       337 


86.  Note  that/ is  continuous  at  x  =  2.f(x)  = 
The  derivative  from  the  left  is 
lim 


3*  +  1,  .r  <  2 
V^,      X  >  2 


r-»2-  X  -  2  x->2-  X  —  2  x-y2-      X  —  2  2 


The  derivative  from  the  right  is 

,.       fix)  -  m       ,.      v/5-2     72^  +  2 

lim —  =  lim —  •  — 7= 

x-^2*       x-2  x->2^     X  -2        J2x  +  2 


1-  2.V-4  2ix  -  2)  2  1 

-  iiJ?*  (.-2)(72^  +  2)  =  .'i'?M.-2)(72^  +  2)=  ii-^^T^T^  =  i 


The  one-sided  limits  are  equal.  Therefore,  /  is  differentiable  at  j:  =  2.  (/'(2)  =  5) 


88.  (a)  fix)  =  x^  and/'U)  =  2x 


(b)  gix)  =  ;c'  and  g'U)  =  3.r^ 


(c)  The  derivative  is  a  polynomial  of  degree  1  less  than  the  original  function.  If  hix)  =  x",  then  /('(.t)  =  nx"    '. 

(d)  If/W  =  A  then/'U)  =   lim   ^^  +  ^  - /^ 

,.      U  +  A.r)-*  -  ;c^ 

=    Imi  : 

Aj->o  Ax 


lim 

Ax->0 


=  lim 

Ax-*0 


.r*  +  4.r3(Aj:)  +  6xHAx)-  +  4.T(A.r)^  +  (A.r)^  -  x* 
Xx 

Ax(4.t3  +  ex'jAx)  +  4x(A.r)^  +  (Ax)^) 
A.V 


=   lim  (4x3  +  6.i2(A.x)  +  4.r(Ax)=  +  (Ax)^)  =  4x^ 

Ajt-»0 

Hence,  if/(x)  =  x^,  then/'(x)  =  4x3  which  is  consistent  with  the  conjecture.  However,  this  is  not  a  proof,  since  you  must 
verify  the  conjecture  for  all  integer  values  of  n,n>  2. 

90.  False,  y  =  |x  -  2|  is  continuous  at  x  =  2,  but  is  not  differentiable  at  x  =  2.  (Sharp  turn  in  the  graph) 

92.  True — see  Theorem  2. 1 


94. 


As  you  zoom  in,  the  graph  of  v,  =  x-  +  1  appears  to  be  locally  the  graph  of  a  horizontal  line,  whereas  the  graph  of 
J":  ~  kl  +  1  always  has  a  sharp  comer  at  (0,  1).  v,  is  not  differentiable  at  (0,  1). 


338        Chapter  2        Differentiation 


Section  2.2      Basic  Differentiation  Rules  and  Rates  of  Change 


2.  (a)        y  =  jc-'/2 

(b)       y  =  X-' 

y'--hr 

3/2 

y'=    -AT 

y'W  =  -5 

y'W=-i 

4.   fix)  =  -2 

6.    >'  =  ;c« 

fix)  =  0 

>-'=  8;c'' 

(c)        y  =  x-'/2 

(d)        y  =  x-2 

y'=-!^- 

5/2 

y'=  -2x-3 

^-'d)  =  -1 

y'W  =  -2 

8.  ,  =  !  =  .- 

10.    :y  =  4^  =  x^' 

y'  =  Sx" 


V'  =  -X-3/'*  =  ^— 

-*^        4  4xV4 


12.    gW  =  3;c  -  1 

14.    y  = 

r^  +  2?  -  3 

16.    y 

=  8-x3 

18.  fix)  =  2x3  - 

g'(x)  =  3 

y'  = 

2f  +  2 

y' 

=  -3x2 

fix)  =  6x2  _ 

20.    g(r)  =  IT  cos  f 

22.    .v  = 

5  +  sinx 

24.    V 

—  /„  M  +  2  cos  X  —  „x  3  +  2  COS  X 
(2x)3                       8 

g'{t)  =  -TTsinf 

>''  = 

COSJC 

y' 

=  |(-3)x- 

"^  -  2  sin  X  =  — -J —  2  sin  X 

Function 

Rewrite 

Derivative 

Simplifv 

''■  y  =  3^     . 

2    -2 
>-  =  JX   2 

r--\.-' 

4 
^   -      3x3 

^'■y^iZy 

y--'-r-' 

27r 

y  -  9x3 

30.  .  =  ^3 

y  =  4;c3 

y'=\2£- 

y'  =  12«2 

32.    /W  =  3-|.(f,2) 

34.        y  = 

=  3x3-6,  (2,  18) 

36.  /(x)  =  3(5  -  x)\  (5,  0) 

m-h 

•     y'- 

--  9x- 

=  3x2  _  30;t  +  75 

3''(2)  = 

=  36 

fix)  =  6x  -  30 

.     /'(M 

/'(5)  =  0 

38.     g{i)  =  2  +  3  cos  f,  (rr. 

-1) 

40.  /U)  = 

x^-3x-  3x-2 

42.  fix)  =  X  +  x-2 

g'W  =  -3sinf 

fix)  = 

2x  -  3  +  6x-3 

/'(x)  =  1  -  2x-3 

gV)  =  0 

= 

2X-3+4 

X? 

--? 

,  ,  ,       2x2  _  3^  +  J 
44.    hix)  = =  2x  -  3  +  X-' 


,  .  ,       -        1       2x2-  1 

ft  (x)  =  2 r  = 

X^  x2 


46.    y  =  3x(6x  -  5x2)  =  ig^2  _  15^^ 
y'  =  36x  -  45x2 


48.  fix)  =Vx+Vx  =  xi/3  +  xi/5 


50.   fit)  =  r2/3  -  ri/3  +  4 


/'W4x-2/3+ix-/3._l_^_^ 


2  1  2  1 

/W      3^  3^  3,1/3      3^/3 


Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change       339 


2 
52.  fix)  =  ^7=  +  3  cos  X  =  2jt-'/5  +  3  cos Jt 


—  2  -2 

/'W  =  — Jc""*/^  -  3  sm;c  =  ^^  -  3  sinjc 


54.  (a)    y  =  x>  +  X 
y'  =  3jc2  +  1 

At  (-1,-2):  y'=  3{-\Y  +1=4. 
Tangent  line:  y  +  2  =  4U  +  1) 

4jc  -  y  +  2  =  0 


(b) 


/ 

'J 

/i 

56.  (a)    y  =  (x2  +  2x)(;c  +  1) 
=  x?  +  2,x-  +  2x 
y'  =  Zx-  +  6x  +  2 

At  (1,6):  y'  =  3{\)- +  6(1)  +  2  =  11. 
Tangent  line:  y  -  6  =  ll(.x  -  1) 

0=  \\x-  y  -  5 


(b) 


T^^ 


58.    y  =  ;<^  +  .X 

;y'=  3;c2  +  1  >  0  for  all  x. 

Therefore,  there  are  no  horizontal  tangents. 


60.    v  =  ;c-  +  1 

>>'  =  Iv  =  0  =>  .I  =  0 
At;c  =  O.y  =  1. 
Horizontal  tangent:  (0.  1) 


62.    y  =  JTix  +  2  cos  at,  Q  <  x  <  Itt 
y'  =  ^  -  ls\r\x  =  Q 


J3 


TT        2tT 

x  =  yor- 


TT  73Tr+  3 


At  :ic  =  — ,  >>  = 

277          2v^Tr  -  3 
At  j:  =  — ,  y  = ^ . 


Horizontal  tangents: 


TT  JItt  +  3\  /27T  2x/3Tr  -  3 


3" 


3  ' 


64.   k  ~  X-  =  —  4jc  +  7      Equate  functions 
—  2r=  —4  Equate  derivatives 

Hence,  a:  =  2  anclA:-4=-8  +  7=>it  =  3 


66.  kjl(.  =  j:  +  4      Equate  functions 


Equate  derivatives 


2j~x 

Hence,  k  =  2>/x  and 

(27x)v^  =  x  +  4^>lt  =  .r  +  4=>.v  =  4=i.fc  =  4 


68.  The  graph  of  a  function/ 
such  that/'  >  0  for  all  x  and 
the  rate  of  change  the  function 
is  decreasing  (i.e./"  <  0) 
would,  in  general,  look  like  the 
graph  at  the  right. 


/ 


(P?^ 


yi 


•7 


-X^ 


340        Chapter  2        Differentiation 


70.   gix)  =  -5fix)  =>  g'ix)  =  -Sf'ix) 


72. 


If/ is  quadratic,  then  its  derivative  is  a  linear  function. 
fix)  =  ay?-  +  bx  +  c 
fix)  =  2ax  +  b 


74.  m,  is  the  slope  of  the  line  tangent  to  >>  =  x.  mj  is  the  slope  of  the  line  tangent  toy  =  l/x.  Since 


y  =  x 


y'  =  1  =>  m^  =  \  andy  = 


^    =1^ 


The  points  of  intersection  ofy  =  x  and  y  =  l/x  are 


1 
jc  =  — 

X 


±\. 


Atjc  =  ±l,m2=— 1.  Since  wij  =  —  \/m^,  these  tangent  lines  are  perpendicular  at  the  points  intersection. 


76.  fix)  =  -,  (5,  0) 


fix) 


_1_ 
x^ 

x^   5  —  X 


- 10  +  2x  =  -x^y 
.V2 


■  10  +  2x  =  -X- 

•10  +  2x  =  -2x 
4x  =  10 


x  =  -^,y 


The  point  (j,  j)  is  on  the  graph  of/.  The  slope  of  the 
tangent  line  is/'^j)  =  -js- 

Tangent  line:  y  ~  1 


'25  ^      2 


25y  -  20  =  -8x  +  20 
8x  +  25>'  -  40  =  0 


78.   /'(4)  =  1 


dy/dx=l 

^ 

Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change        341 


80.  (a)  Nearby  point:  (1.0073138,  1.0221024) 

1.0221024  -  1 


Secant  line:  y  -  I 


1.0073138  -  1 
y  =  3.022(x  -  1)  +  1 
(Answers  will  vary.) 


<;c-l) 


/(l.l) 

f 

(b)  fix)  =  3x^ 

Tix)  =  3{x-  I)  +  \  =2x  -2 

(c)  The  accuracy  worsens  at  you  move  away  from  (1,  1). 

2 


/■" 

'f 

/ 

(d) 


Ax 

-3 

-2 

-1 

-0.5 

-0.1 

0 

0.1 

0.5 

1 

2 

3 

fix) 

-8 

-1 

0 

0.125 

0.729 

1 

1.331 

3.375 

8 

27 

64 

T{x) 

-8 

-5 

-2 

-0.5 

0.7 

1 

1.3 

2.5 

4 

7 

10 

The  accuracy  decreases  more  rapidly  than  in  Exercise  59  because  y  =  x^  is  less  "linear"  than  y  =  x''^. 


82.  True.  If/W  =  g{x)  +  c,  then/'W  =  gXx)  +  0  =  g'{x). 


86.  False.  If  f{x)  =  —  =  x'",  then  f'{x)  =  -njc""-'  =  -^ 


88.  f(t)  =  f  -  3,  [2,  2.1] 
fit)  =  2t 
Instantaneous  rate  of  change: 

(2,  1)  =>  /'(2)  =  2(2)  =  4 
(2.1,  1.41)  =>  /'(2.1)  =  4.2 
Average  rate  of  change: 

/(2.1)-/(2)      1.41-1 


84.  True.  If  y  =  x/n  =  (I/tt)  •  .x,  then  rfy/otc  =  (l/7r)(l)  =  I/tt. 


2.1  -  2 


0.1 


4.1 


92. 


s(t)  =  -  16/2  -  22r  +  220 
v(f)  =  -32r-  22 
v(3)  =  -118  ft/sec 
s(t)  =  -  16f2  -  22f  +  220 

=  112  (height  after  fallmg  108  ft) 
- 16/2  -  22/  +  108  =  0 
-2(/  -  2)(8/  +  27)  =  0 
/  =  2 
v(2)  =  -32(2)  -  22 
=  -  86  ft/ sec 


■[»■!] 


90.  fix)  =  sin  j:, 

fix)  =  cos;c 

Instantaneous  rate  of  change: 
(0,  0)  ^  /'(O)  =  1 

73 


77   2. 

6' 2 


/' 


0.866 


Average  rate  of  change; 

/(7r/6)-/(0)_  (1/2)  -  0  ^  3  ^ 

(77/6)   -  0  (7r/6)   -  0  TT 

94.  s(t)  =  -4.9/2  +  v'(,/  +  5o 

=  -4.9/2  +  5o  =  0  when  /  =  6.8. 
5o  =  4.9/2  =  4.9(6.8)2  =  226.6  m 


342        Chapter  2        Differentiation 


96. 


2         4        6         8        10 

Time  (in  minutes) 


(The  velocity  has  been  converted  to  miles  per  hour) 


98.  This  graph  corresponds  with  Exercise  75. 


(0,0) 


2         4        6         8        10 

Time  (in  minutes) 


100.  s{t)  =  --at^  +  c  and  s'{t)  =  -at. 


Average  velocity: 


5(fo  +  M)  -  5(^0  -  ^t)  _  [-(l/2)a(fo  +  M)^  +  c\-  [-(l/2)a(fo  -  Af)^  +  c)] 
%  +  Af)  -  (ro  -  Af)  2Af 

-{\/2)a%^  +  2foAf  +  (Af)^)  +  (l/2)a(fo^  -  IfpAf  +  (Af)^) 


dV 
102.  V  =  j^  —  =  3j2 
as 

dV 
When  5  =  4  cm,  —-  =  A%  cm^. 
ds 


2Ar 


-  2afoAr 
2Af 

-ato 


s  '(tg)   Instantaneous  velocity  at  f  =  r,, 


104.     C  =  (gallons  of  fuel  used)(cost  per  gallon) 


15,000\,  ^  18,750 


dC^      18,750 
dx  x^ 


X 

10 

15 

20 

25 

30 

35 

40 

C 

1875 

1250 

537.5 

750 

625 

535.71 

468.75 

dC 
dx 

-187.5 

-83.333 

-46.875 

-30 

-20.833 

-15.306 

-11.719 

The  driver  who  gets  15  miles  per  gallon  would  benefit  more  from  a  1  mile  per  gallon  increase  in  fuel  efficiency. 
The  rate  of  change  is  larger  when  x  =  15. 


106.  ^=K(T-  TJ 


Section  2.2        Basic  Differentiation  Rules  and  Rates  of  Change       343 


108.    >>  =  -,  ;c  >  0 

X 


At  (a,  b),  the  equation  of  the  tangent  line  is 


y =  — t(x  -a)     OT    y 

a  a 

The  j:-intercept  is  (2a,  0). 

2 


a^      a 


The  y-intercept  is  I  0 


1  1       (1 
The  area  of  the  triangle  is  A  =  -bh  =  -(2a)  - 

2  I        \a 


110.    y  =  x^ 

y'  =  2x 

(a)  Tangent  lines  through  (0,  a): 

y  -  a  =  2x(x  -  0) 
X-  —  a  =  2x~ 

±V— a  =  X 


The  pwints  of  tangency  are  (±  ^--a.  -  a).  At  ( V-a,  -  a)  the  slope  is  y '( -J— a)  =  2  v— a.  At  i 

>''(-y^^  =  -2^-0. 

Tangent  lines:  jy  +  a  =  2V— a(A-  —  -J— a)     and    _y  +  a  =  —  2V— a(.v  +  v  —  a) 
'  V=-2,  ' 


-a.  -  a)  the  slope  is 


-ax  +  a 


y  =  2^ —ax  +  a  y 

Restriction:  a  must  be  negative, 
(b)  Tangent  lines  through  (a,  0): 
y  -  0  =  2x(a:  -  a) 
7?  =  2x^  —  2mx 
0  =  jr  —  2ajc  =  x(x  —  2a) 
The  points  of  tangency  are  (0,  0)  and  (2a,  4a-).  At  (0,  0)  the  slope  is  .v  '(0)  =  0.  At  (2a,  ^<^)  the  slope  is  >■  '(2a)  =  4<3. 
Tangent  lines:  v  -  0  =  0(.r  -  0)     and    y  -  4a-  =  4a(.r  -  2a) 
>>  =  0  V  =  4a.r  —  4fl- 

Restriction:  None,  a  can  be  any  real  number. 


112.  /i(j:)  =  Isinjcl  is  differentiable  for  all  x  i=  mr,  n  an  integer. 
/2(jc)  =  sin|x|  is  differentiable  for  all  .r  i=  0. 
You  can  verify  this  by  graphing/,  and/j  and  observing  the  locations  of  the  sharp  turns. 


344        Chapter  2        Differentiation 


Section  2.3       The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives 


2.  f{x)  =  (6x  +  5)(x5  -  2)  4.  g{s)  =  JKa  -  5^)  =  s''\A  -  P) 

fix)  =  (6.  +  5)(3.^)  +  (^  -  2)(6)  ^,^^^  ^  ^^^^^_^^  ^  ^^  _  ^,^1^_,,,  ^  _^^3,,  ^  l-_^^ 


=  18x3  +  15a:2  +  6x3-12 
=  24x3  +  15^2  _  12 


6.    g(x)  =  Vx  sin  X 

g  '(x)  =  Vx  cos  X  +  sin  x(  — -7=  J  =  Vx  cos  x  + 


10.    h{s) 


4-  552 


/s-  1 


VW 


25'/2 

-»<"=g^ 

1 

^  sinx 

2Vx 

,, .      (2f  -  7)(2f)  -  (r2  +  2)(2) 
.         '^'^-               {2t-ir- 

12.f(t)  =  y 

2f  _  14;  _  4 
(2f  -  If 

,.      t\- sm  t)  -  cos  t{Zt^) 

r  sin  f  +  3  cos  r 

(V^  -    1)(1)  -  .(|.-'/2J  .w  (^3)2 


V^ -  1  —  — v« 


2^"         V;-2 


[Js-\f  2(7^  -  if 

14.  /(x)  =  (x2  -  2x  +  l)(x3  -  1)  16.  fix)  =  J^ 

^-(,)  =  (,.  _  2,  +  i)(3x^)  +  (x3  -  l)(2x  -  2)  ^_^  -  1)(1)  -  (.  +  1)(1) 

=  3x2(x  -  1)2  +  2(x  -  l)2(x2  +  X  +  1)  ^^''' 

=  (x-  1)2(5x2  +  2X  +  2) 
/'(I)  =  0 


(x- 

1)^ 

X  —  1  —  X  - 

-  1 

(X  -    1)2 

2 

{X  -    1)2 

2 

=  -2 

^'(2)=      (2-1) 


18.     /(x)=^ 

„,  ,       (x)(cosx)  -  (sinx)(l) 

/w- 

X  cos  X  -  sin  X 

r2 

/7r\       (7r/6)(V3/2)  -  (1/2) 
■^U/                   TJ-2/36 

37377-  18 

772 

3(7377-6) 

772 

Function                        Rewrite 

DenVarive 

Simplifv 

5x2-3                         5  , 
20.  y  =        ^                        y-  ^x^- 

3 
4 

,       10 

,      5x 

Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives        345 


Function 

Rewrite 

22-  y  =  L^ 

,  =  |.- 

24..=  ^^^-^ 

3   2      5 

26.  f{x)  -      ^  _  J 

(.x=  -  mx^  + 

3)  -  (x3  +  3x  +  2)(2x) 

J  w  - 

U^  -  1)^ 

.t*  -  6x2  _  4^ 

-3 

{x-  -  D- 


30.  fix)  =  ^(v^  +  3)  =  x>/3(x'/2  +  3) 


*       _1/-|\        .        /      !/'>        .        n\l    _„  — 2/3 


/'W  =  x^'H-^x'^^^j  +  U>/2  +  3)1  jx 


=  7X-'/6  +  x-2/3 
6 


'      +^ 


6x1/6         ^2/3 

Alternate  solution: 

/(X)=     3/^(v/^  +  3) 
=  x5/6  +  3x1/3 

/'(x)   =  fx-'/6  +  X-2/3 


5        +^ 


Derivative 


=  --r-3 


Simplify 


y  = 


5x3 


6x 


y   =7^ 


28.  /W  =  -^ 

fix)  =  x^ 
=  2x3 


x+  ij  U+  ij 


(x  +  1)  -  (x  -  1)1       [x  -  1 


ix  +  \r 

:"  +  X  -  2] 


H 


X  +    1 


(4.r3) 


2x^ 
(. 


32.    /i(x)  =  (x^  -  1)=  =  x^  -  2x2  +  1 
/i'{x)  =  4x3  -  4x  =  4x(x2  -  1) 


(^U6         ^2/3 


34.    g{x)=xi-  ^ 


=  2x  - 


g'W 


X         X  +    1  /  X  +    1 

(x  +  l)2x  -  x^d)  _  2(x2  +  1-c  +  1)  -  x2  -  2x  _  x2  +  It  +  2 


U  +  1)2 


U  +  1)^ 


(X  +    1)2 


36.  /(x)  =  (x2  -  x)(x2  +  l)(x2  +  X  +  1) 

fix)  =  [Ix  -    1)(X-  +    l)(x2  +  X  +    1)   +   (x2  -  X)(2x)(x2  +  X  +    l)   +  (x2  -  x)(x2  +   l)(2x  +    l) 

=  (2x  -  l)(x'*  +  .v3  +  2x2  +  X  +  1)  +  (x2  -  x)(2r3  +  2x2  +  2x)  +  (x2  -  x)(2t3  +  x2  +  2v  +  1) 

=  2x5  +  x''  +  3x3  +  X  -  1  +  2x-5  -  2x2  +  2x^  -  x'*  +  .t3  -  x2  -  X 

=  6x5  +  4x3  -  3_^2  _  1 


38.  /(x)  =  £1     ^■ 


fix)  = 


(c2+.r2)(-2v)-(c2-x2)(2v) 


ic~  +  X2)2 


40.  fie)  =  (e+  i)cos0 

fie)  =  ie+  i)(-sin  e)  +  (cos  e)(i) 
=  COS  e  -  (e  +  1)  sin  e 


—  4xc2 

(C^  +  x2)2 


346        Chapter  2        Differentiation 


42.  fix)  = 


f'(x) 


X  COS  X  -  sin  ;i: 


44.    y  =  X  +  cotx 

y'  =  1  —  csc^jc  =  -cot^;c 


46.    /z(j')  = 10  CSC  j' 


h  '(s)  =  — J  +  10  CSC  5  cot ; 


48.    y 


sec  a: 


,      X  sec  X  tan  j:  —  sec  x 

y  = 72 


sec.t(xtanx  —  1) 


50.    y  =  x  sin  x  +  cos  x 

y'  =  x  cos  ;c  +  sin ;c  —  sin X  =  jt  cos x 


52.  /(j:)  =  sin  x  cos  x 

/'W  =  sin;c(-sinj:)  +  cos;c(cosx) 
=  cos  2x 


54.    h{e)  =  Sdstcd  +  dime 

h'{e)  =  SOsec  etan  0  +  5  sec  e  +  Ssec^  9  +  tan  e 


58.  /(e) 

/'(e) 


sin  6 


1  -  cos  I 
1 


cos  d  —  \ 

cos  0  -  1  ~  (1  -  cos  9)2 

(form  of  answer  may  vary) 


56.  fix)  =  (^VfT^)^^'  "^  ^  +  ^^ 

;f5  _|_  2;i^  +  2;c2  -  2 
f'(x)  =  2 1  2  j^  \\2 (form  of  answer  may  vary) 

60.  f{x)  =  tan  ;c  cot  x  =  1 

fix)  =  0 
/'(I)  =  0 


62.     fix)  =  sin  x(sin  x  +  cos  x) 

fix)  =  sin  j:(cos  jt  —  sin  ;c)  +  (sin  x  +  cos  x)cos  x 
=  sin  j:  cos  x  —  sin^  ;c  +  sin  x  cos  x  +  cos^  x 
=  sin  2x  +  cos  2x 


lir\        .    77  .  •"■      1 


64.  (a)  fix)  =  ix-  \)ix-^  -  2),  (0,  2) 

fix)  =  ix-  1)(2a:)  +  ix^  -  2)(1)  =  Zx^  -  2x  -  2 

/'(O)  = -2  =  slope  at  (0,2). 

Tangent  line:  y  -  2  =  -2x  =>  y  =  -2x  +  2 


(b) 


66.(a)/(.)  =  ^,(2,| 


.     ^  ix  +  1)(1)  -  (x  -  1)(1)  ^        2 
■^  ^  ^  (;c  +  1)2  ix  +  1)2 


/'(2)  =  I  =  slope  at  (2,  | ,. 


12  2         1 

Tangent  line:  y  -  -  =  -ix  -  2)  =!>  y  =  -x  -  - 


(b) 


y 

___ 

/ 

Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives       347 


68.  (a)     fix)  =  sec;c,    \^-,2 
fix)  =  sec  jt  tan  jf 


/||j  =  2y3  =  slopeat^|,2J. 
Tangent  line: 

673x  -3y  +  6-  1^-n  =  0 


70.  fix) 


x^+  1 


.,,  ,  _  U^  +  l)(2x)  -  (x^)(2x) Ix 


fix)  =  0  when  x  =  0. 
Horizontal  tangent  is  at  (0,  0). 


(.V-  +  1)2 


(b) 


V. 

/ 

^^ 

/     ^ 

-.-.     ,-,/  X      xizosx  -  3)  -  (sinj:  -  3a:)(1)      xcosx  —  sinx 
72.  /  (x)  = ^3 = —^ 

,,  ,      x(cosx  +  2)  —  (sinx  +  2x)(l)      xcosx  —  sinx 

g  U)  = ; = 1 


,  ,       sin X  +  2x      sin  X  —  3x  4-  5x       ,,  . 
gix)  = = =  fix)  +  5 

X  X 

/  and  g  differ  by  a  constant. 


_.     .,  .       cosx 

74.  fix)  = =  X  "  cos  X 

•^  X" 

/'(x)  =  — x~"  sinx  —  MX"""'  cosx 

=  — x"''"H^sinx  +  ncosx) 

X  sin  X  +  «  cos  X 


x"  + 


76.  V  =  7rr2/i=  -rrit  +  2)(^Jt 


=  |(r3/2  +  2ri/2)^ 


V"(f)  =  ^tI:^''^'  +  t"'''-  W  =  -7-775-77  cubic  inches/sec 


2\2 


4ri 


When/!  =  1:  fix)  =  - 


X  sin  X  -(-  cos  X 


When  n  =  2:  /'(x)  =  - 


When  /I  =  3:  /'(x)  = 


When  «  =  4:  fix)  = 


X  sin  X  +  2  cos  x 
x3 

X  sin  X  -^  3  cos  x 

X  sin  X  +  4  cos  x 


78.     P  =  - 


^               ,      ^,/  >          X  sin  X  +  n  cos  x 
For  general  njix)  = 1^7:^ . 


80.  fix)  =  sec  X 

^(x)  =  CSC  X,    [0,  27r) 
fix)  =  g'ix) 


1        sinx 


sec  X  tan  X  ,        cosx    cosx 

sec  X  tan  X  =  —  esc  x  cot  x  => \ —  =  —  1 


sin^x 


cos^x 
317  Itt 


CSC  X  cot  X 


=  - 1  =*  tan^  X  =  - 1  =*  tan  X  =  - 1 


1        cos  X 


sin  X     sm  X 


-1 


348 


Chapter  2        Differentiation 


82.  (a)n(f)  =  -9.6643r2  +  90.7414f  +  77.5029 

v(f)  =  -276.4643r2  +  2987.6929/  +  1809.9714 

vW   ^  -276.46f-  +  2987.69f  +  1809.97 
^  -*  «(f)  -9.66/2  + 90.74f  + 77.50 

A  represents  the  average  retail  value  (in  millions  of 
dollars)  per  1000  motor  homes. 

40A6{x^  -  2.09;c  +  17.83) 
(c)  A  (t)  ,^2  _  ^  3^^  _  g  Q2)2 


ix' 


,/  s      x-^  +  2j:  —  1 
86.   fix)  = =  X 


fix)  =  1+-, 


/'«  =  -^ 


2-i 


84.  fix)  =x\^ 
x'- 


fix)  =  1 


64 


fix) 


192 


88.  /W  =  secx 

fix)  =  secjctanx 

/"W  =  sec  jc(sec^  jc)  +  tan  A;(sec  j:  tan  ;c) 

=  sec  ;c(sec^  x  +  tan^  x) 


90.  fix)  =  2  -  2x-' 
/'"(x)  =  2x-2  =  4 


92.  /<'»'W  =  2;c  +  1 
/'='W  =  2 

/fe)W  =  0 


94.  The  graph  of  a  differentiable  func- 
tion/such that/  >  0  and/'  <  0 
for  all  real  numbers  x  would  in 
general  look  like  the  graph  below. 


96.  fix)  =  4  -  hix) 
fix)  =  -h'ix) 
/'(2)  =  -;!'(2)  =  -4 


98.  fix)  =  g(;c)/r(jc) 

/'(;t)  =  gix)h'ix)  +  hix)g'ix) 
/'(2)  =  gi2)h'i2)  +  hiDg'H) 
=  (3)(4)  +  (-l)(-2) 
=  14 


100. 


It  appears  that/ is  quadratic;  so/' 
would  be  linear  and /"would  be 
constant. 


102.  sit)  =  -8.25/2  +  66/ 
v(/)  =  - 16.50/  +  66 
ait)  =  - 16.50 


/(sec) 

0 

1 

2 

3 

4 

sit)  (ft) 

0 

57.75 

99 

123.75 

132 

v(/)  =  5 '(/)  (ft/sec) 

66 

49.5 

33 

16.5 

0 

a(/)  =  v'it)  (ft/sec2) 

-16.5 

-16.5 

-16.5 

-16.5 

-16.5 

Average  velocity  on: 

[0,  1]  is  ^^j^=  57.75. 

[1,2]  is  2^-15^.4,25. 
[2,3]isi^Ml_99^24^3 

M32-  123.75  ^g^3_ 
4-3 


Section  2.3        The  Product  and  Quotient  Rules  and  Higher-Order  Derivatives       349 


104.  (a)     f(x)  =  x" 

f  (x)  =  n(n  -  l)(n  -  2)  ■  ■  •  (2)(1)  =  n\ 


Note:  n\  =  n(n  -  I)  ■  ■  -3  •  2  •  \  (read  "n  factorial.") 

106.    [xf{x)]'  =  xf'ix)  +f(x) 

[xfix)]"  =  xf"{x)  +f'{x)  +f'{x)  =  xf"{x)  +  2f'{x) 
[xfix)]'"  =  xf"'ix)  +f"{x)  +  2f"(x)  =  xf"'ix)  +  3/"U) 
In  general,  [xf{x)}"^  =  xf^"Kx)  +  «/'"-"U)- 


108.    f(x)  =  sin  x 


4f)  = 


/'(;c)  =  cosx  fU    =^ 


f"ix)  =  -smx        /"(jj^"^ 


(a)  FlU)  =r{a)ix  -  a)  +  f{a)  =  0[j:  -  -1  +  1  =  1 


(b)    f(x)  =  - 


("jfr^  = 


/'"'W 


(-l)"(n)(n-  !)(»  -  2)  ■  ■  ■  (2)(1) 


/'2W  =  ^/"(fl)U  -  ar  +f'(a)(x  -  a)  +  f(a)  =  -(-  1)U  -  -     +  1 


1       l/         ^ 
2\         2 


(c)  Po  is  a  better  approximation  than  P,. 

(d)  The  accuracy  worsens  as  you  move  farther  away  from  x  =  a 


(-!)"«! 


(b) 


(?■') 

IT 

/"'N 

V 

V 

110.  True,  y  is  a  fourth-degree 
polynomial. 


112.  True 


d"y 
dx" 


0  when  n>A. 


116.  (a)  (fg '  -  f'g)  '=fg"  +  f'g'-  f'g  '-f'g 
=  fg"-f"g  True 

(b)  (fg)"={fg'+f'g)' 

=  fg"  +  f'g' +  f'g' +  f'g 
=  fg"+2f'g'+f"g 
=^fg"  +  f"g  False 


114.  True.  If  v(f)  =  c  then 
a(t)  =  v'(r)  =  0. 


350       Chapter  2        Differentiation 


Section  2.4       The  Chain  Rule 


y=figix)) 

4.  y  =  3  tan(T7x^) 


gix) 


U  =  X  +    I 


y=fiu) 

y  =  M-'/2 
y  =  Jitanu 


6.  y  =  cos 


3x 


3x 


2  2 

8.    y  =  {2^+  \Y 

y'  =  2(2^'  +  l)(6;c2)  =  nx\2>?  +  1) 

12.  /(f)  =  (9f  +  2)2/3 

/^(.)  .  |(9.  .  2)-./3(9)  ^  ^^ 


y  =  cos  M 


10.    y  =  3(4  -  ^2)5 

y'  =  15(4  -  x'^)\-2x)  =  -3044  -  x'^Y 


1/2 


14.  g(x)  =  V5  -3x  =  (5  -  3;c) 


.w4(5-3.)-(-3)  =  ^^^ 


16.    g(x)  =  V;c2  -lx+  \  =  J{x  -  1)2  =  |x  -  1| 

1,   X   >    1 


^'(^)  = 


•1,  JC  <    1 


18.  f{x)  =  -3V2  -9x 
fix)  =  -3(2  -  9x)V4 

/'(.)  =  -|(2-9.)-3/^(-9)=^(^^ 


20.    s{t) 


1 


;2  +  3f  -  1 

40  =  (;2  +  3f  -  1)-' 

j'(0  =  -l(f2  +  3f-  \)-\it  +  i) 

-(2f+3) 
(f2  +  3f  -  1)2 


22.    y  = 


(f  +  3)3 
y  =  -5{t  +  3)-3 

y'  =  \5{t  +  3)-''  = 


15 


(f  +  3)^ 


24.  .w=vS ;' ,, 

g(f)  =  (f2  -  2)-'/2      , 

g'it)   =    -^(/2  -  2)-3/2(2f) 


(,2   _   2)3/2 


26.  /(x)  =  x{-ix  -  9)3 

/'(x)  =  x[3(3x  -  9)2(3)]  +  Ox  -  9)3(1) 
=  (3x  -  9)2[9x  +  3a:  -  9] 
=  H{x  -  3)2(4x  -  3) 


28.    V  =  42V16  -  z2 


y'  =  |^'(|(16  -  x2)-'/2(-2x) )  +  x(16  -  x2)i/2 


-^ 


2yi6" 


+  Wl6  -  x^ 


-xQx^  -  32) 
2Vl6  -  x2 


30.    y  = 


Tzn 


1, 


(x4+  4)1/2(1)  -  x^(x^+  4)-'/2(4x3) 

x*+  4 
x*  +  4  -  2x''         4  -  jc" 


(jc"  +   4)3/2  (^4  +   4)3/2 


32.    hit)  = 


,2       \2 


?3  +  2 


h'it)  =  2(    3 


f2     \/(f3  +  2)(2f)  -  f2(3f2)\  ^  2g2(4f  -  f^)  ^  2r3(4  -  ;3) 

f3  +  2/1  (f3  +  2)2  /  (f3  +  2)3  (r3  +  2)3 


Section  2.4        The  Chain  Rule        351 


«-«  =  (f^)' 


Y  ^      J3x^  -  2\V(2x  +  3)(6x)  -  {3x^  -  2)i2)\ 
8  W  =  ^I^TTTT)  I ?^7TTu j 


2;c  +  3 


(2;t  +  3)2 


3(3;c2  -  2)2(6.t'  +  18a:  +  4)  ^  6(3jc2  -  2)-(3x2  +  9a:  +  2) 
(2a:  +  3)''  (2a:  +  3)'' 


36.    y 


^/ 


2x 


x+  1 
1 


^  72^(X  +    1)3/2 

y '  has  no  zeros. 


38.  f(x)  =  7^(2  -  a:)2 

(;c  -  2)(5;c  -  2) 


/V)  = 


2v^ 


The  zeros  of/'  correspond  to  the  points  on  the  graph  of 
/  where  the  tangent  lines  are  horizontal. 


y 

W 

40,    y=  it--  9)Vr  +  2 
,      5t^  +  8r  -  9 

y  = 


2jt  +  2 

The  zero  of  y '  corresponds  to  the  point  on  the  graph  of  y 
where  the  tangent  line  is  horizontal. 


// 

K 

/   j 

42.    g{x)  =  V.v  -  1  +  V.r  +  1 
g'(x) 


1         +         » 


2Vx  -  1       2jx  +  1 
g '  has  no  zeros. 


44.     y  =  a:^  tan  - 

X 


dy      ^         \ 
-r  =  2a:  tan  - 


,1 
sec-- 

X  X 


The  zeros  of  y '  correspond  to  the  points  on  the  graph  of 
y  where  the  tangent  lines  are  horizontal. 


W 


46.  (a)        y  =  sin  3a: 
y '  =  3  cos  3a: 
y'(0)  =  3 
3  cycles  in  [0, 2Tr] 


(b)        y  =  sin! 


;)cos( 


y'(0)  =  ^ 

HaIfcyclein[0.  27r] 

The  slope  of  sin  ax  at  the  origin  is  a. 


352        Chapter  2        Differentiation 


48.     V  =  sin  TTx 

dy 

-f-  =   TT  COS  TT 

dx 


50.    h{x)  =  sccix'^) 

h  '(x)  =  2x  secU^)  tan{x^) 


52.    y  =  cos  (1  -  2a;)2  =  cos  ((1  -  2x)^) 

y'  =  -sin  (1  -  2xY(2(\  -  2x)(-2))  =  4(1  -  2x)  sin(l  -  2xY 


54.    g{e)  =  secf ^ej  tm[^9 


g'ie)  =  sec(|ej  sec2(|ej|  +  tan(|ej  sec(|0J  tan(^0j^ 


4secge[sec^|eUtan^ie 


-,       /  X      cosy 

56.    g(v)  = =  cos  V  •  sm  V 

CSC  V 

g  '(v)  =  COS  v(cos  v)  +  sin  v(—  sin  v)  =  cos^  v  —  sin^  v  =  cos  2v 


58.    y  =  2  tan^  x 

y '  =  6  tan^  x  •  sec^  x 


60.    g(t)  =  5  cos^  irr  =  5  (cos  Trrp 
g'(f)  =  10  cos  7rf(— sin  Trt)i'7r) 

=  —  10iT(sin -n-t)(cos  TTf)  =  — Sirsinlirf 


62.    h(t)  =  2cot2(7r/  +  2) 

/;'(«)  =  4cot(7rr  +  2)(-csc2(T7r  +  2)(7r)) 
=  -ATTCOtiTTt  +  2)  csc2(Trf  +  2) 


64.    y  =  3x  -  5  cos(7rj:)^ 

=  3;i:  -  5  cos(7r^;t2) 

£  =  3  +  5sin(ir2x2)(2i72x) 

=  3  +  10tt2;c  sin(i7:t)2 


66.    .V  =  sin;c'/3  +  (sinx)'/^ 

y'  =  cos  ;c'/'(  -x~^/^    +  —(sin  a:)~^/'  cos  x 


cosx'/^  COSJf    1 

;c2/3      "^  (sin;c)2/3j 


68.        >-  =  (3x3  +  4^)i/5_    (2,  2) 

>''  =  |(3x^  +  4x)-''/5(9x2  +  4) 

9x-  +  4 
5(3x3  +  4jj)4/5 


y(2)  =  2 


70.  /W  =  (^^  =  (.- 3x)-     (4,^ 


fix)  =  -2(x2  -  3x)-3(2x  -  3) 


^'(^)  =  -32 


-2(2x  -  3) 
(x2  -  3x)3 


72.  /(x)=^^,    (2,3) 


fix) 


2x-  3' 

(2x  -  3)(1)  -  (x  +  1)(2) 


(2x  -  3)2 


(2x  -  3)2 


/'(2)  =  -5 


TA  1     ^        / h-     2 

74.    V  =  — I-  Vcos  X,      — ,  — 

X  \2     IT. 


1 


-f2      2  Vcos  X 


y'i'jT/2)  is  undefined. 


Section  2.4        The  Chain  Rule       353 


76.  (a)  fix)  =  |Wx2  +  5,    (2,  2) 


fix)  =  ^;c 


(x2  +  5)-'/2(2jc) 


+  ^U^  +  5)'/2 


+  ^Jx'  +  5 


3V^?T5      3 
/'(2)^^4(3)  =  ^ 
Tangent  line: 


>■  -  2  =  y  (x  -  2)  =>  13x  -  Q)'  -  8  =  0 


(b) 


^ 


IZ 


78.  (a)     f(x)  =  tan^x,  i^,  1 
/'(x)  =  2  tan  X  sec^  x 
/'(l)  =  2(1)(2)  =  4 
Tangent  line: 


(b) 


y-i=4U-- 


A 


4x  -  y  +  (1  -  tt)  =  0 


80.   /W  =  (x-2)-' 
/'W  =  -(x-2)-2  = 

fix)  =  2U  -  2)-3 


1 


U  -  2)^ 

2 
(x  -  2)3 


82.   /(x)  =  sec^  TTX 

fix)  —  2  sec  7rx(ir  sec  ttx  tan  ttx) 

=  2ir  sec^  ttx  tan  i7x 
/"(x)  =  277  sec^  7rx(sec^  7rx)(7T)  +  27rtan  7rx(2Trsec'  ttx  tan  ttx) 
=  2ir^  sec''  ttx  +  47r^  sec^  ttx  tan^  ttx 
=  2-77^  sec^  TTx(sec-  ttx  +  2  tan^  vx) 
=  Itr-  sec'^  '77x(3  sec'  t7x  —  2) 


84. 


86. 


/is  decreasing  on  (— oo,  —  1)  so/'  must  be  negative 
there. /is  increasing  on  (1,  oo)  so/'  must  be  postive 
there. 


The  zeros  of/'  correspond  to  the  points  where  the  graph 
of/has  horizontal  tangents. 


88.    g(x)=/(x2) 

g'(x)  =/'(x-)(2x)  =>  g'(.v)  =  2X-/V-) 


354        Chapter  2        Differentiation 


90.  (a)    g{x)  =  sin2;c  +  cos^;^  =  1  ^>  g'W  =  0 
g  '(x)  =  2  sin  j:  cos  x  +  2  cos  x(— sin  x)  =  0 
(b)  tan^x  +  1  =  sec^.n: 
g{x)  +  l^f(x) 
Taking  derivatives  of  both  sides, 

Equivalently,/'(x)  =  2  sec  x  •  sec  x  •  tan  x  and 
g  '(x)  =  2  tan  X  •  sec*  x,  which  are  the  same. 


92.   y  =  \  cos  12f  -  5  sin  12r 

V  =  >-'  =  |[-  12  sin  12f]  -  \[U  cos  12r] 

=  -4  sin  lit  -  3  cos  12f 
When  t  =  77/8,  y  =  0.25  feet  and  v  =  4  feet  per  second. 


94.  >•  =  A  cos  wt 


3.5 


(a)  Amplitude:  A  =  -r-  =  1.75 
y  =  1 .75  cos  wr 

r.     ■    J      in  277         TT 

Penod:  10  =>  w  =  — —  =  — 

V  =  1.75  cos  — r 


(b)  V  =  >>'=  1.75 


77   .    irf 


=  -0.35  77  sin 


77f 


96.  (a)  Using  a  graphing  utility,  or  by  trial  and  error,  you 
obtain  a  model  of  the  form 


(TTt 


T{t)  =  64.18  -  22.15  sini  —  +  1 


(b) 


(c)  rW  =  -22.15  cos(y+l)(| 


TTt 

=  -11.60  cost—  +  1 


(d)  The  temperature  changes  most  rapidly  when  r  =  4.1 
(April)  and  t  =  10.1  (October).  The  temf>erature 
changes  most  slowly  (T'(t)  =  0)  when  r  =  1.1 
(January)  and  r  =  7.1  (July). 


98.  (a)  g{x)  =f{x)-2^g '{x)  =  f'(x) 

(b)  h{x)  =  lf{x)=^h\x)  =  2f\x) 

(c)  Ax)  =f{-3x)=>r'{x)  =f'i-3x){-3)  =  -3/'(-3x) 
Hence,  you  need  to  know/'(-3j:). 

r'(0)  =  -3/'(0)  =  (-3)(-|)  =  1 
r'(-l)  =  -3/'(3)  =  (-3)(-4)=  12 

(d)  six)  =  f(x  +  2)  ^  s'ix)  =  fix  +  2) 
Hence,  you  need  to  know/'(A:  +  2). 

s'{-2)=fX0) 


X 

-2 

-1 

0 

1 

2 

3 

/'W 

4 

2 
3 

1 
3 

-1 

-2 

-4 

g'ix) 

4 

2 
f 

1 
3 

-1 

-2 

-4 

h'{x) 

8 

4 
3 

~3 

-2 

-4 

-8 

r\x) 

12 

1 

s'ix) 

1 

3 

-1 

-2 

-4 

-3.  etc. 


Section  2.4        The  Chain  Rule       355 


100.  fix  +p)=  fix)  for  all  x. 

(a)  Yes,/'(j:  +  p)  =  fix),  which  shows  that/'  is 
periodic  as  well. 

(b)  Yes,  let  gix)  =  filx),  so  g'ix)  =  2/'(2x). 
Since/'  is  periodic,  so  is  g'. 


102.  \ffi-x)  =  -/(x),  then 

£[/(-^)]  =  f  [-/W] 
/'(-x)(-l)  =  -/'(x) 
/'(-x)=/'(x). 
Thus,/'(x)  is  even. 


104. 


|[|«|]  =  j^[J^]  =  |m-'/^(2««0  =  ^  =  „'^.„  ^  0 


106.  /{x)  =  |x2  -  4| 


108.  fix)  =  |sinx| 


/'(x)  =  cos  x(  7-; — r  ],x¥'klT 
'  sinx  ' 


110.  (a)   fix)  =  sec(2x) 

/'(x)  =  2(sec2x)(tan2x) 

fix)  =  2[2(sec  2x)(tan  2x)]  tan  2x  +  2(sec  2x)(sec2  2x)(2) 
=  4[(sec  2x)(tan-  2x)  +  sec-*  2x] 


(b) 


4f)=K? 


il 


2sec|f   tanf    =4V3 


/"( Ij  =  4[2(3)  +  2^]  =  56 


P,(x)  =  4V3(x  -  -f  j  +  2 


P^Cx)  =  |(56)(x  -  1)'  +  4^3  (x  -  f)  +  2 


=  281  X  -  -^  r  +  4V^(  X  -  ^  I  +  2 


TT\2 

6y 


(c)  P2  is  a  better  approximation  than  P^ 
112.  False.  If/(x)  =  sin^  It,  then/'(x)  =  2(sin  lx)(2  cos  Ix). 


(d)  The  accuracy  worsens  as  you  move  away 
from  X  =  ir/6. 


114.  False.  First  apply  the  Product  Rule. 


356       Chapter  2        Dijferentiation 


Section  2.5       Implicit  Differentiations 


2.    x^-f=\e 

2x  -  lyy'  =  0 

,       X 


6.  x'y  +  y^x  =  -  2 

x^'  +  2xy  +  y^  +  lyxy'  =  0 

{x^  +  2xy)>''=  -{y^  +  Iry) 


y 


-y(y  +  2t) 
;c(;c  +  2y) 


jc'  +  /  =  8 
3;c2  +  3y2y'  =  0 

(xy)'/2  -  X  +  2^  =  0 
\{xy)-'l\xy' +  y)  -  1  +2>''=0 


-^y'  +  -^ 


1  +  2)-'  =  0 


2v^  ijxy 

xy'  +  y  -  ijxy  +  4v^>''  =  0 

2V^-y 
4vxy  +  X 


10.  2  sin  X  cos  y  =  1 

2[sinx{-siny)y'  +  cosy(cosx)]  =  0 

cos  X  cos  y 

y   =  ^ : 

sin  X  sm  y 

=  cot  X  cot  y 


12.  (sin  TTx  +  cos  Try)^  =  2 

2(sin  TTX  +  C0S7ry)[Tr  cos  ttx  —  7r(siniTy)y']  =  0 

77  cos  TTX  —  TT^sin  '77y)y '  =  0 

COS  TTX 


y  = 


Sin  Try 


14.  cot  y  =  X  —  y 

(— csc^y)y'  =  1  —  y' 
1 


y'  = 


1  —  csc^y 
1 


-cot-y 


=  -tan-^y 


16.   X  =  sec- 


y'     1      1 

1  =  —=^  sec- tan  - 

r     y      y 


sec(l/y)  tan(l/y) 


-y2cos(^)cot(^) 


18.  (a)  (x2  -  4x  +  4)  +  (y2  +  6y  +  9)  =  -9  +  4  +  9 

(x  -  2)2  +  (y  +  3)2  =  4  (Circle) 

(y  +  3)2  =  4  -  (x  -  2)2 


(b) 


=  -3±V4  -  (x  -  2)2 


(c)  Explicitly: 


^  =  ±^[4-(x-2)2]-i/2(-2)(x-2) 
ax        2 


^(x 

-2) 

(74- 

(;c  -  2)2 

-(^ 

-2) 

±V4- 

(;c  -  2)2 

-(;c-2) 

-3  ±  74  -  (x  -  2)2  +  3 

-(;c-2) 
y  +  3 


(d)  Implicitly: 

2x  +  2yy'-  4  +  6y'=  0 

(2y  +  6)y'  =  -2(x  -  2) 

,     -{x-D 


Section  2.5        Implicit  Differentiation       357 


20.  (a)  9y'^ 


x^  +  9 


(b) 


y^  =  ^+l  = 


x^  +  9 


±Jx^  +  9 


.^p    ,.,    ^y     4^'^'r^''^'^^         ±x  ±x        X 

(0  ExpLctly:  -  = =  j^^===  =  ^(^  =  ^ 

(d)  Implicitly:  Qy^  -  x^  =  9 
ISyy'  -  2x  =  0 
18>7'=2x 

2x        a: 


ISy      9y 


22. 


/  =  0 

2i  -  3y^'  =  0 

3/ 


y   = 


At  (1,1):  y'  =  -. 


24.  (x  +  yy  =  }^  +  f 

x^  +  3;c^  +  3xf  +  f  =  x^  +  y^ 
3x^  +  3ry2  =  0 
x^y  +  xy^  =  0 

x^'  +  2xy  +  2xyy'  +  y^  =  0 

{x-  +  2xy)y'=  -(y^  +  2xy) 


y(y  +  It) 
"jc(.t  +  2y) 


At(-1,  1):  y'  =  -1. 


26. 


X3   + 


4ry  +  1 


3j;^  +  3y^y '  =  ^xy '  +  4v 
(3>'^  -  4x)y '  =  4>'  —  3x2 
,       4y  -  3x2 


At  (2,  !),>.'  = 


(3y2  --  4x) 
4-12       8 


28.  X  cos  y  =  1 

x[— y'siny]  +  cosy  =  0 


y  - 


cos  y 
X  sin  V 


1                cot  V 
=  —  cot  V  = - 

X         '  X 


*"^'f>>'  =  5^- 


30.  (4  -  x)y2  =  x3 

(4-x)(2)yO+r(-l)  =  3x2 

3X2      +     y2 


y  = 


2y(4  -  x) 


At  (2,  2):  y'  =  2. 


32.  x'  +  y3  -  drv  =  0 

3x2  +  3^^,'  -  6,rv.'  -  6y  =  0 

y'(3>-2  -  dv)  =  6y 

,      6v 


3.x2 
3.t2 


3^•2  -  dr 


M  8\      ,  ^  (16/3)  -  (16/9)  ^  32 
'^^  \y  ir  ■         (64/9)  -  (8/3)       40 


358        Chapter  2        Differentiation 


34.  cos  y  =  X 

—  sin  y  •  y '  =  1 


•1 


y '  =  -: — ,  0  <  V  <  TT 
sin  3; 

sin^y  +  cos^y  =  1 

sin-y  =  1  —  cos^y 

siny  =  Vl  —  cos-^y  =  Vl  -  x^ 

-1 


^    yn^' 


36. 


-1  <  ;c  <  1 

xY  -  2x  =  3 

2x^'  +  2xr  -  2  =  0 

jc^yy '  +  xy^  —1=0 


1  -xy^ 

-> 
xy 


2xyy'  +  x2(y'P  +  x^"  +  2xyy'  +  /  =  0 

4xKy'  +  x^iy^  +  x^"  +  /  =  0 

4-4xy^-   ,   (1  -  xy^)^  ,     2,   -  ,     2      n 

=^  H 7-7 1-  x'Vy    +  y^  =  0 

X  xy^ 

4xy^  -  4xY  +  1  -  2xy2  +  ^.ly^  +  ;t4y3y"  +  ^2^4  ^  q 

x'^y^y"  =  2xy  —  2xy~  —  1 
„      2xY  -2xf-\ 


38.  \  —  xy  =  X  —  y 

y  —  xy  =  x  —  1 

X-  1 

y'  =  0 
/'=0       ■ 


A' 

40.      /  =  4^ 

2yy'  =  4 

,     2 

y"=-2y-Y  = 

r-2] 
LrJ 

2  _  -4 

y      y 


,     X  —  1 

42.      >^  =  JTT 


2>y' 


(x^  +  1)(1)  -  U  -  l)(2x) 


{x^  +  1)2 

X2+    1 

-  2x2  +  2x 

(;c2 

+  1)^ 

1  +  2x 

-x2 

2y{x2  +  1)2 


1+4-4 


1 


"^''^•5  }"'      [(275)/5](4  +  1)2       1075- 


V5 


1 


Tangent  line:  >  ~  ~^  =         /^U  -  2) 

lOVSy  -  10  =  X  -  2 
X  -  lOySy  +  8  =  0 


Section  2.5        Implicit  Differentiation       359 


44.  a:^  +  y^  =  9 

At  (0,  3): 

Tangent  line:  ^^  =  3 
Normal  line:  x  =  0. 

At  (2,  VS): 

_2 
Tangent  line:  v  -  Vs  =  —i={x  -  2)  =>  2a:  +  VSy  -9  =  0 

Normal  line:  y  -  V5  =  -^{x  -  2)  ==>  VSJc  -  2y  =  0. 


(0.31 

1 

f      A 

V 

y 

/-- 

>t' 

>i 

J^ 

46.      >»*  =  4x 

2xy'=4  ,  _ 

y'  =  -=  1  at  (1,2) 

Equation  of  normal  at  (1,  2)  is  y  -  2  =  -\{x  —  1),  v  =  3  -  x.  The  centers  of  the  circles  must  be  on  the  normal  and  at 
a  distance  of  4  units  from  (1,2).  Therefore, 

[x  -  1)2  +  [(3  -x)-  If  =  16 

2(a:  -  \)-  =  16 

x=  \  ±  ijl. 

Centers  of  the  circles:  (l  +  2^2,  2  -  2V2)  and  (l  -  2^2,  2  +  275) 

Equations:  [x  -  \  -  ijl)-  +  (v  -  2  +  ijl]-  =  16 

(x  -  1  +  ijlf  +  (.V  -  2  -  272)-  =16  - 


48.  4x2  +  y  -  8x  +  4.^,  +  4  =  0 
8x  +  lyy'  -  8  +  4y'=  0 


8x      4  -  4x 


"       2>'  +  4       .V  +  2 
Horizontal  tangents  occur  when  x  =  1 : 

4(1)2  +  y2  -  8(1)  +  4^  +  4  =  0 

y2  +  4y  =  y(>'  +  4)  =  0  =>  y  =  0,  -4 
Horizontal  tangents:  (1,  0),  (1,  -4). 

Vertical  tangents  occur  when  y  =  —2: 

4a-  +  (-2)2  -  8x  +  4(-2)  +  4  =  0 

4x2  -  8.T  =  4x(x  -  2)  =  0  =>  X  =  0,  2 

Vertical  tangents:  (0,  -2),  (2,  -2). 


360       Chapter  2        Differentiation 


50.  Find  the  points  of  intersection  by  letting  y^  =  x^  in  the  equation  'bp-  +  3>'-^  =  5. 
Ix'^  +  lx^  =  5      and      3x5  +  Ix^  -  5  =  0 
Intersect  whenx  =  1. 


Points  of  intersection:  (1,  ± 

1) 

/  =  ^: 

2x2  +  3^2  -. 

=  5: 

2yy'  =  3a:2 

Ax  +  6yy '  = 

=  0 

2x 

'^-yy 

At  (1,  1),  the  slopes  are: 

r-\ 

2 

y  =-3. 

At  (1,  - 1),  the  slopes  are: 

3 

y  =-2 

,    2 

^   =3- 

Tangents  are  perpendicular. 

[21^+3/ =5] 


/" 

~>((1. 1) 

v^ 

[>=;■ 


52.  Rewriting  each  equation  and  differentiating, 
jc^  =  3(y  -  1)  xOy  -  29)  =  3 


^       , 

.  =  y  +  l 


>»  =  jj"' 


-K!-' 


3'    = 


1 


|jr(3>-29)  =  3|,5    [x_3=3>.- 

A 

A 

J 

^ 

f 

For  each  value  of  jt,  the  derivatives  are  negative  reciprocals  of  each  other.  Thus,  the  tangent  lines  are  orthogonal  at  both  points 
of  intersection. 


54. 


X2  +y2=   C^ 

y  =  Kx 

2x  +  2yy'  =  0 

y'  =  K 

•                                X 

'^~y 

c 

7K' 

k 

X 

At  the  point  of  intersection  {x,  y)  the  product  of  the 

slopes  is  {—xly)(fC)  =  (—x/Kx){K)  =  —  1.  The  curves  are  orthogonal. 


K  =  -]  \^-^  c  = 


56.  ^2  -  3xy2  +  y  =  10 

(a)  2;c  -  3/  -  6xyy'  +  3y^'  =  0 

i-6xy  +  3/)y'=  3y2  -  2;c 

y=3/-2. 
^       3y^  -  6xy 


*>-f-*'f-'^vf  =  ° 


(2x  -  3/)^  =  {6xy  -  3y^^ 


58.  (a)  4  sin  x  cos  >>  =  1 

4  sin  x(—  sin  y)y '  +  4  cos  x  cos  y  =  0 


cos  X  cos  y 

>"    =  —■ ■■ 

sin  X  sin  y 


I  \dy  dx 

(b)  4smjc(— siny)—  +  4 cos x— cosy  =  0 
at  at 


dx 


.-.^dy 


cos  JT  cos  y-r  =  sinjcsiny-, 
dt  dt 


Section  2.6        Related  Rates 


361 


60.  Given  an  implicit  equation,  first  differentiate  both  sides 
with  respect  to  x.  Collect  all  terms  involving  y'  on  the  left, 
and  all  other  terms  to  the  right.  Factor  out  v '  on  the  left 
side.  Finally,  divide  both  sides  by  the  left-hand  factor  that 
does  not  contain  y '. 


62. 


64. 


>/x  +    Vv  =    v/c 


'     +-^^=0 


2Vx  iVy'^ 
di 
dx 


V-y 


Tangent  line  at  (xq,  yg): 


yo 


^U    -    Xg) 


77jn 


Use  starting  point  B. 


.x-intercept:  [xg  +  v^Vyo>  O) 
y-intercept:  (o,  Vq  +  V^v5o) 
Sum  of  intercepts: 

Uo  +  V^VS^)  +  (.Vo  +  v^v^)  =  -^o  +  2V^V>\J  +  Jo  =  (^  +  n/v^)"  =  (Vc)"  =  c. 

Section  2.6       Related  Rates 


2.    y  =  2(x2  -  3x) 

Tt^^^'-^^t 


dx 


1       dy 


dt      4x  -  6  dt 

(a)  When  A;  =  3and^  =  2,^  =  [4(3)  -  6](2)  =  12 

(b)When.=  ,andf=5,f  =  ^(5)  =  -f 


4. 


.r^  +  /  =  25 


2x 


dx 
dt 


■ly 


di 
dt 

di 
dt 


dx 

dt 


x^x 
yldt 

y\dy_ 
'  xldt 


(a)  When  x  =  3,  y  =  4,  and  dx/dt  =  8. 

dt         4 

(b)  When  .t  =  4,  y  =  3.  and  dy/dt  =  -2. 


dx 
dt 


r(-2) 


362        Chapter  2        Dijferentiation 


6.    y 


1  +x2 


dx 
dt 


=  2 


-2x 


dx 


dy_ 

dt      L(l+x2)2jdr 

(a)  Whenx  =  -2, 


dy      -2(-2)(2)       8        , 

■   = :^ =  TT^  cm/sec, 

dt  25  25      ' 

(b)  When  x  =  0, 

—  =  0  cm/ sec. 
ar 

(c)  When  x  =  2, 

dy  _  -2(2)(2)  _  -8 


dr 


25 


25 


cm/sec. 


8.     y  =  sinj: 


dx 

,    =  cos  X—r 
dt  dt 


(a)  When  x  =  7r/6, 


=  ( cos  — 1(2)  =  >/3  cm/sec. 
(b)  When  x  =  7r/4, 


—  =  (cos— 1(2)  =  V^  cm/sec. 


(c)  When  x  =  7r/3, 


-j-  =  (cos-r-j(2)  =  1  cm/ sec. 


dx  .  dy  . 

10.  (a)  —  negative  ==>  —  negative 
dt  dt 

„     dy       .  .  dx 

(b)  —  positive  =>  —  positive 
dt  dt 


12.  Answers  will  vary.  See  page  145. 


14.     D  =  Jx^  +  / 
dt 


j£^ 


— —  =  -  (x^  +  sin^  x)   '/^{2x  +  2  sin  X  cos  x)^ 
flf       2  dr 


16.     A  =  trr^ 


dx      jc  +  sin  j:  cos  x  dx      2  +  2  sin  a;  cos  x 


dA       ,      dr 

— -  =  lirr— 
dt  dt 


If  dr/dt  is  constant,  dA/dt  is  not  constant. 


— -  depends  on  r  and  -r. 
dr  dr 


v^ 

+ 

sin- 

;c    dr 
18. 

V 

dr 
dt 

dV 
dt 

Vx2  + 

=  2 
=  4Trr2 

sin"^x 

dr 
dr 

dK 

(a)  When  r  =  6,  —  =  477(6)^(2)  =  28817  in Vmin. 
dt 


dV 
When  r  =  24,  —  =  4ir(24)2(2)  =  460877  inVmin. 

(b)  If  dr/dt  is  constant,  dV/dt  is  proportional  to  r^. 


20.     K  =  ;c3 

dr 
dV 


-  =  3;c2  - 
dr  dr 


(a)  When  ;c  =  1 
dV 


dt 


=  3(1)2(3)  =  9  cmVsec. 


(b)  When  x  =  10, 
dV 


dr 


=  3(10)2(3)  =  900cmVsec. 


Section  2.6        Related  Rates       363 


22.     V  =  ^TTr%  =  ^TrrK3,r)  =  Trr^ 

dt 

dV      -      ^dr 
dt  dt 


24.   v  =  -.r^;,  =  -,.— ;,3=__,3 

/        r       h  5  ,  \ 

I  By  similar  triangles,  -  =  —  =>  r  =  —h.j 

dt 


(a)  When  r  =  6, 


dt 


=  3-7r(6)2(2)  =  21677  inVmin. 


(b)  When  r  =  24, 
dV 


dt 


=  377-(24)2(2)  =  345617- inVmin. 


fify  ^  ^^2  ^       ^  =  /    144  W 
</?  ~  144       dt^  dt~  \25TTh^jdt 

dh  \44  9 


26.  V  =  -foA(12)  =  6bh  =  6^2  (since  b  =  h) 
(  )  ^=  nh—       —  =  — — 

When  /j  =  1  and  — -  =  2,  --  =  -r77r(2)  =  -  ft/min 
fi!/  dt       12(1)  6 

(b)  If  -r  =  o  in/min  =  — -  ft/min  and  h  =  1  feet,  then 
af       o  32 


f  =  (l^^^)  =  !^'Vmin. 


28.  a:^  +  y^  =  25 

„    dx      „    dy 
2x—  +  2y-Y  =  0 
dt  dt 


dx         y     dy  O.lSy   .       dy 

— -  =  —^•-f= ^  smce  -r-  =  0.15. 

dt  X     dt  X  dt 


When  X  =  2.5, 


y  =  yi8J5,^  =  -^41^  0-15  =  -0.26m/sec 
dt  2.5 


30.  Let  L  be  the  length  of  the  rope. 


(a) 


L2  =  144  +  x^ 

^.dLdx 

2L-—  =  2x-r 

dt            dt 

dx      L     dL          AL   .       dL 

—  = —  = smce -3-  =  -4ft/sec. 

dt       X     dt           X            dt 

WhenL=  13, 

>;4fl/sec 

X  =  JL^  -  144  =  Vl69  -  144  =  5           ^ 

i!|iy 

dx          4(13)          52                                        ^Q_ 
dt             5              5   -      10.4  ft/sec. 

"  i^ft''^ 

(b)  If^=  -4,  andL  =  13, 
dt 


Speed  of  the  boat  increases  as  it  approaches  the  dock. 


dL      xdx 

dt       Ldt 

=  ^>-4) 

^^-- 

AsL  ^  12  +  , 

dL 
dt 

decreases,  so 

the  speed  decreases. 


364        Chapter  2        Differentiation 


32.     x^  +y^  =  5^ 

^  dx      „      ^   ds 

2x—  +  0  =  2s  — 

dt  dt 


dy 

since  -r  =  0 
dt 


dx  _  s  ds 
dt      X  dt 

When  s  =  \0,x=  VlOO  -  25  =  V75  =  5 V3 

^  =  ^(240)  =  ^  =  16073  =  277.13  mph. 
dt      5  V  3  V  3 


.   s^- 

=  90^  +  x2 

x  = 

=  60 

dx  _ 
dt  " 

=  28 

ds  _ 
dt  ' 

X    dx 
''~s"dt 

Home 


When  X  =  60, 

s  =  V902  +  602  =  30VT3 


d^ 
dt 


60 


30yi3 


(28) 


56 


13 


15.53  ft/sec. 


36.  (a) 


20  _      y 
6      y  ~  X 

20^- 

-  20x  =  6^ 

14y  =  20a: 

10 

dx_ 

-5 

rfr 


£f>      10  (ic      10,    ^,      -50^, 


^(y  -  x)  _dy      dx  _-50      ,      ._  -50      35  _ 


15 


ft/ sec 


38.  x{t)  =  -  sin  77?,  x^  +  y2  =  1 


277 

(a)  Period:  —  =  2  seconds 
77 


(b)  When  x  =  -y 


VHI 


2       4 


Lowest  point:     0 


enx 

3 
=  T0'^  = 

v- 

=     4     ^ 

3 
10 

3    . 
=  —  sm  77/ 

1 

^  sm  77/  =  - 

1 
=^'  =  6 

dx  _ 
dt 

3 

—  77  cos  77/ 

;c2  +  /  =  1 

2x—  +  2>'—  =  0^—  = 3-. 

rf/  rf/  dt        y    dt 


dy  _  -3/10     3 
15/4'  5 

-977  -97577 


'^"^■^  =  7Tp-I"'^°^'^ 


Speed  = 


2575  125 

-9V577 


125 


=  0.5058  m/sec 


Section  2.6        Related  Rates       365 


40. 


1  =  -1      J- 
R       A  J       R-i 


dR^ 
dt 

dR. 
dt 


1.5 


R^'  dt  ~  /?,2  ■   dr   "^  T?,^  ■   Jf 
When  /f ,  =  50  and  /?2  =  75, 
R  =  30 


42.         rgtanO  =  v^ 

32r  tan  0  =  v^,  r  is  a  constant. 


32rsec20— =  2v— 
A  dt 

dv       16r 


A 


sec-  0  — 
dt 


Likewise,  —  =  -rr-  cos-  0 


dt       16r 


rff' 


dt 


1(50)2^'^"^  (75)2 


=  (30)-|  777^(1) +  7:;iT2(l-5) 


0.6  ohms/sec. 


44. 


sin  fl  =  — 

X 


^  =  (-l)ft/sec 


cos  d\ 


de 

dt 

dd 
dt 


-10     dx 

X-    '  dt 


10  dx 


X-    dt 


{see  e) 


=  ~'0f  25  ^  10      1      ^       2       ^  2V2T 

25-        V25-  -  10=      25572T      25^21         525 


=  0.017  rad/sec 


46.  tane  =  - 

— -  =  30(2  tt)  =  607Trad/min  =  17  rad/sec 
dt 


sec^e 


^\  ^    Udx 


dtj       50\  dt 


dx  ,„  ,  Jdd 
—  =  50  sec-  e\  — 
dt  \dt 


(a)  When  6  =  30°,  ^  =  ^^  ft/sec. 


(b)  When  e  =  60°,  —  =  200Tr  ft/sec. 


(c)  When  6  =  70°,^  =  427.43Tr  ft/sec. 


48.  sin  22° 


0  =  -—  .  ^  +  i  .  ^ 

y-     dt      y     dt 

^  =  -  •  ^  =  (sin  22°)(240)  =  89.9056  mi/hr 


50.  (a)  dy/dt  =  3(dx/dt)  means  that  y  changes  three  times  as 
fast  as  X  changes. 

(b)  y  changes  slowly  when  v  =  0  or  .v  =  L.  y  changes 
more  rapidly  when  .v  is  near  the  middle  of  the 
interval. 


366       Chapter  2        Differentiation 


52.  L?  =  144  +  x^;  acceleration  of  the  boat 


£x 
dt^- 


^-      .    ■      ■        ^r  dL      ^    dx 

First  denvative:  2L—-  =  2x—- 

dt  dt 

^dL        dx 

L-r-  =  X  — 
dt         dt 

,  ,    .      .  d-L      dL     dL        d^x      dx     dx 

Second  denvative:  L  -pr  H — r  '  ~r  =  ^<^tt  '^  ~r  '  ~T 

dt^       dt      dt         dt^       dt     dt 


d^x 
dt"" 


I'f-(f)"-(f 


dx 


dL 


dL 


d^L 


When  L  =  13,  j:  =  5,  -r  =  -  10.4,  and  —-  =  — 4  (see  Exercise  30).  Since  —-  is  constant,  -pr  =  0. 


dt 


dt 


dt 


dt^ 


g  =  |[13(0)  + (-4)2 -(-10.4)2] 

=  |[16  -  108.16]  =  |[-92.16]  =  -  18.432 ft/sec2 


54.    y(i)  =  -4.9r2  +  20 

dy 
dt 

y(\)  =  -4.9  +  20  =  15.1 

y\\)  =  -9.8 

T,      •    M       •       ,      20  y 

By  similar  triangles,  —  = — r 

X        X  —  \2 

20x  -  240  =  xy. 

Whenjy  =  15.1,  20;c  -  240  =  .x(15.l) 

(20  -  15.1);c  =  240 

240 


4.9' 


20;t  -  240  =  ry 

,„(&        dy        dx 

^"^t^^t^^t 


(0.0)1 


Atr  =  1, 


dx 

x 

dy 

dt 

20  -  y 

dt 

dx 

240/4.9 

I 

dt      20  -  15.1 


(-9.8)  =  -97.96  m/sec. 


Review  Exercises  for  Chapter  2        367 


Review  Exercises  for  Chapter  2 


2.  fix)  = 


x+  1 
X-  1 


x  +  ^x  +  \  _  X  +  1 

,.     fix  +  Ax) -fix)       ,.      ;c  +  Ax  -  1       j:  -  1 
/'W  =   lim -^ — ^-^  =   hm  T 


=  lim 

Ax->0 


ix  +  Ax+  l)ix-\)  -  ix  +  Ax-  Dix  +  1) 
AtU  +  Aj:  -  l)(jc  -  1) 


~  i^^o  M^c  +  Ajc  -  l)(;c  -  1) 


lim 


-2Ax 


=   lim 


^"o  Axix  +  Ax-  1)U  -  1)      ^"o  (;c  +  Ajc  -  l)(x  -  1)       (jc  -  1)- 


4./W  =  - 

■'  Ai->o  Ajc 


6.  /is  differentiable  for  all  jc  t*  —3. 


lim 


X  +  Ax      X 


Aj:-»0  Ax 

2x:  -  (2x  +  2Ax) 

Aj:-»0        AjcU  +   Ajc)jC 

-2Ax 


Ax-^0  Ajc(x  +  Ajc)jc 

r            -2  -2 

=   lim  7 : — ^  —  — TT 

iijr->0  (X  +  Ax)x  X~ 

,  ,  _  Jx^  +  4x  +  2,      ifx  <  -2         ' 
»--^W-jj_4^_^2       if.,  >-2 

(a)  Nonremovable  discontinuity  at  .V  =  —  2. 

(b)  Not  differentiable  at  .r  =  -  2  because  the  function  is 
discontinuous  there. 


10.  Using  the  limit  defmtion,  you  obtain  h '(«)  =  ^  -  4.t. 


AtJC=-2,;z'(-2)  =  |-4(-2)  =  y. 


-2 
12.  (a)  Using  the  limit  definition,  fix)  =  -, -tt. 

(jc  +  \y 

At  jc  =  0./'(0)  =  -2.  The  tangent  line  is 

>-  -  2  =  -2U  -  0) 

y  =  -Ix  +  2 


(b) 


^ 

t^' 

^ 

\ 

368        Chapter  2        Differentiation 


14.  /'(2)  =  lim 


/U)-/(2) 


2       X  -  2 


1 


=  lim 


1 


x+  I      3 


=  lim 


2        JC  -  2 

3  -a:-  1 


x->2  (x  -  2)U  +  1)3 


-1 


1 


lim  /     ,   ,N- 

x->2  (x  +  1)3        9 


18.    y  =  - 12 

y'  =  0 


20.    gW=xi2 
g'W  =  12x" 


16. 


22.  /(r)=  -8^5 
fit)  =  -40^ 


24.    g(j)  =  4s^  -  5s^ 
g'is)  =  I6s^  -  \0s 

30.    g{a)  =  4  cos  a  +  6 
g  '(a)  =  -  4  sin  a 


26.  /(jc)  =  ;c'/2  -  ;t- 


1/2 


28.    h{x)  =  |x-2 


/'W  =  |.-'/^  + 1.-/^  =  ^ 


-4  _         -4 


,  ,       5  sing 
32.    g(a)  =  — 2a 


,.  .       5cosa 
g  (a)  =  — 2 


34.  5  =  -  16f2  +  So 
First  ball: 

-16/2+  100  =  0 

Aoo      10     ^^         J       u- 
f  =  -  /  — -^  =  —  =  2.5  seconds  to  hit  ground 
V    lo        4 

Second  ball:  .  ■    ' 

-16r-  +  75  =0 


f2  = 


ns     573 


2.165  seconds  to  hit  ground 


Since  the  second  ball  was  released  one  second  after  the  first  ball,  the  first  ball  will  hit  the  ground  first.  The  second  ball  will  hit 
the  ground  3.165  -  2.5  =  0.665  second  later. 


36.    5(f)  =  -  16;^  +  14,400  =  0 
'     16/2  =  14400 

r  =  30  sec  ■ 

Since  600  mph  =  g  mi/sec,  in  30  seconds  the  bomb  will  move  horizontally  (gjCSO)  =  5  miles. 


Review  Exercises  for  Chapter  2       369 


38. 


(a)  y 


32    .        ,, 


32 
— ^x 


64 

(b)  v'=  1  -^x 


0  if  r  =  0  or  X 


32' 


Projectile  strikes  the  ground  when  x  =  v^jlsl. 

Projectile  reaches  its  maximum  height  vXx  =  v^/M. 
(one-half  the  distance) 


32            /         32    \ 
(c)  y  =  x ^.r'  =  x\\ ;.v    =  0 

when  ,v  =  0  and  x  =  Xq-/32.  Therefore,  the  range  is 
-v  =  Vq-/32.  When  the  initial  velocity  is  doubled  the 
range  is 


(2vo)^ 
32 


32 


or  four  times  the  initial  range.  From  part  (a),  the 
maximum  height  occurs  when  x  =  Vo^/64.  The 
maximum  height  is 


y\ 


64 


32 /vo' 


64 


Vo-\64 


64       128       128 


If  the  initial  velocity  is  doubled,  the  maximum 
height  is 

2  > 


V 


(2vo) 
64 


J        128  \128 


(d)  Vq  =  70  ft/sec 


iW- 


Range:  x  =  -        ^^ 


153.125  ft 


Maximum  height:  y  =  7^  =  ^:^  "  38.28  ft 


or  four  times  the  original  maximimi  height. 


40.  (a)  y  =  0.14;c=  -  4.43a  +  58.4 


(b)       320 


(C)  2 


(d)  If.v  =  65,  V  =  362  feet. 


(e)  As  the  speed  increases,  the  stopping  distance  increases  at  an  increasing  rate. 


370        Chapter  2        Differentiation 


42.    g{x)  =  (x3  -  Zx){x  +  2) 

g\x)  =  (x3  -  3x)(l)  +  {x  +  2)(3;c2  -  3) 
=  x^  -  Ix  +  ix^  +  6x^  -  3x-  6 
=  4.^  +  ex'^  -  6x-  6 

46./W  =  ^^l 
f\x)  = 

^  {x-  1)2 
50.  fix)  =  9(3^2  -  2x)-' 

Z'U)  =  -9(3x2  _  2x)-2(6x  -  2) 

54.  y  =  2jc  —  ;c2  fan  ^^ 

y'  =  2  —  x^  sec^ x  —  2xVwix 


x  - 

- 1 

{x- 

-  1)(1)  - 

-(;c  + 

1)(1) 

(x- 

-IF 

-2 

18(1  -  3x) 
(3a:2  -  2xY 


44.  /(f)  =  t^cost 

fit)  =  t\-smt)  +  cosf(3f2) 
=  —  f'  sin  f  +  3?2  cos  t 


(x2  +  1)(6)  -  (6a:  -  5)(2x) 
(;c2  +  1)2 

2(3  +  5x-  ?,x^) 
ix"  +  1)2 


fix) 


sin  x 

52.    y  =  ^ 


,  _  (j:2)cosx  —  (sinx)(2x)  _  x  cos  jc  —  2  sin  jr 


xf> 


X? 


56.    y 


1  +  sinx 
1  —  sin  X 


,  _  (1  —  sinx)  cosx  —  (1  +  sinx)(— cosx) 
^   "  (1  -  sinx)2 

2cosx 


(1  —  sinx)2 


58.  v(/)  =  36  -  t\0<  t  <  6 

ait)  =  v'it)  =  -2r 

v(4)  =  36  -  16  =  20  m/sec 

a(4)  =  -  8  m/sec 

62.    hit)  =  4  sin  f  —  5  cos  t 

h  'it)  =  4  cos  t  +  5  sin  t 
h"it)  =  -4  sin  f  +  5  cos  t 


60.  fix)  =  Ux^'"' 
fix)  =  3X-3/4 

-9  —9 

^  W        4  ^  4^7/4 


64. 


y 


(10  —  cosx) 


xy  +  cos  X  =  10 
xy '  +  y  —  sin  X  =  0 

xy '  =  sin  X  —  >> 
xy'  +  y  =  (sin  x  —  >>)  +  y  =  sin  x 


66.  fix)  =  (x2  -  l)'/3 

fix)  =  |(x2  -  1)-V3(2x) 


2x 


3(x2  -   1)2/3 


68.  /(x)  =  (x2  +  ^)' 


Review  Exercises  for  Chapter  2       371 


70.    h{e} 

h'{9) 


(1  -  er 

{i-ey-e[3(i-  en-i)] 
(1  -  er 

(1  -  8)^(1  -  6  +  36)  ^   26+  1 

(1  -  ef  (1  -  6Y 


74.    y  =  CSC  3x  +  cot  3x 

y'  —  —3  CSC  3.t  cot  3j:  —  3  esc-  3x 
=  -  3  CSC  3x(cot  3x  +  CSC  3x) 


72.    y  =  I  -  COS  2j:  +  2  cos^  x 
y'  =  Is'mlx  —  4  COS  jc  sin  j: 

=  2[2  sin  j:  cos  x]  -  4  sin  x  cos  x 

=  0 


76.   >■ 


sec^; 


7  5 

)> '  =  sec^  a:(sec  x  tan  x)  —  sec''  ar(sec  j:  tan  x) 
=  sec^  X  tan  x(sec^  .t  -  1) 
=  sec^  X  tan^  x 


78.  f(x) 


fix) 


3x 


Vx=+T 


1, 


3(x2  +  l)'/2  -  3x|(x2  +  l)-'/2(2x) 

x2+  1 
3(x^  +  1)  -  3x' 

(X^  +    1)3/2 

3 


(x2  +   1)3/2 


80.    y 


cos(x  —  1) 
X  -   1 

-(x  -  1)  sin(x  -  1)  -  cos(x  -  1)(1) 

(x  -  ly- 


1 


U  -  1)-' 


[(x  -  1)  sin(x  -  1)  +  cos(x  -  1)] 


82.  fix)  =  [(x  -  2)(x  +  4)Y  =  (x2  +  2t  -  8)2 
fix)  =  4(x3  +  3x-  -  6x  -  8) 

=  4(x  -  2)(x  +  l)(x  +  4) 
The  zeros  of/'  correspond  to  the  points  on  the  graph  of/  where  the  tangent  line  is  horizontal. 


w 


84.    ^(x)  =  x(x-  +  1)1/2 
2x2  +  1 


g'ix) 


VxH^ 


g'  does  not  equal  zero  for  any  value  of  x.  The  graph  of  g 
has  no  horizontal  tangent  lines. . 


1 


86.    y  =  V3x(x  +  ly 

3(x  +  2)2(7x  +  2) 


y  = 


273x 


y '  does  not  equal  zero  for  any  x  in  the  domain. 
The  graph  has  no  horizontal  tangent  lines. 


f 

372        Chapter  2        Differentiation 


88.    y  =  2  csc^  (v^) 

y'  = ;pcsc^  Vxcot  Vx 

Jx 

The  zero  of  y '  corresponds  to  the 
point  on  the  graph  of  3;  where  the 
tangent  line  is  horizontal. 


T 


90.    y  =  j;-'  +  tanjc 

y'  =  —x~'^  +  sec^jr 

y"  =  2x~^  +  2  sec  jc(sec  x  tan  x) 


=  —;  +  2  sec^  j:  tan  ;<: 


96.    h{x)  =  xjx^  -  1 
2x^-1 


x{2jP-  -  3) 
(;c2  -  1)3/2 


92.    y  =  sin^  x 

y'  =  2  sin  X  cos  x 
y"  =  2  cos  2jc 


sin  21 


94.    ,W  =  ^ 


;c2+  1 

2(-3a:^  +  5;c  +  3) 
(x?-  +  1)2 


(x2  +   1)3 


98.     V  =  J2^  =  72(32);;  =  8v^ 

dh      Jh 

(a)  When  /i  =  9,  ^  =  ^  ft/sec. 
an      3 


(b)  When  h  =  A,—  =  2  ft/sec. 
an 


100.      x2  +  9y2  -  4x  +  3y  =  0 
2x  +  ISyy'-  4  +  Sy' =  0 

3(6y  +  l)y'  =  4  -  2x 

4  -  2x 


y  = 


3(6y  +  1) 


102.  ■f  =  x'-x^  +  xy-y^ 

0  =  x3  —  x?y  +  xy  —  2y^ 

0  =  3x2  _  j,2y '  _  2xy  +  xy'  +  y  —  4yy ' 

(x2  —  X  +  4y)y'  =  3x2  _  2xy  +  y 
,  _  3x2  _  2xy  +  y 


y  = 


x^  —  X  +  Ay 


1©4.  cos(x  +  y)  =  X 

-(1  +y')sin(x  +  y)  =  \ 

— y'sin(x  +  y)  =  1  +  sin(x  +  y) 

,  _      1  +  sin(x  +  y) 
sin(x  +  y) 

=  -csc(x  +  1)  -  1 


106.       x2  -  y2  =  16 

2x  -  2yy'  =  0 
/       X 

'^y 

At  (5,  3):  y'  =  \ 


Tangent  line:  y  -  3  =  -(x  -  5) 
5x  -  3y  -  16  =  0 


Normal  line:y  —  3  =  -  •r(x  -  5) 


3x  +  5y  -  30  =  0 


108.  Surface  area  =  A  =  6x2,  j,  length  of  edge. 

dt 

^  =  12x^  =  12(4.5)(5)  =  270cmVsec 
dt  dt 


Problem  Solving  for  Chapter  2       373 


110.  tan  e  =  ;c 

—r  =  3(27r)  rad/min 
2  Jd6\      dx 


dx 
dt 


(tan2  e  +  l)(67r)  =  Gt^jc^  +  1) 


When;c 


1  <ic       ,    /I       ,\       IStt,      ,    .         ,^„    ,      ,, 
=  -,  —  =  0771  T  +  1    =  —z-  km/ mil)  =  450irlcm/hr. 

2  at  \4        /         2 


Problem  Solving  for  Chapter  2 


Let  {a,  a^)  and  {b,  -  fc-  +  2i>  -  5)  be  the  points  of  tangency. 

For  y  =  x^,y'  =  2x  and  for  y  =  —x^  +  2x-5,y'=  - 2r  +  2. 

Thus,  2a=  -2i)  +  2=*a  +  i'=  l,ora=  1  -  b.  Furthermore,  the  slope  of  the  common 
tangent  line  is 

a"-  -  {-b^  +  2b  -  5)  ^i\  -  by  +  b^  -2b  +  5 
a-  b  {\  -  b)-  b 

\  -2b  +  Ir  +  b-  -2b  +  5 


-2b  +  2 


2b 


=  -2b  +  2 


=>2b-  -  4b  +  6  =  4b^  -  6b  +  2 
=i' 2b-  -2b-  4  =  0 
=>/r-fo-2  =  0 
=^(b-  2)(b  +  1)  =  0 
*  =  2,  - 1 
For  b  =  2,  a=l— b=— I  and  the  points  of  tangency  are  (—  I,  1),  (2,  -5).  The  tangent  line  has  slof)e  —2: 

y  -  1  =  -2(x  =  1)  ^y  =  -2r  -  1 
For  b=—l,a=\—b  =  2  and  the  points  of  tangency  are  (2,  4)  and  {-  1,  —  8).  The  tangent  line  has  slope  4: 
y  -  4  =  4(x  -  2)  ^  y  =  4jt  -  4. 


4.  (a)  y  =  ^-,  y '  =  2jc.  Slope  =  4  at  (2,  4). 
Tangent  line:  y  -  4  =  4(x  —  2) 
y  =  4x  —  4 

(b)  Slope  of  normal  line:  —  |. 
Normal  line:  y  -  4  =  -jU  —  2) 

1        1    9 

y  =  -4X  +  2 
y=-\x  +  l  =  x^^4x-+x-\S  =  0=^  (4.x  +  9)^  -  2)  =  0 
j:  =  2,  —  4.  Second  intersection  point:  (— 3,  ig) 

(c)  Tangent  line:  y  =  0 
Normal  line:  .r  =  0 

—CONTINUED— 


374        Chapter  2        Differentiation 


4.  —CONTINUED— 

(d)  Let  {a,  a'),  a  ^  0,  be  a  point  on  the  parabola  y  =  x^.  Tangent  line  at  {a,  a^)  isy  =  2a{x  —  a)  +  a^.  Normal  line  at  [a,  a^)  is 

y  =  -  -— (x  —  a)  +  cP-.  To  find  points  of  intersection,  solve 
2a 

x^  =  -^Jc  -  a)  -^  a^ 

x'-  +  ^x  =  a^  +  l 
2a  2 

11,11 


4a      ~\        4a 

X  +  -—  =  a  +  —^=>x  =  a  (Point  of  tangency) 
4a  4a 

x  +  -—=—\a  +  --\  =>x  =  —a 


4a  \        4a)  2a  2a 

!£■+  1 


2a 


The  normal  line  intersects  a  second  time  at  x  = 

6.  f(x)  =  a  +  b  cos  ex 

f'{x)  =  —be  sin  ex 

At  (0,  1):  a  +  ^  =  1  Equation  1 

.    /77  3\  ,        /c-n-\       3         ^        .      ^ 

At  I  —,  -  I:  a  +  b  cosi  ~r]  ~  '^        Equation  2 

—  iicsLnl  — 1=1         Equations 

From  Equation  \,  a  =  \  —  b.  Equation  2  becomes  {\  —  b)  +  b  cos  \~7']~'^^=^~i'  +  b  cos  "T  =  T 

From  Equation  3,  fc  = ;^ — r.  Thus -, — r-  H ; — r  cos  — r    =  — 

.      eiA  .     etrX  .     eiA       \4  )      2 

l-cos(f)  =  icsin(^ 

Graphing  the  equation  g{c)  =  -  c  sin  ( — -  J  +  cos  ( -— )  —  1,  you  see  that  many  values  of  c  will  work. 

13  3       1 

One  answer:  e  =  2,b  =  —-,a  =  —  =^f(x)  =  -  -  -  cos  2x 
2  2  2      2 


Problem  Solving  for  Chapter  2        2nS 


8.  (a)  by-  =  x3(a  -  x);a,b  >  Q 

2  _  -^^(0   ~  x) 


b^ 


Graph  >>!  = 


V^(a  —  x) 


and;y2 


V;c3(a  -  x) 
b 


(c)  Differentiating  implicitly. 

lb'^yy'=  -ix-ia  -  x)  -  x^  =  lax-  -  Ax^ 
,      (3ax^  -  Ay?)  __  „ 


'   ~         2b^ 

—  \j 

iax^  =  4x3 

3a  =  4x 

3a 

fc^2 

-mi' 

-^) 

21a^\ 
64  U 

«) 

/ 

270" 
256b-  ~^ 

y  =  ± 

373a2 
16ft 

Two 

.        (3a 
points:  1  — , 

3  73  a 
16fc 

W-- 

373  a 
16ft 

-) 

10.  (a) 

3-  = 

1  = 

dx 

dt  ' 

x>/3  =>  ^  = 
dt 

1(8)-V3| 
=  12  cm/sec 

.  1,-=. 

,dx 
dt 

D  = 

dD 

-{,-. 

y^){2x 

dx 
dt 

+  2v 

dy\ 
dt) 

(b) 

Vx^  +  .V'  = 

dx^ 
dt 

dt 

7t=  + 

1 

.V" 

8(12)  +  2(1) 

^_ 

98 

49 

(b)  a  determines  the  x-intercept  on  the  right:  (a,  0). 
ft  affects  the  height. 


764  +  4         768       717 


cm/sec. 


dy        dx 

^      y  .,  ^    de      ^dt~^dt 

(c)  tan  0  =  ^  =>  sec-  8  ■  —-  = :; 

x  dt  X- 


From  the  trrangle,  sec  6 


68  „        dd      8(1)  -2(12)       -16      -4     ,. 

^-  "^"'^^ ^  =      ,/68\      =  -68"  =  "F '"'^''' 
64 


376       Chapter  2        Differentiation 


12.  £'W  =   lim  ^^'  +  ^^  ~  ^^' 


A.T->0  Ax 

£(x)E(Ax)  -  Ejx) 


=  lim 

A.t-»0  Ax 

,.       ^,  JE{Ax)  -  1 
=   lim  E(x){-^ 

Ax^O  V  Ax 

^,  ,  ,.      £(Ax)  -  1 
=  £(x)  hm  -^ 

A.r->0  Ax 

But,  £'(0)  =   lim  EM_im  .   ,i^  MM^  =  1. 

A.v->0  Ax  A.t->0  Ax 

Thus,  E'{x)  =  E(x)E'(Q)  =  E(x)  exists  for  all  x. 
For  example:  E{x)  =  e*. 


14.  (a)  v(t)  =  -  Y'  +  27  ft/sec 

27 
a(t)  =  — T- ft/sec^ 

27  27 

(b)  v(f)  =  — -t  +  27  =  0  =>  — r  =  27  ^>  f  =  5  seconds 

S(5)  =  -^^(5)-  +  27(5)  +  6  =  73.5  feet 

(c)  The  acceleration  due  to  gravity  on  Earth  is  greater  in 
magnitude  than  that  on  the  moon. 


CHAPTER     3 
Applications  of  Differentiation 


Section  3.1       Extrema  on  an  Interval     378 

Section  3.2      Rolle's  Theorem  and  the  Mean  Value  Theorem     .  381 

Section  33      Increasing  and  Decreasing  Functions  and 

the  First  Derivative  Test 387 

Section  3.4      Concavity  and  the  Second  Derivative  Test    ....  394 

Section  3.5      Limits  at  Infinity     402 

Section  3.6      A  Summary  of  Curve  Sketching     410 

Section  3.7      Optimization  Problems    419 

Section  3.8      Newton's  Method 429 

Section  3.9      Differentials 434 

Review  Exercises 437 

Problem  Solving     445 


CHAPTER     3 
Applications  of  Differentiation 

Section  3.1       Extrema  on  an  Interval 

Solutions  to  Even-Numbered  Exercises 


2.  fix)  =  cos 


fix)  =  ~2^"*Y 


/'(O)   =   0 

/'(2)  =  0 


fix)  =  -  3xjx  +  1 


fix)  =  -3x 
3 


^ix  +  1)-'/^ 


+  Jx  +  l(-3) 
ix  +  l)-i/2[;t  +  2ix  +  1)] 


-fix  +  l)-'/2(3x  +  2) 


/t-3     =0 


6.  Using  the  limit  definition  of  the  derivative, 

\x\)  -  4 


lim  ^«^  =  lim  (i- 
X  -  0  x->o- 


j-»0 


X 

\x\) 


=  1 


lim  ^«^  =  lim  (^ 

x->0+         X  —  0  x-*0*  X  —  0 


4 


1 


/'(O)  does  not  exist,  since  the  one-sided  derivatives  are 
not  equal. 


8.  Critical  number:  x  =  0. 
X  =  0:  neither 


10.  Critical  numbers:  ;c  =  2,  5 
X  =  2:  neither 
X  =  5:  absolute  maximum 


12.    gix)  =  x'^ix^  -  4)  =  ;r*  -  4je 
g'ix)  =  4x3  -  8;c  =  4^(^2  _  2) 

Critical  numbers:  x  =  Q,x  =  ±  Jl 


14.  fix) 


4x 


x^+  1 


^  (;c^  +  1)(4)  -  (4;c)(2x)  ^  4(1  -  ;c^) 
^  ^'"  ix'-  +  1)2  ix^  +  1)2 

Critical  numbers:  x  =  ±1 


16.  /(0)  =  2  sec  0  +  tan  e,  0  <  e  <  277 

/'(e)  =  2  sec  0  tan  0  -I-  sec^  6 
=  sec  0(2  tan  0  -1-  sec  0) 


sec  6 


2f^U 


1 


\C0S  0/         COS  0. 

sec2  0(2  sin  0  -H  1) 


Ttt  IItt 

On  (0,  2Tr),  critical  numbers:  0  =  —r,  0  =  —r- 

o  0 


378 


Section  3.1        Extrema  on  an  Interval       379 


18.  fix)  =  ^^,  [0,  5] 


f'{x)  =  -  =>  No  critical  numbers 


Left  endpoint:  (0,-1  Minimum 
Right  endpoint:  (5,  5)  Maximum 


20.  f{x)  =  x^  +  2;c-4,  [-1,  1] 
fix)  =  2x  +  2  =  2U  +  1) 
Left  endpoint:  ( -  1 ,  -  5)  Minimum 
Right  endpoint:  (1,  -  1)  Maximum 


22.  fix)  =x^  -  \2x,  [0,  4] 

fix)  =  3^2  -  12  =  -iix^  -  4) 
Left  endpoint:  (0,0) 
Critical  number:  (2,  -  16)  Minimum 
Right  endpoint:  (4,  16)  Maximum 
Note:  X  -  -  2  is  not  in  the  interval. 

26.  y  =  3  -  |t-  3|,[-1,5] 

From  the  graph,  you  see  that  f  =  3  is  a  critical  number. 


Left  endpoint:  (-1,-1)  Minimum 

Right  endpoint:  (5,  1) 

Critical  number:  (3,  3)  Maximum 


24. 

gix)  =  VTx,  [- 

1,1] 

Left  endpoint: 

—  1,  —  1)  Minimum 

Critical  number 

(0,0) 

Right  endpoint: 

(1,1)  Maximum 

28 

hit)  =  ^,  [3,  5] 

h'(t)=7:^. 

Left  endpoint:  (3,  3)  Maximum 


Right  endpoint:  (5,-1  Minimum 


30.    gix)  =  secx 
g'ix)  =  secttanjc 
Left  endpoint: 


6' I 


E  2. 
6' V3 


r,  1.1547 


Right  endpoint:  (  t>  2  I  Maximum 
Critical  number:  (0,1)  Minimum 


32.    y^x--l-  cos;c,  [-1.3] 
>>'  =  2a:  —  sinjT 
Left  endpoint:  (-  1,  -  1.5403) 
Right  endpoint:  (3,  7.99)  Maximum 
Critical  number:  (0,  -  3)  Minimum 


34.  (a)  Minimum:  (4,  1) 
Maximum:  (1,4) 

(b)  Maximum:  (1,  4) 

(c)  Minimum:  (4,  1) 

(d)  No  extrema 


36.  (a)  Minima:  (-2.  0)  and  (2.  0) 
Maximum:  (0,  2) 

(b)  Minimum:  (—2.0) 

(c)  Maximum:  (0,  2) 

(d)  Maximum:  (l.  v^) 


380        Chapters        Applications  of  Differentiation 


38.  fix 


2-  x\     1  <  jc  <  3 
2  -  3;c,    3  <  x  <  5 


Left  endpoint:  (1,1)  Maximum 
Right  endpoint:  (5,  -  13)  Minimum 


."•" 

\(3. -■') 

\(5.-13) 

40.  fix)  = ,  [0,  2) 

2  —  X 

Left  endpoint:  (0,1)  Minimum 


' 

(0.1) 

42.  (a)     3 


(b)  fix)  =  3;cV3  -  X,  [0,  3] 


fix) 


Maximum:  I  2,  - 

Minimum: 
(0,  0),  (3,  0) 


x(^)(3-x)-i/2(-l)  +  (3-;c)>/2(l) 


3: 

=  |(3-;c)-'/2(|)[-x  +  2(3-x)] 

^  2(6  -  3x)  ^  6(2  -  x)  ^  2(2  -  j:) 
~  373  -  X  ~  3V3  -X  ~  V3  -X 

Critical  number:  x  =  2 

/(O)  =  0    Minimum 

/(3)  =  0    Minimum 

/(2)  =  ! 


Maximum:     2 


44.  /(x)  = 
/W  = 
fix)  = 

/"W  = 


1 

[1- 

x^+  1' 

-2x 

2 

(;c2  +  1) 

-2(1  -  3x2) 

(x2  +  1)3 

24jc  -  24x3 

(x2  +  !)-» 
Setting/'"  =  0,  we  have  x  =  0,  ±  1. 

if"(l)|  ~  7  is  the  maximum  value. 


46.       fix) 


x^+  1 


[-1,1] 


24x  -  24x3 
/"'W  =    /  2  -L  114     (^^^  Exercise  44.) 


/<%)  = 

/'5)(x)   = 


(x^  +  D" 

24(5x^  -  lOx^  +  1) 
(x2  +  1)5 

-240x(3x^  -  lOx^  +  3) 


(x2  +  1)6 
[/'"•'(O)!  =  24  is  the  maximum  value. 


48.  Let/(x)  =  1/x.  /is  continuous  on  (0,  1)  but  does  not 
have  a  maximum. /is  also  continuous  on  (—  1,  0)  but  does 
not  have  a  minimum.  This  can  occur  if  one  of  the 
endpoints  is  an  infinite  discontinuity. 


\ 


V 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem       381 


50. 


52.  (a)  No 
(b)  Yes 


54.  (a)  No 
(b)  Yes 


v-sin2e  77  377 


dt 


IS  constant. 


(by  the  Chain  Rule) 


^  V- cos  20  tie 
\6       dt 

In  the  interval  [77/4,  3  77/4],  d  =  77/4,  377/4  indicate 
minimums  for  dx/dt  and  0  =  77/2  indicates  a  maximum 
for  (ic/iir.  This  implies  that  the  sprinkler  waters  longest 
when  6  =  77/4  and  377/4.  Thus,  the  lawn  farthest  from 
the  spinkler  gets  the  most  water. 


58.  C=2x  +  ^0^^,l.x<300 


C(l)  =  300,002 
C(300)  =  1600 

X- 
2x2  =  300,000 
x2  =  150,000 

X  =  lOOyn  ==  387  >  300  (outside  of  interval) 
C  is  minimized  when  x  =  300  units. 
Yes,  if  1  <  jr  <  400,  then  x  =  387  would  minimize  C. 


60.  fix)  =  W 

The  derivative  of/ is  undefined  at  every  integer  and  is 
zero  at  any  noninteger  real  number.  All  real  numbers  are 
critical  numbers. 


62.  True.  This  is  stated  in  the  Extreme  Value  Theorem. 


64.  False.  Let/(x)  =  a;^.  x  =  0  is  a  critical  number  of/. 

g(x)=f(x-k) 

=  (x-  kV-        ■ 
X  =  i-  is  a  critical  number  of  g. 


Section  3.2       Rolle's  Theorem  and  the  Mean  Value  Theorem 


2.  Rolle's  Theorem  does  not  apply  to/(x)  =  cot(x/2)  over 
[77,  377]  since/is  not  continuous  at  x  =  277. 


4.  fix)  =  x(x  -  3) 

x-intercepts:  (0,  0),  (3,  0) 


f'(x)  -2x-3  =  0atx  = 


6.   /(x)  =  -3xVx+  1 
x-intercepts:  (-1.0),  (0,  0) 

fix)  =  -3xi(x  +  l)-'/2  -  3(x  +  1)'/^  =  -3(x  +  l)->/2(|  +  (x  +  i: 


fix)  =  -3(x  +  l)-'/2(|x  +  l)  =  Oatx  =  -|. 


382       Chapters        Applications  of  Differentiation 


8.  fix)  =  x^  -  5x  +  4,  [1,  4] 
/(l)=/(4)  =  0 

/is  continuous  on  [1,  4]. /is  differentiable  on  (1,  4). 
RoUe's  Theorem  applies. 

fix)  =  2x-5 

Ix-  5  =  Q  ^>  x  =  - 
c  value:  — 


10.      fix)  =  {x-  i){x  +  1)2,  [-  1,  3]      • 

/(-l)=/(3)  =  0 

/is  continuous  on  [—  1,  3]. /is  differentiable  on  (- 1,  3). 
Rolle's  Theorem  applies. 

fix)  =  (x-  3)(2)(;c  +\)  +  {x+  1)2 

=  (x+  l)[2x  -  6  +  x+  \\ 

=  (x+  \){ix  -  5) 

c  value:  — 


11.  fix)  =  3  -  |;c-  3|,[0,  6] 

/(0)=/(6)  =  0 

/is  continuous  on  [0,  6]. /is  not  differentiable  on  (0,  6) 
since /'(3)  does  not  exist.  Rolle's  Theorem  does  not  apply. 

16.  fix)  =  cos  X,  [0,  I-it] 

/(0)=/(27r)  =  1 

/is  continuous  on  [0,  2Tr]./is  differentiable  on  (0,  2Tr). 
Rolle's  Theorem  applies. 

fix)  =  —  sinj: 

c  value:  tt 


r2  - 


■,[-1,1] 


14.      fix)  = 


/(-i)=/(i)  =  o 

/is  not  continuous  on  [—  1,  1]  since /(O)  does  not  exist. 
Rolle's  Theorem  does  not  apply. 


18.         fix)  =  cos  2x., 


2 


'K'f] 


/- 


12 


^i-S*A? 


Rolle's  Theorem  does  not  apply. 


20. 


fix)  =  secx. 


JL  2L 
"4'4 


/' 


-f\ 


V2 


/is  continuous  on  [-  Tr/4,  Tr/4]./is  differentiable  on 
(—  7r/4,  tt/4).  Rolle's  Theorem  applies. 

fix)  =  secjctanjc 

sec  jc  tan  X  =  0 

x  =  0 

c  value:  0 


22.  fix)  =x-  x^l^,  [0,  1] 

/(0)=/(1)  =  0 

/is  continuous  on  [0,  l]./is  differentiable  on  (0,  1). 
(Note:  /is  not  differentiable  ■Ax  =  0.)  Rolle's  Theorem 
applies. 


/'W  =  1  - 


1 


7>l/^ 


0 


1  = 


33/? 
1 


27 

1    _  73 
27        9 

/3 
c  value:  ^  =  0.1925 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem       383 


24.      X(x)  =  --sin- 
/(-l)=/(0)  =  0 


[-1,0] 


/is  continuous  on  [-  1,  0]./is  differentiable  on  (-  1,  0). 
Rolle's  Theorem  applies. 

1  TT 


/(x)  =  ---cos-  =  0 


TTX  3 


-— arccos—   [Value  needed  in  (— 1,  0).] 


«  -0.5756  radian 
c  value:  —0.5756 


28. 


J 


t'o .; 


26.  CW=  10(-  +  ^^ 
(a)  C(3)  =  C(6)  =  y 


(b) 


^'«  =  iof-^^o^ 


1 


=  0 


x^  +  6.x  +  9      X- 
2x:2  -  6x  -  9  =  0 
6d 


a  08 


6  ±673      3  ±373 


In  the  interval  (3,  6):  c  =  ^  "^.^        =  4.098. 


30./(;c)=  |.x-3|,  [0,6] 

/is  not  differentiable  at  x  =  3. 


32.  f{x)  =  x{x^  —  j:  —  2)  is  continuous  on  [—  1,  l]  and 
differentiable  on  (—  1,  1). 


/(I) -/(-I) 


1 


l-(-l) 

f\x)  =  3.t2  -  2.t  -  2  =  - 1 
){x  -  1)  =  0 
1 


34.  f{x)  =  (x  +  l)/.v  is  continuous  on  [1/2,  2]  and 
differentiable  on  (1/2,  2). 


/(2)  -/(1/2)       (3/2)  -  3 


2  -  (1/2) 


3/2 


=  -1 


/V)  =  -^ 

XT  =  1 

c  =   1 


-1 


384        Chapters        Applications  of  Differentiation 


36.  fix)  =  j^  is  continuous  on  [0,  1]  and  differentiable  on 
(0,  1). 


/(l)-/(0)      1  -0 


1-0  1 

fix)  =  3;c2  =  1 

V3 


=  1 


X  =  ±- 


In  the  interval  (0,  1):  c 


V3 


40.  fix)  =  x  -  2  sin  j:  on  [-  TT,  ir] 
(a) 


tangent^ 

^y^^'^canl 

^ 

'tangent 

(b)  Secant  line: 


,i        fi2ILlflzA^IJ:J-A=■^ 

TT  —   (—  V)  2tT 

y  —  TT  =  l(x  —  tt) 
y  =  X 


38.  fix)  =  2  sin  X  +  sin  2x     is  continuous  on  [0,  it]  and  dif- 
ferentiable on  (0,  tt). 


=  0 


/M-/(0)_0-0 

TT  —  0  TT 

fix)  -  2  cos  X  +  2  cos  2j:  =  0 

2[cosj:  +  2cos2j:  -  1]  =  0 

2(2  cos  a:  -  l)(cosx  +  1)  =  0 

1 

cos  X  =  — 

cos  X  =  —I 


IT       Sir 


In  the  interval  (0,  tt):  c  =  —  . 


(c)  fix)  =  1  -  2  cos  jc  =  1 
cos  X  =  0 


^  =  -2'    Airi"' 


+  2 


Tangent  lines:  v  -(— -2]  =  i(j:-  — 


y  =  X  —  2 

y  =  X  +  2 


42.  /(x)  =  -jc^  +  4x3  +  8^2  +  5^  (0,  5),  (5,  80) 
80-5 


(b)      Secant  line:  y  -  5  =  15(x  -  0) 

0  =  15x  -  >>  +  5 

fix)  =  -4x3  +  12x2  +  16x 

/(5)-/(l)_,, 
5-1 

-4c3  +  12c2  +  16c  =  15 

0  =  4c3  -  12c2  -  16c  +  15 

c  =  0.67  or  c  =  3.79 


(c)  First  tangent  line:  y  -  fie)  =  m(x  -  c) 

y  -  9.59  =  15(x  -  0.67) 

0  =  15x  -  y  -  0.46 
Second  tangent  line:  y  -  fie)  =  mix  —  c) 

y  -  131.35  =  15(x  -  3.79) 

0  =  15x  -  >'  +  74.5 


Section  3.2        Rolle's  Theorem  and  the  Mean  Value  Theorem        385 


44.  5(?)  =  200(  5 
(a) 


\        2  +  r/ 
5(12)  -  5(0)  _  200[5  -  (9/14)]  -  200[5  -  (9/2)]  _  450 


12-0 


(b)        S'(t)  =  200 


12 


(2  +  tf 


450 

7 


1 


1 


(2  +  tY       28 
2  +  ?  =  277 

t  =  2V7  -  2  =  3.2915  months 
S'{t)  is  equal  to  the  average  value  in  April. 

46.  f{a)  =  f(b)  and /'(c)  =  0  where  c  is  in  the  interval  (a,  ii). 

(a)    g{x)  =  fix)  +  k  (b)  gix)  =  fix  -  k) 

gia)  =  gib)  =  fia)  +  k  gia  +  k)  =  gib  +  k)  =  fia) 

g  'ix)  =  fix)  =*  g  '(c)  =  0  g  Xx)  =  fix  -  k) 

Interval:  [a,  b]  g  'ic  +  k)  =  /'(c)  =  0 

Critical  number  of  g:  c  .  Interval:  [a  +  A,  i?  +  ^] 

Critical  number  of  g:  c  +  k 


■fia) 


(c)      gix)  =  fikx, 

4f )  =  ^(f 
g'ix)  =  kf'ikx) 

g'{j\  =  kf'ic)  =  0 


Interval: 


a  b 
k'  k 


Critical  number  of  g: 


48.  Let  Tit)  be  the  temperature  of  the  object.  Then  7(0)  =  1500°  and  r(5)  =  390°.  The  average  temperature  over  the 
interval  [0,  5]  is 


390  -  1500 
5-0 


-222°F/hr. 


By  the  Mean  Value  Theorem,  there  exists  a  time  to,  0  <  t^  <  5,  such  that  Ty^)  =  —222. 


50.  fix)  =  3  cos^ 


(a) 


->  '"■-^ 


fix)  =  6  cos 


TTXW    TT 


-37rcos^)  sin 


2  JJ\2 

TTX 


U>M 

\M\ft 

nf 

jm 

(b)  /and/'  are  both  continuous  on  the  entire  real  line. 


(c)  Since /(-  1)  =/(l)  =  0,  Rolle's  Theorem  applies  on 
[-  1,  1].  Since /(I)  =  0  and/(2)  =  3,  Rolle's 
Theorem  does  not  apply  on  [1,  2]. 


(d)    lim  fix)  =  0 

-t— >3 

lim  fix)  =  0 


386        Chapters        Applications  of  Differentiation 


52.  /is  not  continuous  on  [—5,  5]. 
'l/x,     x¥^0 


Example:  f(x)  = 


0,         jc  =  0 


54.  False. /must  also  be  continuous  and  differentiable  on  each 
interval.  Let 


56.  True 


58.  Suppose/(.r)  is  not  constant  on  (a,  b).  Then  there  exists  Xi  and  ^Cj  in  {a,  b)  such  that/(j:|)  i=  f[x^.  Then  by  the  Mean  Value 
Theorem,  there  exists  c  in  {a,  b)  such  that 

.    ^  f{Xo)    -  fix,) 

f'ic)  =  "^^^ — ^-^-^  ^0.         . 


This  contradicts  the  fact  that/'(jc)  =  0  for  all  x  in  (a,  b). 


60.  Suppose/U)  has  two  fixed  points  c,  and  Cj.  Then,  by  the  Mean  Value  Theorem,  there  exists  c  such  that 
f  (c)  = = =  1. 

This  contradicts  the  fact  that/'(j:)  <  1  for  all  x. 


62.  Let/W  =  cos  x.f'is  continuous  and  differentiable  for  all  real  numbers.  By  the  Mean  Value  Theorem,  for  any  interval  [a,  b\ 
there  exists  c  in  (a,  b)  such  that 


-fie) 


fib)-f{a) 
b-  a 

cos  b  -  cos  a  .  ' 

; =  —  sm  c 

b  -  a 

cos  b  -  cos  a  =  (-sin  c)ib  —  a) 

\cosb  —  cos  a  I  =  |-sinc||ii  -  a\ 

Icos  b  -  cos  a\  <  \b  -  a\  since  |  — sin  c\  <  1. 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test       387 

Section  3.3       Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test 


2. 

y=-{x+l)^ 

Increasing  on:  (- 

oo, 

-1 

Decreasing  on:  (- 

-1, 

oo) 

6 

x^ 

^      x+1 

4.  f(x)  =^-lx-^ 

Increasing  on:  {-  1,  0),  (1,  oo) 
Decreasing  on:  (-oo,  - 1),  (0, 1) 


Critical  numbers:  x  =  Q,  —2     Discontinuity:  jc  =  —  1 


Test  intervals: 

-oo  <  X  <  -2 

-2  <x  <  -\ 

-1  <  X  <  0 

0  <  a:  <  oo 

Sign  of /'W: 

y'  >  Q 

y'  <  0 

y'  <  0 

y'  >  Q 

Conclusion: 

Increasing 

Decreasing 

Decreasing 

Increasing 

Increasing  on  (-oo,  -2),  (0,  oo) 
Decreasing  on  (-2,  -  1),  (-  1,  0) 

8.    h{x)  =  21x-  X? 

h'{x)  =  21  -  l>x-  =  3(3  -  x)(3  +  x) 

h\x)  =  0 

Critical  numbers:  x  =  ±3 


Test  intervals: 

—  oo  <  j:  <  —3 

-3  <.T  <  3 

3  <  v  <  CO 

Signof;z'(^): 

/i'  <  0 

h'  >Q 

/i'  <  0 

Conclusion: 

Decreasing 

Increasing 

Decreasing 

Increasing  on  (—3,  3) 
Decreasing  on  (— oo,  —3),  (3,  oo) 

4 
10.    y  =  ;c  +  - 

X 

,      {x  -  2){x  +  2) 


Critical  numbers:  jc  =  ±2    Discontinuity:  0 


Test  intervals: 

-oo  <  X  <  -2 

-2  <  .t  <  0 

0  <  .t  <  2 

2  <  .r  <  oo 

Sign  of  y ': 

y'  >  0 

y'  <  0 

y'  <  0 

y'  >  0 

Conclusion: 

Increasing 

Decreasing 

Decreasing 

Increasing 

Increasing:  (— oo,  —2),  (2,  oo) 
Decreasing:  (-2,0),  (0,2) 


388        Chapter  3       Applications  of  Differentiation 


12,  f(x)  =  x^  +  &C+  10 
fix)  =  2x  +  8  =  0 
Critical  number:  x  =  -4 


Test  intervals: 

-oo  <  X  <  -4 

-4  <  X  <  oo 

Sign  of/'U): 

/'  <  0 

/'>0 

Conclusion: 

Decreasing 

Increasing 

Increasing  on;  (— 4,  oo) 
Decreasing  on:  (— oo,  —  4) 
Relative  minimum:  (—4,-6) 


14.  fix)  =  -{x^  +  Sx+  12) 
fix)  =  -2x  -  8  =  0 
Critical  number:  x  =  —4 


Test  intervals: 

-oo  <  X  <  -4 

-4  <  ;c  <  oo 

Sign  of /'(x): 

/'>0 

/'<0 

Conclusion: 

Increasing 

Decreasing 

Increasing  on:  (— oo,  — 4) 
Decreasing  on:  (-4,  oo) 
Relative  maximum:  (-4,4) 


16.  f{x)  =  jc^  -  6*2  +  15 

fix)  =  3x^  -  \2x  =  3x(x  -  4) 
Critical  numbers:  x  =  Q,4 


Test  intervals: 

-oo  <  X  <  0 

Q  <  X  <  4 

4  <  a:  <  oo 

Sign  of /'(jc): 

/'>0 

/'<o 

/'>0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on  (— oo,  0),  (4,  oo) 
Decreasing  on  (0,  4) 
Relative  maximum:  (0,  15) 
Relative  minimum:  (4,  —  17) 

18.  fix)  =  ix  +  mx  -  1) 
fix)  =  Ixix  +  2) 
Critical  numbers:  x  =  —2,0 


Test  intervals: 

-oo  <  x  <  -2 

-2  <;c  <  0 

0  <  ;t  <  oo 

Sign  of /'(x): 

f'>0 

/'<0 

/'>0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on:  (— oo,  —2),  (0,  oo) 
Decreasing  on:  (—2,0) 
Relative  maximum:  (-2,0) 
Relative  minimum:  (0,  -  4) 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test        389 


20.  f(x)  =  y  -  32r  +  4 

fix)  =  Ax^-7>2  =  4(jr3  -  8) 

Critical  number:  x  =  2 


Test  intervals: 

-oo  <  X  <  2 

2  <  X  <  CO 

Sign  of/'(x): 

/'<o 

/'>  0 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (2,  oo) 
Decreasing  on:  (-oo,  2) 
Relative  minimum:  (2,  -  44) 


22.  f(x)  =  x^'^  -  4 


/'W 


±r-'/3 


3"  3jc'''3 

Critical  number:  j;  =  0 


Test  intervals: 

—  oo  <  JC  <  0 

0  <  JT  <  oo 

Signof/'U): 

/'<o 

/'>o 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (0,  oo) 
Decreasing  on:  (-  oo,  0) 
Relative  minimum:  (0,  -  4) 


24.  fix)  =  {x-  l)'/3 
1 


fix) 


3{x  -  1)V3 
Critical  number:  x  =  1 


Test  intervals: 

-oo  <  A  <   1 

1  <  .v  <  oo 

Sign  of/'U): 

/'>  0 

/'>o 

Conclusion: 

Increasing 

Increasing 

Increasing  on:  (—00,00) 
No  relative  extrema 


26.  /(x)  =  |x  +  3|  -  1 


F  +  3|       [-1,    X  < 
Critical  number:  j:  =  —  3 


-3 
-3 


Test  intervals: 

-00  <  X  <  -3 

-3  <  .r  <  00 

Sign  of/'(.r): 

/'<0 

/'>0 

Conclusion: 

Decreasing 

Increasing 

Increasing  on:  (—3,  00) 
Decreasing  on:  (—00, —3) 
Relative  minimum:  (—3,  —  1) 


•^W%.1 

fix)        ^^  ^   ^^^'^ 

-  (;c)(l) 

^^^^               (x  + 

1)^ 

Discontinuity:  x  = 

-1 

1 


{x  +  \y 


Test  intervals: 

-00  <  x  <  -\ 

- 1  <  .t  <  00 

Sign  of/'(.r): 

/'>0 

/'>0 

Conclusion: 

Increasing 

Increasing 

Increasing  on:  (-00,  -  1),  (—  1,  00) 
No  relative  extrema 


390        Chapters        Applications  of  Differentiation 


30 

/w  = 

x  +  3 
x^ 

x 

+ 

3 
x^ 

fix)  = 

1 
x" 

6 

-{x  + 
x' 

3. 

Critical  number:  x 

= 

-6 

Discontinuity: 

X  = 

0 

Test  intervals: 

-oo  <  j:  <  -6 

-6  <  X  <  0 

0  <  JC  <  oo 

Sign  off'ix): 

/'<o 

/'>0 

/'<0 

Conclusion: 

Decreasing 

Increasing 

Decreasing 

Increasing  on:  ( -  6,  0) 
Decreasing  on:  (— oo,  —6),  (0,  oo) 


Relative  minimum:  (  —6,  — — 


32.  /W 


/'W  = 


3;c  -4 


X-  2 
(x  -  2)(2x  -  3)  -  jx^  -3x-  4)(1)      x^  -  4a:  +  10 


(^  -  2)2 


Discontinuity:  x  =  2 


Increasing  on:  (—  oo,  2),  (2,  oo) 
No  relative  extrema 


(x  -  2Y 


Test  intervals: 

-oo  <  X  <  2 

2  <  X  <  oo 

Sign  of/'W: 

/'>o 

/'>0 

Conclusion: 

Increasing 

Increasing 

34.  fix)  =  sin  X  cos  x  =  -  sin  2x,  0  <  x  <  27r 


fix) 


cos  2x  =  0 


„  .  .       ,  ,  77    377    5t7    777 

Critical  numbers:  x  =  — ,  — -,  — -,  — — 

4    4     4     4 


Test  intervals: 

0<x<^ 
4 

77                     377 

4                4 

377                     577 

4                 4 

577                     777 

4                 4 

-—   <   X    <    277 

4 

Sign  of/'(x): 

/'>0 

/'<0 

/'>0 

/'<0 

/'>o 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Decreasing 

Increasing 

Increasing  on:  (o,  Jj,  (^,  ^j,  (^,  277) 


„  .  /77    377\    /577    777 

Decreasing  on:  [-^,^)\-J,-^ 


Relative  maxima: 


77    1  \    /577    1 


4'2/'V4'2 


Relative  minima: 


377         1\    /777         1 


2/'\4'     2 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test        391 


36.   f{x)  = ;-,  0  <  X  <  Itt 

1  +  cos-'j: 

.,,  ,       cos  x{2  +  sinlt) 
(1  +  cos-x)^ 

Critical  numbers:  x  =  — ,  — — 

2    2 


Test  intervals: 

0<x<^ 

TT                    377 

y<x<Y 

377 

—  <  j:  <  277 

Sign  of /'W: 

/'>o 

/'<o 

/'>0 

Conclusion: 

Increasing 

Decreasing 

Increasing 

Increasing  on:  (0, —  ),(—,  277 


Decreasing  on: 


77    377 
2'     2 


Relative  maximum:  |  -r-.  1 


Relative  minimum: 


377 


38.  f(x)  =  10(5  -  Jx'-  -  3x  +  16),  [0,  5] 
5(2x  -  3) 


(a)  /'W  = 


v^ 


3.V  +  16 


(b) 


(c) 


5(2;c  -  3) 


vv 


3,t  +  16 


Critical  number:  -v 


(d)  Intervals: 

(»■!) 

(I-) 

fix)  >  0 

fix)  <  0 

Increasing 

Decreasing 

/is  increasing  when/'  is  positive  and  decreasing 
when/'  is  negative. 


40./(a-)=^  + cos  ^,[0,477] 
(a)/'W=|-|sm^ 


2ji        3«        4ji 


(c) 


1 

r 

sm 

— 

0 

2 

2 
r 

sm 

2 

1 

.V 

77 

2 

0 

Critical  number:  .v  =  77 


(d)  Intervals: 

(0,  77)  (77.  477) 

fix)  >  0  f\x)  >  0 

Increasing  Increasing 

/is  increasing  when/'  is  positive. 


392        Chapters        Applications  of  Differentiation 


42.  /(f)  =  cos^t  -  sin^r  =  -2  sin^f  =  g{t),  -2  <  t  <  2 
fit)  =  -4  sin  f  cos  t  =  -2  sin  2f 
/symmetric  with  respect  to  y-axis 


zeros  off.  ±— 


Relative  maximum:  (0, 1) 
Relative  minimum:  (  —  — , 


.i.if.-. 


44.  f(x)  is  a  line  of  slope  ~  2  =>/'W  =  2. 


46.  /is  a  4"  degree  polynomial  =>/'  is  a  cubic  polynomial. 


48.  /has  positive  slope 


In  Exercises  50-54,/'(ar)  >  0  on  (-oo,  -4),/'(x)  <  0  on  (-4,  6)  and/'(x)  >  0  on  (6,  oo). 

50.       g{x)  =  3f(x)-3     ..  52.    g(x)  =  -f{x)  54.    g{x)  ^  f{x  -  \0) 

.       g'(x)  =  3/'W  ..  g'ix)  =  -fix)  g'ix)  =f'{x  -  10) 

g'(-5)  =  3/'(-5)  >0  g'(0)  =  -f'(0)  >  0  ■  g'(8)=/'(-2)  <  0 


56.  Critical  number:  x  =  5 

/'(4)  =  -2.5  =>/is  decreasing  atx  =  4. 

/'(6)  =  3  =>/is  increasing  at  j:  =  6. 
(5,/(5))  is  a  relative  minimum. 


58.  s{t)  =  4.9(sin  e)!^ 

(a)  v(r)  =  9.8(sin  e)r  speed  =  |9.8  (sin  e)t\ 

(b)  If  6  =  Tr/2,  the  speed  is  maximum, 

v(f)  =  9.8 1. 


60.  C  = 


(a) 


3f 


27  +  f3' 


?  >  0 


f 

0 

0.5 

1 

1.5 

2 

2.5 

3 

C{t) 

0 

0.055 

0.107 

0.148 

0.171 

0.176 

0.167 

The  concentration  seems  greater  near  t  =  2.5  hours. 

(b)       025 


The  concentration  is  greatest  when  t  =  2.38  hours. 


,  ,  „,  _  (27  +  f3)(3)  -  (3f)(3r^) 
^^  (27  +  f3)2 

_  3(27  -  2f^) 
(27  +  ;3)2 

C  =  0  when  ;  =  3/  4/2  =  2.38  hours. 

By  the  First  Derivative  Test,  this  is  a  maximum. 


Section  3.3        Increasing  and  Decreasing  Functions  and  the  First  Derivative  Test       393 


62.    P  =  IMx 


P'  =  2.44 


X' 


20,000 

X 


5000,  0  <  ;c  <  35,000 


0 


10,000 
X  =  24,400 

Increasing  when  0  <  jc  <  24,400  hamburgers. 
Decreasing  when  24,400  <  j:  <  35,000  hamburgers. 


Test  intervals: 

0  <  JC  <  24,400 

24,400  <  X  <  35,000 

Sign  of/": 

P'  >  0 

P'  <  Q 

M.  R=  VO.OOIT''  -47+100 
0.0047-3  -  4 


(a)  R'  = 


IJO.OOIT*  -  47-+  100 
7=10°,/?  =  8.3666n 


=  0 


(b) 


The  minimum  resistance  is  approximately 
/?«  8.37a  at  r=  10°. 


66.  f(x)  =  2  sin(3.i:)  +  4  cos(3a:) 


The  maximum  value  is  approximately  4  All.  You  could  use  calculus  by  finding /'(x)  and  then  observing  that  the  maximum 
value  of/occurs  at  a  point  where /'(jf)  =  0.  For  instance, /'(0. 154)  »  0,  and/(0.154)  =  4.472. 

68.  (a)  Use  a  cubic  polynomial 

fix)  =  a-jX^  +  a^x'  +  a^x  +  a^. 

(b)  fix)  =  3ayX^  +  2a2X  +  a^ 

(0, 0):  0  =  ao  (/(O)  =  0) 

0  =  a,  (/'(0)  =  0) 

(4,  1000):         1000  =  64^3  +  \6a,  (/(4)  =  1000) 

0  =  48a3  +  Sa.  (/'(4)  =  0) 


(c)  The  solution  is  Qq  =  a,  =  0,  ^2 


375 


125 


f/\      -125,,  375, 
fix)  =  —f-x^  +  —X'- 


(d) 


\ 

-(4,  laxi) 

A 

lO.O)               \ 

394       Chapters        Applications  of  Differentiation 


70.  (a)  Use  a  fourth  degree  polynomial /W  =  a^x^  +  a^x^  +  a^x'^  +  a^x  +  Aq. 
(b)  f\x)  =  4a^  +  3a^x^  +  2a.^  +  fl; 

(1,  2):  2  =  a^  +  a^  +  a2  +  a^  +  Oq 

0  =  4a^  +  3a3  +  laj  +  Qj 


(— 1,4):        4  =  (34  —  03  +  Oj  —  fli  +  Oq 
0  =  —  4a4  +  Sflj  —  2a2  +  Oi 

(3,  4):  4  =  81^4  +  27^3  +  Qqj  +  3a,  +  flo 

0  =  108^4  +  27a3  +  6^2  +  a, 


(/(I)  =  2) 
(/'(I)  =  0) 
(/(-I)  =  4) 

(/'(-i)  =  o) 

(/(3)  =  4) 
(/'(3)  =  0) 


(c)  The  solution  is  a^  =  T,  a,  =  —5,  Oj 


2' "4 


/W  =  -ix^  +  y+  \x^ 


3        ,    23 


(d) 


(-1.4) 

(3.4) 
(1.2)       \ 

/ 

\ 

72.  False 


Let  h{x)  =  /UJgU)  where/(x)  =  g(x)  =  ;c.  Then 
h{x)  =  X-  is  decreasing  on  (—00,  0). 


74.  True 


If /(x)  is  an  «th-degree  polynomial,  then  the  degree  of 
/'(x)isn  -  1. 


76.  False.  .  • 

The  function  might  not  be  continuous. 

78.  Suppose /'(jc)  changes  from  positive  to  negative  at  c.  Then  there  exists  a  and  b'ml  such  that/'W  >  0  for  all  j:  in  {a,  c)  and 
f'{x)  <  0  for  all  X  in  (c,  b).  By  Theorem  3.5, /is  increasing  on  (a,  c)  and  decreasing  on  (c,  fc).  Therefore, /(c)  is  a  maximum  of 
/on  (a,  i>)  and  thus,  a  relative  maximum  of/. 

Section  3.4       Concavity  and  the  Second  Derivative  Test 


2.  y=  -x^  +  3x^  -  2, y"  =  -6;c  +  6 
Concave  upward:  (— oo,  1) 
Concave  downward:  (l,oo) 


4.  /U)  = 


2x+  1'-^        {2a:  +  1)3 
Concave  upward:  (-ido,  —  j) 
Concave  downward:  (— 5,  oo) 


6.y 


^    {-3x^  +  40.j;3  +  135x),  y"  = -^ x(x  -  2)(x  +  2) 


270 


Concave  upward:  (-00,  -2),  (0,  2) 
Concave  downward:  (-2,  0),  (2,  00) 


8.    h(x)  =  ^  -  5x  +  2 
h'(x)  =  5x^-5 
h'\x)  =  20^3 
Concave  upward:  (0,  00) 
Concave  downward:  (-00,  0) 


Section  3.4        Concavity  and  the  Second  Derivative  Test 


395 


10.    y  =  X  +  2  CSC  X,     (-  77,  ir) 
y'  =  1  —  2  CSC  ;c  cot  a: 
y"  =  —  2cscx(-csc^j:)  -  2  cot  a:(-csc  jrcot^) 

=  2(csc-'jc  +  cscj:cot^x) 
Concave  upward:  (0,  it) 
Concave  downward:  (-tt,  0) 


12.   f{x)  =  2x^  -Zx-  -  \lx  +  5 

fix)  =  (>x^-6x-  n 
f"(x)  =\lx-(i 

f"{x)  =  12j:  -  6  =  Owhen.r  = 


Test  interval 

-oo  <  x  <  \ 

5  <  .r  <  oo 

Sign  of /"W 

fix)  <  0 

fix)  >  0 

Conclusion 

Concave  downward 

Concave  upward 

Point  of  inflection:  (5.  ~t) 


14.    f(x}  =  2x^  -  8x  +  3 

f'(x)  =  8x^-8 

fix)  =  24x-  =  Owhenx  =  0. 

However,  (0,  3)  is  not  a  point  of  inflection  since /"(jc)  >  0  for  all  x. 
Concave  upward  on  (-00,  00) 

16.   fix)  =  .r^U  -  4) 

fix)  =  x>  +  3.r2(x  -  4)  ■  ■ 

=  x'[x  +  3(x  -  4)]  =  4xHx  -  3) 
fix)  =  4x^  +  Mx  -  3)  =  4x[x  +  2ix  -  3)]  =  12a:{x  -  2)  =  0 

fix)  =  12xU  -  2)  =  0  when  jr  =  0,  2. 


Test  interval 

-00  <  X  <  0 

0  <  X  <  2 

2  <  .V  <  00 

Sign  of /"W 

fix)  >  0 

fix)  <  0 

fix)  >  0 

Conclusion 

Concave  upward 

Concave  downward 

Concave  upward 

18. 


Points  of  inflection:  (0,  0),  (2,  -  16) 


fix)  =  x^x  +  1,  Domain:  [—  1,  00) 

fix)  =  W^U  +  1)-'/^  +  V7TT  =  :^j= 

I  2vx  +  1 


fix) 


6VxTT  -  (3x  +  l)ix  +  1)-'/^  3x  +  4 

4(x  +1)  ~  4(x  +  1)3/2 


/"(x)  >  0  on  the  entire  domain  of/ (except  forx  =  -  1,  for  which /"(x)  is  undefined). 
There  are  no  points  of  inflection. 

Concave  upward  on  (—  1,  00) 


X  +  1 
20.  fix)  =  — 7=-    Domain:  jc  >  0 


fix)  = 


X-  1 

2x^/2 


nx)  =  ^ 


Point  of  inflection:     3 


Test  intervals 

0  <  -v  <  3 

3  <  v  <  oc 

Sign  of /"(.r) 

/"  >  0 

f  <  0 

Conclusion 

Concave  upward 

Concave  dow  nw  ard 

V3 


4./3 


396       Chapter  3        Applications  of  Differentiation 


3x 
22.   f(x)  =  2  CSC  — ,  0  <  X  <  2tt 

,,/  s  ,        3;c       3;c 

fix)  =  -3cscycoty 


9/        3x  3x        3x\ 

f"(.x)  =  -|  csc^  —  +  CSC  —  cot'^  —  I  T^  0  for  any  x  in  the  domain  of/. 


Concave  upward:  ( 0.  ~^ ).  I  ~^.  2'7t 

Concave  downward:  I  — ,  —  1 
No  points  of  inflection 


24.   f(x)  =  sin  jc  +  cos  j:,  0  <  jc  <  27r 

fix)  =  cos-t  -  sinx 
fix)  =  —  sinjc  —  cosj: 


f"{x)  =  Owhen;c 


377  Ttt 
4  '  4  ■ 


Test  interval: 

3-n- 

3-77                     777 

77r 

-—   <   X    <    277 

4 

Sign  of/"U): 

fix)  <  0 

/"W  >  0 

/"W  <  0 

Conclusion: 

Concave  downward 

Concave  upward 

Concave  downward 

Points  of  inflection:  ( "Z-  ^ )'  ( "4^'  ^ 


26.  /W  =  ;c  +  2  cos  X,  [0,  27r] 
f'{x)  =  1  —  2  sin  X 
/"(x)  =  —  2  cos  X 

/"(x)  =  Owhenx  =  ^,^ 
•'  ^  '  2    2 


Test  intervals: 

0<x<f 

77                    377 

2<^<T 

3l7                    377 

2    <^<    2 

Sign  of/"(x): 

/"<  0 

/">o 

/"<  0 

Conclusion: 

Concave  downward 

Concave  upward 

Concave  downward 

Points  of  inflection: 


77    77\    (377    377 


2'  2 


2  '   2 


28.  /(x)  =  x2  +  3x  -  8 
/'(x)  =  2x  +  3 
/"(x)  =  2 
Critical  number:  x  =  -5 

/"(-!)  >  0 

Therefore,  (-|,  -7-)  is  a  relative  minimum. 


30.   /(x)=  -(x-5)2 
fix)  =  -2(x  -  5) 
/"W  =  -2 
Critical  number:  x  =  5 

/"(5)  <  0 
Therefore,  (5,  0)  is  a  relative  maximum. 


Section  3.4        Concavity  and  the  Second  Derivative  Test       397 


32.   f(x)  =x^  -9x-  +  llx 

fix)  =  3;c2  -  18x  +  27  =  3U  "  3)- 

f"{x)  =  6(x  -  3) 

Critical  number:  x  =  3 

However, /"(3)  =  0,  so  we  must  use  the  First  Derivative 
Test./'(x)  >  0  for  all  x  and,  therefore,  there  are  no 
relative  extrema 


34.    g{x)  =  -\(x  +  2)Hx  -  4)2 

,,  ,       -(x-4)(x-  \)ix  +  2) 

g  U)  = ^ 

g"{x)  =  3  +  3x  -  1^2 

Critical  numbers:  x  =  —2,  1,  4 

g"(-2)  =  -9  <  0 
(-  2,  0)  is  a  relative  maximum. 

^"(1)  =  9/2  >  0 
(1,  —  10.125)  is  a  relative  minimum. 

^"(4)  =  -9  <  0 
(4,  0)  is  a  relative  maximum. 


36.  f(x)  =  Jx-  +  1 

Vjc-  +  1 
Critical  number:  j:  =  0 

/"W  =   (^2  +    1)3/2 

/"(O)  =  1  >  0 

Therefore,  (0,  1)  is  a  relative  minimum. 


38.  f(x) 
fix) 


X 


X  -   1 

-1 

U  -  1)^ 


There  are  no  critical  numbers  and  x  =  1  is  not  in  the 
domain.  There  are  no  relative  extrema. 


40.   f(x)  =  2  sin.r  +  cos  2v,  0  <  .v  <  27r 

f'(x)  =  2  cos  ;t  -  2  sin  It  =  2  cos  x  -  4  sin  jt  cos  x  =  2  cos  .t:(l  -  2  sin  x)  =  0  when  x  =  —,—,  —-,  -r-. 

o    i     0      2 

f"(x)  =  -2  sinx  -  4  cos  2x 

r(f)>o 

/<t)  < » 
r(f )  >  0 


Relalive  maxima:  (f.5).(^.|) 


Relative  minima:  ( T-  1 ).  ( ^.  ~  3 


398        Chapters       Applications  of  Differentiation 


42.  f(x)  =  x^Ve^^-,  [-  V6,  V6] 

3x(4  -  x^) 
(a)  /U)  =      , 

V6  -  AT- 

f'(x)  =  0  when  ;c  =  0,  a:  =  ±2. 

6(x*  -  9x2  +  12) 


■^"^""^  (6  -  x2)3/2 

/"(x)  =  0  when  x  =  ± 


h  -  733 


(b)  /"(O)  >  0  =>  (0,  0)  is  a  relative  minimum. 
/"(±2)  <  0  =»  (±2,  4V2)  are  relative  maxima. 
Points  of  inflection:  (±1.2758,  3.4035) 

44.  fix)  =  VS  sin  X,  [0,  27r] 

(a)  /'(x)  =  x/2x  cos  X  + 


Critical  numbers:  x  =  1.84,  4.82 


/"(x)  =  -VSsinx  + 


cosx      cosx        smx 


V2x       v2x      2xV2x 
2cosx      (4x^  +  l)sinx 


72x 


2x72^ 


_  4xcosx  —  (4x2  +  l)sinx 
2x>/2x 

(b)  Relative  maximum:  (1.84,  1.85) 

Relative  minimum:  (4.82,-3.09) 

Points  of  inflection:  (0.75,  0.83),  (3.42,  -0.72) 


(c) 


The  graph  of/ is  increasing  when/'  >  0  and 
decreasing  when/'  <  O./is  concave  upward  when 
/"  >  0  and  concave  downward  when/"  <  0. 


(c) 


/is  increasing  when/'  >  0  and  decreasing  when 
/'  <  O./is  concave  upward  when/"  >  0  and 
concave  downward  when/"  <  0. 


46.  (a) 


/'  <  0  means/ 
decreasing 

/'  decreasing  means 
concave  downward 


(b) 


/'  >  0  means/ 
increasing 

/'  decreasing  means 
concave  downward 


48.  (a)  The  rate  of  change  of  sales  is  increasing. 
S"  >  0 

(b)  The  rate  of  change  of  sales  is  decreasing. 

S'  >  0,  S"  <  0 

(c)  The  rate  of  change  of  sales  is  constant. 

S'=  C,S"=  0 

(d)  Sales  are  steady. 

5=  C,S'  =  0,5"=0 

(e)  Sales  are  declining,  but  at  a  lower  rate. 

S'  <  0.  5">  0 

(f)  Sales  have  bottomed  out  and  have  started  to  rise. 

S'  >  0 


50. 


Section  3.4        Concavity  and  the  Second  Derivative  Test        399 


52. 


54. 


56. 


(b)  Since  the  depth  d  is  always  increasing,  there  are  no 

relative  extrema./'U)  >  0 

(c)  The  rate  of  change  of  d  is  decreasing  until  you  reach 
the  widest  point  of  the  jug,  then  the  rate  increases 
until  you  reach  the  narrowest  part  of  the  jug's  neck, 
then  the  rate  decreases  until  you  reach  the  top  of  the 
jug- 


60.  (a)   f(x)  =  Vx 

fix)  =  |x-V3 
fix)  =  -ix-V3 
Inflection  point:  (0,  0) 
(b)  /"W  does  not  exist  at  ^  =  0. 


62.  f(x)  =  ax^  +  bx-  +  ex  +  d 
Relative  maximum:  (2,  4) 
Relative  minimum:  (4,  2) 
Point  of  inflection:  (3,  3) 
f'(x)  =  2ax'  +  2bx  +  c,/"(.v)  =  6ax  +  2b 


/(2)  =  ia  +  Ab  +  2c  +  d  =  A 
/(4)  =  64a  +  16Z?  +  4c  +  rf  =  2 


56a  +  12fc  +  2c  =  -2  =>  28a  +  6fc  +  c  =  - 1 


/'(2)  =  \2a  +  Ab  +  c  =  0.  /'(4)  =  48a  +  8t  +  c  =  0,  /"(3)  =  18a  +  2fo  =  0 

28a  +  6fc  +  c  =  -  1  18a  +  2fc  =      0 

12a  +  4fc  +  c  =      0  \6a  +  2b=  -\ 

\6a  +  2b         =-\  2a  =1 

a  =  ^,  b  =  —  T,  c=  12,  d  =  —6 


fix) 


tX 


ix~  +  IZt 


400        Chapters        Applications  of  Differentiation 


(-1000.  60) 


(1000.90) 
B 


(0.  50) 


64.  (a)  lineOA:  3'  =  -0.06x  slope:  -0.06 

line  CB:  y  =  0.04;t  +  50  slope:  0.04 

f(x)  =  ax^  +  bx-  +  CX  +  d 
fix)  =  3ax2  +  2bx  +  c 
(- 1000,  60):         60  =  (-  1000)3a  +  (1000)2fc  -  1000c  +  d 

-0.06  =  (1000)2  3a  _  2000fc  +  c 
(1000,  90):         90  =  (1000)^0  +  (1000)^^  +  1000c  +  d 

0.04  =  (1000)2  3a  +  2OOO6  +  c 
The  solution  to  this  system  of  4  equations  is  a  =  -  1.25  x  10"^  b  =  0.000025,  c  =  0.0275,  and  rf  =  50. 
(b)  J  =  - 1.25  X  10-V  +  0.000025^2  +  o.0275.)t  +  50  (c) 


66.  5  = 


(d)  The  steepest  part  of  the  road  is  6%  at  the  point  A. 
5.75573       8.52ir2   ,   0.654r 


+  0.99987,    0  <  r  <  25 


10^  ID'S  10^ 

(a)  The  maximum  occurs  when  T  ==  4°  and  S  «  0.999999. 
(b) 


(c)  5(20°)  -  0.9982 


5      10      15     20     25     30 


68.    C  =  2x  + 


300,000 


C  =  2  -  ^^^  =  0  when  x  =  100715  «  387 


By  the  First  Derivative  Test,  C  is  minimized  when 
X  =  387  units. 


70.S^^^,t>0 


(b)  S'it) 


13,000f 

(65   +  f2)2 


_  13,000(65  -  3r2)  _ 
^  ^''  ~       (65  +  t^y  " 


t  =  4.65 


5  is  concave  upwards  on  (0,  4.65),  concave 
downwards  on  (4.65,  30). 

(c)  5 '(f)  >  Oforf  >  0. 

As  t  increases,  the  speed  increases, 
but  at  a  slower  rate. 


Section  3.4        Concavity  and  the  Second  Derivative  Test        401 


y\ 


72.     /W  =  2(sinx  +  cosx),  /(O)  =  2 

/'W  =  2(cosx- sinx),  /'(O)  =  2 

f%x)  =  2(-sinA:  -  cosx),  /"(O)  =  -2 

/'iW  =  2  +  2(jc  -  0)  =  2(1  +  x) 
P/W  =  2 

P2W  =  2  +  2U  -  0)  +  5(-2)U  -  0)2  =  2  +  2x  -  x2 
Pj'U)  =  2  -  2x 
P^'W  =  -2 

The  values  of/,  P,,  Pj-  and  their  first  derivatives  are  equal  at  x  =  0.  The  values  of  the  second  derivatives  of/ and  P2  are  equal 
at  X  =  0.  The  approximations  worsen  as  you  move  away  from  x  =  0. 


74.     /(x)  = 
Ax)  = 


X  -  1' 

-(x+l) 
2v^(x  -  1)=' 


/(2)  =  72 


/'(2)  = 


372 


272 


•^  ^""^       4.r3/2(x  -  1)3  •  -^  ^-^       872  16 

„,,         /-^(    372  V                     372         572 
P,(x)  =  72  + —   (x  -  2)  = — X  +  — - 


Pi  Xx)  = 


372 


P,(x)  =  72  +  (  -^  |(x  -  2)  + 


(-¥>-)- K¥)<—»= = ^  ^  ^u -» ^  ^u  -  2, 


p  ,,  .  3^^2372 

P2  (x)  = ;—  +      ,^     (x  -  2) 


P2't^) 


4 

2372 
16 


16 


The  values  of/,  P,,  P;  and  their  first  derivatives  are  equal  at  x  =  2.  The  values  of  the  second  derivatives  of/ and  P;  are  equal 
at  X  =  2.  The  approximations  worsen  as  you  move  away  from  x  =  2. 


76.   /(x)  =  x(x  -  6)-  =x^  '  12x-  +  36x 

/'(x)  =  3x-  -  24x  +  36  =  3(x  -  2)(x  -  6)  =  0 

f"(x)  =  6x  -  24  =  6(x  -  4)  =  0 

Relative  extrema:  {2,  32)  and  (6,  0) 

Point  of  inflection  (4,  16)  is  midway  between  the  relative  extrema  of/. 


402       Chapters        Applications  of  Differentiation 


78.  p(x)  =  ax^  +  bx^  +  ex  +  d 

p'{x)  =  3ax^  +  2bx  +  c 

p'U)  =  6ax  +  2b 

6ax  +  2b  =  0 

b 
■'^'Ta 

The  sign  ofpXx)  changes  at  x  =  —b/3a.  Therefore,  {-b/3a,  p{—b/3a))  is  a  point  of  inflection. 


M_/_^UJ^Ucf-AU.      '"      '^ 


3a)      "V    27aV        \9aV        \     3aj  27a^      3a 

Whenp(x)  =x^  -  3x^  +  2,a=  \,b=  -3,  c  =  0,  andd  =  2 
-(-3) 


--T^  +  d 


Xn  = 


=   1 


■°"     3(1) 

2(-3P       (-3)(0) 


+  2=  -2-0  +  2  =  0 


^0       27(1P  3(1) 

The  point  of  inflection  of  p(jc)  =  x^  —  3jr^  +  2  is  (xq,  y^)  =  (1,  0). 

80.  False. /(x)  =  1/x  has  a  discontinuity  at  x  =  0. 

82.  True 

y  =  sin(to) 
Slope:  y'  =  b  cos{bx) 

-b  <  y'  <  b      (Assumed  >  0) 

84.  False.  For  example,  let  f{x)  =  {x  -  2Y. 

Section  3.5       Limits  at  Infinity 


2.  fix)  = 


2x 


v^?T2 
No  vertical  asymptotes 
Horizontal  asymptotes:  y  =  ±2 
Matches  (c) 


4.  f(x)  =  2  +  • 


x^+  1 
No  vertical  asymptotes 
Horizontal  asymptote:  y  =  2 
Matches  (a) 


6.  fix)  = 


2x^  -  3x  +  5 
x'^+  1 


No  vertical  asymptotes 
Horizontal  asymptote:  y  =  2 
Matches  (e) 


8.  fix)  = 


2x^ 

X  +  1 


X 

10° 

10' 

102 

103 

10* 

105 

106 

fix) 

1 

18.18 

198.02 

1998.02 

19,998 

199,998 

1,999,998 

lim  fix)  =  CO        (Limit  does  not  exist.) 


Section  3.5        Limits  at  Infinity       403 


10.  f[x)  = 


8x 


JjF-1, 


X 

10' 

102 

103 

10^ 

W 

10« 

10^ 

fix) 

8.12 

8.001 

8 

8 

8 

8 

8 

lim  f{x)  =  8 


12.   f{x)  =  4  +  - 


x^  +  1 


X 

lO" 

10' 

102 

103 

10* 

10^ 

10^ 

fix) 

5 

4.03 

4.0003 

4.0 

4.0 

4 

4 

lim  f{x)  =  4 


14.  (a)  /iW  =  ■'-^-^  = =  5.r  -  3  +  - 

X                           X  X 

lim  h(x)  =  CO    (Limit  does  not  exist) 

x—*oo 

c       3  7 

5  -  -  +  — 

X  X- 


(b)  h(x) 


fix)  _  5x-  -  3.r  +  7 


lim  h(x)  =  5 


(c)  /jU) 


fix)  ^  5x-  -  3x  +  l  ^  5  _  ^       7 

X^  X^  X        x^        .t^ 


16.  (a)   lim  .?  ,    ^  =  0 


(b)   lira 


3.r3 

-  1 

3  - 

Ix 

ix  - 

-  1 

3  - 

2;c- 

Zx  -  1 


lim  ftW  =  0 


18.  (a)    lim  ,  ,   ,    .  =  0 


(b)    lim 


x^o=  4^2  +  1 

5x3/2 


(c)    lim 


x^oo  4.v3/2  +    1  4 

5.r3/2 


=c4yx  +  1 


oo     (Limit  does  not  exist) 


in     r  3.r3  +  2  3       1 

20.   lim  -—-, T-^; =  -  =  - 

x-^ao  9x3-2x2  +  7      9       3 


22.   lim    4  +  -    =  4  +  0  =  4 

jr-»cxi  V  Xj 


/l          4\ 
24.   lim    -X ^    =  -  oo    (Limit  does  not  exist) 

x-.a=  \2  X-J 


y  1  

26.   lim     ,  =    lim     ,    ,  .-    (for  x  <  0,  x  =  -  v/?) 


•t->-°=  Vx  +  (l/x) 


-1 


404       Chapters       Applications  of  Differentiation 


28.     lim    — ^|^=    lim       3  +  (1  A)  (f„,  ^  ^  Owphavp-. 


x^-oc  Vl    +  (1/x) 


,„     ,.      X  ~  COS  j:       ,.      / ,       cos  a: 
30.    hm  =   lim     1 

Jl->co  X  x-tao  V  X 

=1-0=1 
Note: 


32.   lim  cos  -    =  cos  0  =  1 

x->oo  \X/ 


cos  X 
lim  =  0  by  the  Squeeze  Theorem  since 


_1  <-  '^0^^  ^  i 
a:  ~      X      ~  X 


34.  /u: 


3x 


lim  /(jc)  =  3 
lim  /U)  =  -3 


_,    ,.  1       ,.      tanr 

36.    lim  X  tan  -  =   lim  =   lim 

X  ->oo  X       I  ->o*     t  t  ->o* 


s'mt       1 
t       cos  / 


(1)(1)  =  1 


(Letjf  =  1/r.) 


Therefore,  y  =  3  and  y 
horizontal  asymptotes. 


=  -  3  are  both 


38.    lim  {2x  -  V4x^  +  1 ) 


lim 

X  — »oo 


{2x  -  J\x^  +  Ij 


2x  +  jAx'  +  1 
2x+  V4a;2  +  1 


=   lim 


1 


JT  ^oo    2x  +    V4;c2  +    1 


=  0 


40.     lim    (3;c  +  J^x^  -  ;c)  =     lim 


X— >  — oo 


(-^^^'•1^^^ 


/ T 

-°o  3;c  -  V9x^  —  X 


=     lim 


=     lim 


79? 


(for  JC  <  0  we  have  x  =  —  V? ) 


-  ^x~ 
1 


x^-^l  +  V9  -  (l/jc)       6 


42. 


j: 

IQO 

10' 

W 

103 

lo-* 

10^ 

10« 

/W 

1.0 

5.1 

50.1 

500.1 

5000.1 

50,000.1 

500,000.1 

lim 


-  xjx^  —  X     x^ 


+  xVx 


1  x' 

Limit  does  not  exist. 


+  xV^^ 


lim 


x^ 


X         '  -♦oo  X' 


+  x^fx 


Section  3.5        Limits  at  Infinity       405 


44. 


X 

10" 

10' 

102 

103 

10* 

10^ 

106 

fix) 

2.000 

0.348 

0.101 

0.032 

0.010 

0.003 

0.001 

lim  —  =  0 

^-"^  x~Jx 


46.  jc  =  2  is  a  critical  number. 
f\x)  <  Oforx  <  2. 
fix)  >  0  for  ;c  >  2. 
lim  f{x)  =   lim  /W  =  6 

For  example,  let/U) 


0.lU-2)2+  1 


+  6. 


48.  (a)  The  function  is  even:     lim  f(x)  =  5 

j:— >-oo 

(b)  The  function  is  odd:     lim  f{x)  —  —5 


50.  y 


Intercepts:  (3,  0),  ( 0,  - 


Symmetry:  none 

Horizontal  asymptote:  y  =  1  since 


lim 


X  -  2 


1 


lim 

J:-»oo  X  ~  2 


Discontinuity:  x  =  2  (Vertical  asymptote) 


52.  y^ 


2x 


9-x^ 
Intercept:  (0,  0) 
Symmetry:  origin 
Horizontal  asymptote:  v  =  0 
Vertical  asymptote:  ;c  =  ±3 


54.  y 


x^  -9 
Intercept:  (0,0) 
Symmetry:  y-axis 
Horizontal  asymptote:  v  =  1  since 
x" 


lim 


1  =   lim 


,x^-9      '      x-Xiox^-9' 
Discontinuities:  x  =  ±3  (Vertical  asymptotes) 
Relative  maximum:  (0,  0) 


J 


L 


406        Chapters        Applications  of  Differentiation 


56.  v  = 


2x2 


x^  +  4 
Intercept:  (0,0) 
Symmetry:  y-axis 
Horizontal  asymptote:  y  =  2 
Relative  minimum:  (0,  0) 


58.  x^  =  4 

Intercepts:  none 

Symmetry:  y-axis 

Horizontal  asymptote:  y  =  0  since 


4  4 

lim    —^  =  0  =   lim 

:->-<x>X  x->ooX' 


.2- 


Discontinuity:  x  =  0  (Vertical  asymptote) 


60,  y  = 


2x 


1 


Intercept:  (0,  0) 

Symmetry:  origin 

Horizontal  asymptote:  y  =  0  since 


lim 


2x 


0  =   lim 


2x 


1    -X2 

Discontinuities:  x  =  ±1  (Vertical  asymptotes) 


62,  y  =  1  + 


1 


Intercept:  (-1,0) 

Symmetry:  none 

Horizontal  asymptote:  y  =  1  since 

lim    (l  +-)  =  1  =   lim  (l  +- 

JT— >-oo\  x/  j: ->oc  \  X 

Discontinuity:  x  =  0  (Vertical  asymptote) 


64.  y  =  4n  -  ^ 

Intercepts:  (±1,0) 
Symmetry:  y-axis 
Horizontal  asymptote:  y  =  4 
Vertical  asymptote:  x  =  0 


66.  y  = 


Domain:  (-oo,  -2),  (2,  oo) 

Intercepts:  none 

Symmetry:  origin 

Horizontal  asymptotes:  y  =  ±  1  since 


lim      ,  . 

X  ->tx.  ^x-  -  4 


1,    lim 


Vertical  asymptotes:  x  =  ±2  (discontinuities) 


-1. 


L 


I  I  I  I  I  > » 

J-L  J-4_t 


Section  3.5        Limits  at  Infinity       407 


68.   fix) 


EH^^[^ 

.:l„ 

E^r 

) 

.,,  .       U^  -  \){2x)  -  ;c^(2r)  -2x  ^    ,  ^ 

/  W  = (^,2  _  1)2 =  (^2  _  1)2  =  0  when.t  =  0. 

.„.  ^  ^  (;c^  -  l)-(-2)  +  lr(2)U^  -  l)(2;c)  ^  2(3.t--  +  1) 
^  ^  '  (x^  -  D"  (x^  -  1)3 

Since /"(O)  <  0,  then  (0, 0)  is  a  relative  maximum.  Since /"(jt)  ^  0,  nor  is  it  undefined  in  the  domain  of/,  there  are  no  points 
of  inflection. 

Vertical  asymptotes:  ,i:  =  ±  1 

Horizontal  asymptote:  y  =  1 


70.    f(x) 


1 


1 


x-  -  x  -  2       {x  +  l)(.r  -  2) 


.,,  ,         -{2x-  1)         ^    .  1 

/W  =  (,2  _,_  2)2  =  0  when.  =  -. 


/"W  = 


(x^  -x-  2P(-2)  +  (2t  -  l)(2)(;c^  -x-  2)(2x  -  1) 


(a-2  -  X-2Y 


6(;c^  -  ;c  +  1) 


^ 


^ 


{x--x-  ly 

Since /"(t)  <  0,  then  (5,  —5)  is  a  relative  maximum.  Since /"(x)  =?^  0,  nor  is  it  undefined  in  the  domain  of/,  there  are  no 
points  of  inflection. 

Vertical  asymptotes:  x  =  —\,x  =  2 

Horizontal  asymptote:  y  =  Q 


2(x5  +  3jc'  -  \) 
fix)  =  ^-. ,J  =  0  when.  «  0.5321,  -0.6527,  -2.8794. 

ix-  +  X  +  \y 
/"(o)  <  0 

Therefore,  (0,  1)  is  a  relative  maximum. 

f"i-2)  >  0 
Therefore, 

-2,-r 

is  a  relative  minimum. 

Points  of  inflection:  (0.5321,  0.8440),  (-0.6527,  0.4491)  and  (-2.8794,  -0.2931) 

Horizontal  asymptote:  y  =  0 


(-0.6527,0.4491) 

2   (0J321. 0.8440) 


(-2.8794.-0.2931) 


408        Chapters        Applications  of  Differentiation 


74.  g(x)  = 
g'U)  = 
g'U)  = 


2x 


2 
(3;c2  +  1)3/2 

-18;c 


(3x2  +    1)5/2 

No  relative  extrema.  Point  of  inflection:  (0,  0). 

T,    ■         ,  2 

Honzontal  asymptotes:  v  =  +—i= 

No  vertical  asymptotes 


s 


^^ 


76.  fix)  =  liE^  Hole  at  (0,  4) 


fix) 


4x  cos  2j:  —  2  sin  2x 


There  are  an  infinite  number  of  relative  extrema.  In  the  interval 
(-277,  2Tr),  you  obtain  the  following. 

Relative  minima:  (±2.25,  -0.869),  (±5.45,  -0.365) 

Relative  maxima:  (±3.87,0.513) 

Horizontal  asymptote:  y  =  0  - 

No  vertical  asymptotes 


6 


(b)  fix) 


x^  -2^2  +  2 
2jc2 

J^_2x^      _2_ 
2^2      2x2  +  2xi 

1 


X  +    1 


gix) 


(c) 


The  graph  appears  as  the  slant  asymptote  y  =  —  j-^  +  1- 


80.      lim     100 

V,/V2  ->00 


^-Kfe]  =  >o*-o]- 


100% 


82.  >-  = 


3.351f2  +  42.46 U  -  543.730 


f 


(a)       5 


(b)  Yes.  lim  y  =  3.351 


Section  3.5        Limits  at  Infinity       409 


S4.S  =  J^,t>0 


(b)  Yes.  lim  5  =  ^  =  100 


86.    lim  4^  =   lim  ^Sf  "17^1" 
Divide  p{x)  and  q{x)  by  .t". 


Case  1:  Hn  <  m:  lim^-rr-  =  lim  — 

xa=  q{x)         X- 


Case  2:  If  m  =  n:  lim  '—r-r  =   lim 


b„  + 


a.  + 


b„  + 


0  + 


bo 

fffl  —   1  yffl 


+  0  +  0        0 


+  ■  •  •  +  0  +  0       b„ 


=  0 


+  0  +  0       a„ 


'1  ''o       b„  +  ■  ■  ■  +  0  +  0       b„ 


Case  3:  If  n  >  m:  lim  '-rr  =   lim 


fc„  + 


fc„  +  •    •    •  +  0 


A_  +  ^ 


=  ±oo. 


xT- 


88.  False.  Let  y^  =  v^TT,  then  Vi(0)  =  1.  Thus,  v, '  =  1/(2  V.t  +  l)  and  v,  '(0)  =  1/2.  Finally,     ■ 

3'/'=-^(7TTF5and.v,'t0)=4. 

ht\. p  =  or-  +  bx  +  1,  thenp(O)  =  l.Thus,p'=  lax  +  bandp'(O)  =  5  ^>  fc  =  5.  Finally, p"=  laandpT^O)  = 
Therefore, 


/'W  = 


(-l/Sy  +  (l/2)x+  1,      .r  <  0 
.VxTT,  ;c  >  0 


and/(0)  =  1, 


f(l/2)  -  (I/4).r,      x  <<d  ^       \ 

1      /      / \  and/'(0)  =  -,  and 

I  l/(2v^^rT),        .V  >  0  2 


- 1/4  ,      ;c  <  0  _  ,  1 

and/'tO)  =  — . 

L-i/(4(x+  \y/~),    x>  0  4 


/"W  = 
/"(a:)  <  0  for  all  real  x,  but/(jr)  increases  without  bound. 


410       Chapters        Applications  of  Differentiation 


Section  3.6       A  Summary  of  Curve  Sketching 


2.  The  slope  of/ approaches  oo  as  j:— >0  ,  and  approaches 
—  coasx—^0*.  Matches  (C) 


4.  The  slope  is  positive  up  to  approximately  x  =  1.5. 
Matches  (B) 


6.  (a)   Xq,X2,x^ 
(c)  Xi 

(e)  X2,Xj 


(b)  X2,X3 

(d)  j:, 


8.    y 


x^  +  1 


1   -  JC2  (1    -  x){x  +   1) 


(x2  +    1)2  {x^  +    1)2 


0  when.x  =  ±1. 


>'''=-^^  =  0when;.  =  0,±73. 
Horizontal  asymptote:  y  =  0 


y 

y' 

y" 

Conclusion 

-  oo  <  .r  <   -  73 

- 

- 

Decreasing,  concave  down 

x=-73 

73 
4 

- 

0 

Point  of  inflection 

-73  <  x  <  -\ 

- 

+ 

Decreasing,  concave  up 

x=  -\ 

1 
2 

0 

+ 

Relative  minimum 

-1   <  a:  <  0 

+ 

+ 

Increasing,  concave  up 

;c  =  0 

0 

+ 

0 

Point  of  inflection 

0  <  j:  <  1 

+ 

- 

Increasing,  concave  down 

;c=  1 

1 
2 

0 

- 

Relative  maximum 

1  <  a;  <  73 

- 

- 

Decreasing,  concave  down 

x=73 

73 
4 

- 

0 

Point  of  inflection 

73  <  X  <  oo 

- 

+ 

Decreasing,  concave  up 

Section  3.6        A  Summary  of  Curve  Sketching        411 


10.    y  = 


y  = 


x^ 

+  1 

x^ 

-  9 

- 

IQx 

{x^ 

_9)2 

60( 

x2  +  3) 

U^  -  9)3 


0    when  x  =  0 


<  0  when  x  =  0 


Therefore,  |  0,  —^1  is  a  relative  maximum. 


Intercept:  (0,  -- 


Vertical  asymptotes:  j:  =  ±3 
Horizontal  asymptote:  y  =  \ 
Symmetric  about  y-axis 


12.   /(,)=^±2^,^2 

X  X 


-2 
f'(x)  =  ^r  <  0  when  x  i- Q. 

■'  x~ 


fix)  =  J  ^  0 

Intercept:  (-2,0) 
Vertical  asymptote:  x  =  Q 
Horizontal  asymptote:  y  =  1 


5 
4 
3-- 


H — I — I — !-»-« 


14.  fix)  =x  +  ^ 

^.  .       ,       64      (x  -  4)(x^  +  4j:  +  16)      ^    . 

/  (;c)  =  1  "  ~J  = ~3 =  0  when  x  =  4. 

192 
fix)  =  ^  >  0  if  X  ?^  0. 

Therefore,  (4.  6)  is  a  relative  minimum. 
Intercept;  (-2  4/4,  o) 

Vertical  asymptote:  x  =  0 
Slant  asymptote:  y  =  x 


,,     ,,  ,  x3  4x 

16.  /  x)  =  -T— -  =  X  +  -^ - 

X —  4  X —  4 

/'(x)  =  •''"^•r  ~,!?^  =  0  when  X  =  0.  ±2V3 

(x-  -  4)- 

/  (•'^)  =  "7"^ 7u~  =  0  when  x  =  0 

(x-  -  4)3 

Intercept:  (0.  0) 

Relative  maximum:  (-2v^, -3v^) 

Relative  minimum:  (2^3,3^3) 

Inflection  point:  (0,  0) 

Vertical  asymptotes:  x  =  ±2 

Slant  asymptote:  y  =  x 


412       Chapters        Applications  of  Differentiation 


18.    y  = =  2x  -  1  + 


y'  =  2- 


x-2 
3 


x-2 
2x2-8^  +  5 


(x  -  2)3 


{x  -  2Y  (x  -  2)2 


+  0 


=  0  when  x  = 


4+  V6 


U-Jl 
Relative  maximum:  I ,  -  1.8990 


Relative  minimum: 
Intercept:  (0,  -5/2) 


2 
4+76 


,  7.8990  j 


Vertical  asymptote:  x  =  2 
Slant  asymptote:  y  =  2jc  —  1 


fi+v? 


.-1.899) 
H 1-^ 

-8        -4 


■kzu 


-4         /•'     ^  6 


20.    gU)  =  xV9  -  X    Domain:  ;t  <  9 

3(6  -  x) 


&\x) 


2V9  -;c 


0  whenj:  =  6 


^"W  =  4(9^  _  ^)3/2  <  0  whenx  =  6 

Relative  maximum:  (6,  6V3) 
Intercepts:  (0,  0),  (9,  0) 
Concave  downward  on  (-  oo,  9) 


1      (6.  6V3 ) 


22.    y  =  xJXfs  -  x^    Domain:   -4  <  x  <  4 

2(8  -  x2) 


y  = 


716" 


=  0  whenx  =  ±272 


„      2x{x-^  -  24)       ^     .  ^ 

>"   =  (16  _  ^2)3/2  =  0  when;:  =  0 

Relative  maximum:  (272,  8) 
Relative  minimum:  (-272,-8) 
Intercepts:  (0,  0),  (±4, 0) 
Symmetric  with  respect  to  the  origin 
Point  of  inflection:  (0,  0) 


24.    y  =  3(x  -  1)2/3  _  (^  _  1)2 

2  2  -  2(;c  -  l)''/3 

y'  ^  (x  -  l)'/3  "  ^^"^  "  ^^  =       (^  1  1)1/3       =  0  whenx  =  0,2 

(y 'undefined  for X  =  1) 

^"=3(7^^^"^^°^°'^"''^^ 

Concave  downward  on  (-oo,  1)  and  (1,  oo) 

Relative  maximum:  (0,  2),  (2,  2) 

Relative  minimum:  (1,0) 

Intercepts:  (0,  2),  (1,  0),  (-  1.280,  0),  (3.280,  0) 


Section  3.6       A  Summary  of  Curve  Sketching       413 


26.    y  =  -jU^  -3^  +  2) 

y'  =  —x^-\-  1  =0  when x  =  ±\ 
y"=  -2x  =  Owhenx  =  0 


y 

y' 

y" 

Conclusion 

-oo  <  x  <  -\ 

- 

+ 

Decreasing,  concave  up 

-t  =  -1 

4 
3 

0 

+ 

Relative  minimum 

-1  <  *  <  0 

+ 

+ 

Increasing,  concave  up 

x  =  Q 

"3 

+ 

0 

Point  of  inflection 

0  <  X  <  \ 

+ 

- 

Increasing,  concave  down 

x=  1 

0 

0 

- 

Relative  maximum 

1  <  j:  <  oo 

- 

- 

Decreasing,  concave  down 

28.   fix)  =  iU  -  D'  +  2 

fix)  =  ix-  1)2  =  Owhenjc  =  1. 
fix)  =  2(;c  -  1)  =  0  when  a;  =  1. 


fix) 

fix) 

fix) 

Conclusion 

-oo  <  X  <    \ 

+ 

- 

Increasing,  concave  down 

X  =    1 

2 

0 

0 

Point  of  inflection 

1  <  j:  <  oo 

+ 

+ 

Increasing,  concave  up 

30.   fix)  =  ix+  \)ix-  2)(;c  -  5) 

fix)  =  ix+  l)(.r  -  2)  +  ix  +  1)U  -  5)  +  ix  -  2)ix  -  5) 

=  3(x2  -  4;t  +  1)  =  0  whenjc  =  2±  VJ. 
fix)  =  6(.r  -  2)  =  0  when  x  =  2. 


fix) 

fix) 

fix) 

Conclusion 

-oo  <  .X  <  2  -  yi 

+ 

- 

Increasing,  concave  down 

jc  =  2  -  73 

673 

0 

- 

Relative  maximum 

2  -  V3  <  x:  <  2 

- 

- 

Decreasing,  concave  down 

X  =  2 

0 

- 

0 

Point  of  inflection 

2  <  j:  <  2  +  VI 

- 

+ 

Decreasing,  concave  up 

a;  =  2  +  73 

-673 

0 

+ 

Relative  minimum 

2  +  73  <  .T  <  oo 

+ 

+ 

Increasing,  concave  up 

(2-^.6v^) 


C+v^.-fr/J) 


Intercepts:  (0,  10),  (-  1,  0),  (2,  0),  (5,  0) 


414        Chapters       Applications  of  Differentiation 


32.    y  =  3.t^  -  6x^  +  | 

>>'=  12x3  -  12x  =  12x(x2  -  1)  =  Owhenx  =  0,jc  =  +1. 

/3 
y"=  36*2  -  12  =  12(3x2  -  1)  =  0  whenx  =  ±^. 


y 

y' 

y" 

Conclusion 

-oo  <  X  <   -1 

- 

+ 

Decreasing,  concave  up 

x=  -1 

-4/3 

0 

+ 

Relative  minimum 

-l<x<-f 

+ 

+ 

Increasing,  concave  up 

V3 
'-       3 

0 

+ 

0 

Point  of  inflection 

-f  <x<0 

+ 

- 

Increasing,  concave  down 

x  =  0 

5/3 

0 

- 

Relative  maximum 

0<x<f 

- 

- 

Decreasing,  concave  down 

V3 
^-    3 

0 

- 

0 

Point  of  inflection 

f    <X<1 

- 

+ 

Decreasing,  concave  up 

x=  1 

-4/3 

0 

+ 

Relative  minimum 

1  <  X  <  oo 

+ 

+ 

Increasing,  concave  up 

34.   /(x)  =  X*  -  8x3  +  ig^  _  i6x  +  5 

fix)  =  4x3  -  24x2  +  36x  -  16  =  4(x  -  4)(x  -  1)^  =  0  when  x  =  1,  x  =  4. 
/"(x)  =  12x2  _  4g^  +  36  =  I2(x  -  3)(x  -  1)  =  0  whenx  =  3,  x  =  1. 


fix) 

fix) 

fix) 

Conclusion 

-oo   <  X   <    1 

- 

+ 

Decreasing,  concave  up 

x=  1 

0 

0 

0 

Point  of  inflection 

1  <  X  <  3 

- 

- 

Decreasing,  concave  down 

x=  3 

-16 

- 

0 

Point  of  inflection 

3  <  X  <  4 

- 

+ 

Decreasing,  concave  up 

x  =  4 

-27 

0 

+ 

Relative  minimum 

4  <  X  <  oo 

+ 

+ 

Increasing,  concave  up 

J  1(0. 5) 

^  (I.O)  1(5.0) 


(4.  -27) 


Section  3.6        A  Summary  of  Curve  Sketching        415 


36.    y=(x-  ly 

y'=  5{x-  !)■'  =  Owhen;c=  1. 
y"=  20U-  1)3  =  Owhenx=  1. 


>- 

y' 

y" 

Conclusion 

-oo   <  .I  <    1 

+ 

- 

Increasing,  concave  down 

X  =    1 

0 

0 

0 

Point  of  inflection 

1  <  j:  <  oo 

+ 

+ 

Increasing,  concave  up 

I 


(1.0) 


1  2         3 


38.    y=\x^-6x  +  5| 

,^2{x-  3)(x^  -  6a:  +  5)  _  2(x  -  3)(x  -  5){x  -  1) 
^  \x^  -  6x  +  5|  \(x  -  5){x  -  1)1 

=  0  when  jc  =  3  and  undefined  when  x  =  1,  .r  =  5. 

„  _  2(x-  -  6x  +  5)  _  Ijx  -  5)(.r  -  1 


\x^  -  6x  +  5|         |(.r  -  5)(;c  -  1) 


undefined  when.x  =  1,  .r  =  5. 


12       3       4       5       6 


v 

y' 

y" 

Conclusion 

-OO    <   .T    <    1 

- 

+ 

Decreasing,  concave  up 

x=  1 

0 

Undefined 

Undefined 

Relative  minimum,  point  of  inflection 

1   <  .V  <  3 

+ 

- 

Increasing,  concave  down 

.v  =  3 

4 

0 

- 

Relative  maximum 

3  <  X  <  5 

- 

- 

Decreasing,  concave  down 

x  =  5 

0 

Undefined 

Undefined 

Relative  minimum,  point  of  inflection 

5  <  j:  <  oo 

+ 

+ 

Increasing,  concave  up 

40.    y  =  cos  X  -  —  cos  2x,  0  <  x  <  Itt 


y'  =  —  sin ;c  +  sin  2j:  =  —  sin .r(l  —  2  cos  x)  =  0  when x  =  0.  tt, 
y"  =  —  cos  j:  +  2  cos  2x  =  -cos  x  +  2(2  cos-;r  -  1) 


77  Stt 
y  3  " 


=  4  cos^  X  —  cos  j:  —  2  =  0  when  cos  .r 


1  ±  V33 


=  0.8431,  -0.5931. 


Therefore,  x  =  0.5678  or  5.7154,  x  =  2.2057  or  4.0775. 

T,  ,    •  ■         /•^  3\  /57r  3\ 

Relative  maxima:  I T'  7  )>  1  ~T''  T I 


Relative  minimum:     tt. 


Inflection  points:  (0.5678,  0.6323),  (2:2057,  -0.4449),  (5.7154,  0.6323),  (4.0775,  -0.4449) 


416        Chapter  3       Applications  of  Differentiation 


42.    y  =  2(x  -  2)  +  cot  X,  0  <  ;c  <  77 

y   =  2  —  csc^  X  =  Q  when  x  =  —,  — - 

4    4 


y "  =  2  csc^  X  cot  .T  =  0  when  x  =  — 


„    ,      .  .  /377    377 

Relative  maximum:  (  — ,  — 5 


Relative  minimum:  I T'  ":7  ~  3 


Point  of  inflection:  ( — ,  77  —  4  1 
Vertical  asymptotes:  x  =  Q,  tt 


44.    y  =  sec^l  —  1  -  2  tan 


(f) 


1,  -3  <  *  <  3 


'-^-<f)'"(f)(f)-^-'(f)(f)^»--^ 

Relative  minimum:  (2,  —  1) 


-5-4-3-2-1 


(2.-1) 


46.      g(;c)   =  ATCOtX,     —  277  <  JC   <   277 

sin  x  cos  JC  —  j: 


g'W 


sin^j: 


p'(0)  does  not  exist.  But  lim  x  cot  j:  =  lim =  1. 

jr->o  ^-»o  tan  X 

Vertical  asymptotes:  x  =  ±277,  ±77 


-"«pK-T-4(-f-»MI''MT-° 

Symmetric  with  respect  to  y-axis. 
Decreasing  on  (0,  77)  and  (77,  277) 


48.  fix)  =  5 


1 


X  -  4      X  + 


h) 


/h 


X  =  -  2,  4  vertical  asymptote 
y  =  0  horizontal  asymptote 


50.  fix) 


Ax 


Jx^  +  15 


y  =  ±4  horizontal  asymptotes 
(0,  0)  point  of  inflection 


52.  /"is  constant. 
/'  is  linear. 
/  is  quadratic. 


Section  3.6        A  Summary  of  Curve  Sketching        417 


54. 


(any  vertical  translate  of/ will  do) 


56. 


X 


A 


(any  vertical  translate  of  the  3  segments  of/ will  do) 


58.  If/'(jc)  =  2  in  [-5,  5],  then/(.r)  =  2x  +  3  and/(2)  =  7  is  the  least  possible  value  of/(2).  If/'(.r)  =  4  in  [-5,  5],  then 
f{x)  =  4.t  +  3  and/(2)  =  1 1  is  the  greatest  possible  value  of /(2). 


60.  g{.x) 


3^  -  5x  +  2, 


x^  +  1 
Vertical  asymptote:  none 
Horizontal  asymptote:  v  =  3 


The  graph  crosses  the  horizontal  asymptote  v  =  3.  If  a 
function  has  a  vertical  asymptote  at  x  =  c,  the  graph 
would  not  cross  it  since /(c)  is  undefined. 


62.  g{x)  = 


x^  +  x-2 
x  -  1 

{x  +  2)(jc  -  1)  _  \x  +  2. 


if  .r  ^  1 
[Undefined,    if.r  =  1 


X  -  1 
The  rational  function  is  not  reduced  to  lowest  terms. 


hole  at  (1,3) 


64.  g(x)  = ; =  2.V  +  2  - 


X  -  5 


X-  5 


t 

]{ 

T 

The  graph  appears  to  approach  the  slant  asymptote 

y  =  2x  +  l. 


418       Chapters       Applications  of  Differentiation 


66.  f(x)  =  tan(sin  ttx) 
(a)       3_ 


(c)  Periodic  with  period  2 

(e)  On  (0,  1),  the  graph  of/ is  concave  downward. 


(t>)  fi—x)  =  tan{sm(- ttx))  =  tan(-sin  irx) 

=  —  tan(sin  ttx)  =  —f{x) 

Symmetry  with  repect  to  the  origin 

(d)  On  (—  1,  1),  there  is  a  relative  maximum  at  [\,  tan  l) 
and  a  relative  mmimum  at  (—5,  -tan  l). 


68.  Vertical  asymptote:  x  =  —3 

Horizontal  asymptote:  none 

x^ 
^      x  +  3 


70.  Vertical  asymptote:  x  =  0 
Slant  asymptote:  y  =  —x 


y  =    —  X  + 


1       \  -  x^ 


72.   fix)  =  |M2  -  (ax)  =  ^{ax)(ax  -  2),  a  #  0 

f'(x)  =  a^x  —  a  =  a(ax  —  1)  =  0  when  x  =  —. 

a 

■    f"{x)  =  a^  >  Oforall;c. 


(a)  Intercepts:  (0,0),  (-0 


Relative  minimimi:  (~  ~t 
Points  of  inflection:  none 


(b) 


74.  Tangent  line  at  P:  y  -  yQ=  f'(xQ){x  -  x^ 
(a)  Let>'  =  0:  -Jq  =  f'{xQ){x  -  x^) 
f'(Xf)x  =  xJXxq)  -  .Vo 

x  =  x    -^^  =  x    -^^ 
°      f'ixo)      ""^     fix,) 


x-mtercept:  \Xg 


fM 


_  jy-^n. 


fW 


,  0 


(c)  Normal  line:  y  -  yo=  ~j;7~\ix  "  ^0) 


Let  y  =  0:  -^q 


■M 


Z'Uo) 

-^o/'W  =  -x  +  Xq 

x  =  Xq  +  yof'ixo)  =  Xo+  fixo)f'{xo) 
;t-intercept:  (xq  +  /(xo)/'^.  0) 


(e)  \BC\  = 


/fa) 


fix.) 
fix,) 


(g)  \AB\  =  |a:o  -  fa  +/fa)/'fa))|  =  |/fa)/'fa)| 


(b)  Letx  =  0:  >>  -  yo  =/'fa)(~-*o) 
3'  =  >'o  -  ^o/'fa) 
>"  =  /fa)  -  -To/'fa) 
J- intercept:  (0,/fa)  -  xj'ix,)) 

(d)  Let  j:  =  0:  y  -  j-q  =  7^("-*o) 


>'  =  >'o  + 


/'fa) 


y-intercept:  ^0,  y,  +  t^J 
m  |pc|2-,2  +  /'/falU/fa)irfa)i+/(xa)! 

iPCp  = 


[ffa)Vl  +  \fix,)f 


/'fa) 
(h)  |APp=/fa)V'fa)-  +  V 


\AP\  =  |/fa)|Vl  +  [/'fa)]2 


Section  3. 7        Optimization  Problems       419 


Section  3.7       Optimization  Problems 


2.  Let  X  and  y  be  two  positive  numbers  such  that  x  +  y  =  S. 
P  =  xy  =  x(S  -  x)  =  Sx-  x^ 

-r-  =  S  -  Ix  =  0  when  x  =  -. 
dx  2 

-r^  =  -  2  <  0  when  Jc  =  -. 
dx^  2 

P  is  a  maximum  when  x  —  y  =  S/1. 


4.  Let  X  and  y  be  two  positive  numbers  such  that  xy  =  192. 

192 
S  =  x  +  2,y  =  ^-  +  7,y 


dS 


0  when  y  =  8. 


192 
dy  y- 

d^S      384 
S  is  minimum  when  y  =  8  and  x  =  24. 


-rrr  =  — 5-  >  0  when  y  =  8. 


6.  Let  X  and  y  be  two  positive  numbers  such  that 
j:  +  2v  =  100. 


P  =  xy  =  y(100  -  2y)  =  lOOy  -  If- 
dP 
dy 

d^P 

dy^ 

P  is  a  maximum  when  x  =  50  and  y  =  25. 


100  -  4y  =  Owheny  =  25. 
=  -4  <  0  when  V  =  25. 


8.  Let  -t  be  the  length  and  y  the  width  of  the  rectangle. 
2;c  +  2y  =  P 

P-2x      P 


A  =  xy  =  x\-  -  xj  =  —X  -  x- 

dA       P  P 

-—  =  —  —  2r  =  0  when  x  =  — . 
dx       2  4 

d-A  ^       ^     ,  P 

—rr  =  —  2  <  0  when  x  =  —. 
dx-  4 

A  is  maximum  when  x  =  y  =  P/4  units.  (A  square!) 


10.  Let  X  be  the  length  and  y  the  width  of  the  rectangle. 
xy  =  A 
A 


P  =  lx  +  2y  =  2x  +  2[- j  =  2x  +  — 

dP      ^      2A      ^    ^  r- 

-—  =  2 ;-  =  0  when  x  =  VA. 

d\  AT 


d^P      AA 


>  0  whenx  =  Va. 


dx^       x^ 

P  is  minimum  when  x  =  y  =  ^/a  centimeters. 
(A  square!) 


420       Chapters        Applications  of  Differentiation 


12.   fix)  =  Jx-  8,  (2,  0) 

From  the  graph,  it  is  clear  that  (8,  0)  is  the  closest  point  on 
the  graph  of/ to  (2,  0). 


14.  fix)  =  ix+  1)2,  (5,  3) 


16.     F 

dF 

dv  '' 


22  +  0.02v2 
22  -  0.02v2 


(22  +  0.02v2)2 
=  0  when  v  =  yiToO  -  33.166. 


By  the  First  Derivative  Test,  the  flow  rate  on  the  road  is 
maximized  when  v  =  33  mph. 


d=  VU- 

-  5)2  +  [ix  +  1)2  -  3]2 

=  ^jr- 

-  lOx  +  25  +  (;c2  +  2x  -  2)2 

=  v^- 

-  lOx  +  25  +  y*  +  4;c3  -  8x  +  4 

Vx*  +  4^3  +  ^2  -  18x  +  29 

Since  d  is  smallest  when  the  expression  inside  the  radical 
is  smallest,  you  need  to  find  the  critical  numbers  of 

gix)  =  ;c^  +  4a^  +  x2  -  18;c  +  29 

g'ix)  =  Ax^  +  12x2  +  2x-  18 

=  2(;c  -  l)(2x2  +  8;c  +  9) 

By  the  First  Derivative  Test,  x  =  \  yields  a  minimum. 
Hence,  (1,  4)  is  closest  to  (5,  3). 

18.  4jc  +  3^  =  200  is  the  perimeter,  (see  figure) 

:       ,          ,  /200  -  4;c\       8  ,^„  „ 

A  =  lxy  =  2x( ^ 1  =  -(50x  -  x^) 

4^  =  I (50  -  2a:)  =  0  when.t  =  25. 
dx       3 


d^A 
dx^ 


16 


<  0  when  x  =  25. 


100 


A  is  a  maximum  when  jc  =  25  feet  and  >"  =  "3"  feet. 


20.  (a) 


(c) 


Height,  X 

Length  &  Width 

Volume 

1 

24  -  2(1) 

1[24  -  2(1  )]2  =  484 

2 

24  -  2(2) 

2[24  -  2(2)]2  =  800 

3 

24  -  2(3) 

3[24  -  2(3)]2  =  972 

4 

24  -  2(4) 

4[24  -  2(4)]2  =  1024 

5 

24  -  2(5) 

5[24  -  2(5)]2  =  980 

6 

24  -  2(6) 

6[24  -  2(6)]2  =  864 

dV 
dx 


(b)  V  =  ;c(24  -  2;c)2,  0  <  ;c  <  12 
(d)    1200 


The  maximum  volume  seems  to  be  1024. 


d^V 
dx^ 

d^V 
dx^ 


=  2xi24  -  2jc)(-2)  +  (24  -  2jc)2  =  (24  -  2x)(24  -  6x) 

=  12(12  -  x)i4  -  x)  =  0  when  a;  =  12,  4  (12  is  not  in  the  domain). 

=  12(2jc  -  16) 

<  0  when  x  =  4. 


When  X  =  4,V  =  1024  is  maximum. 


Section  3.7        Optimization  Problems       421 


22,  (a)  P  =  2x  +  2irr 

=  2x  +  2^1) 
=  2x  +  Try  =  200 


■f 


»        r 


200 -2x       2 
•  >>  = =  —(100  -  X) 


(b) 


Length,  x 

Width,  y 

Area,  ry 

10 

-(100  -  10) 

77 

(10)- (100  -  10)  ==  573 

TT 

20 

-(100  -  20) 

TT 

(20)- (100  -  20)=  1019 

TT 

30 

-(100  -  30) 

TT 

(30)- (100-  30)-  1337 

TT 

40 

-(100-40) 

TT 

(40)-(100  -  40)  -  1528 

TT 

50 

-(100  -  50) 

IT 

(50)-(100  -  50)  -  1592 

TT 

60 

-(100  -  60) 

TT 

(60)-(100  -  60)  =  1528 

TT 

The  maximum  area  of  the  rectangle  is  approximately  1 592  m^ 
(c)  A=  xy  =  x-(100  -  ;c)  =  -(100;c  -  jc^) 

TT  TT 


(e)    2000 


Maximum  area  is  approximately 
1591.55  m2  (jc  =  50  m). 


24.  You  can  see  from  the  figure  that  A  =  xy  and  y  = 


A  =  x(^]  =  |(6;c  -  x'). 


6-x 


dA       1 


dx      2 
dx" 


(6  -  2j:)  =  0  when  x  =  3. 
=  -  1  <  0  when  x  =  3. 


1      ;       1      4      5      6 


A  is  a  maximum  when  x  =  3  and  y  =  3/2. 


422       Chapters        Applications  of  Differentiation 


26.  (a)    A  =  -  base  x  height 


=  ^{2Vir=i5)(4  +  h) 


=  Vl6  -  h^{4  +  h) 

=^  =  4(16  -  h'')-"\-2h){A  +  h)  +  (16  -  h^y^ 
ah       2 

=  (16  -  h'^Y^'\-h(A  +  h)  +  (16  -  h^)] 

-2(h^  +  2/!  -  8)       -2{h  +  4)ih  -  2) 


Vl6  -  h^ 


Vl6  -  h^ 


dA 

— -  =  0  when  h  =  2,  which  is  a  maximum  by  the  First  Derivative  Test. 

ah 

Hence,  the  sides  are  2Vl6  —  /i^  =  4V3,  an  equilateral  triangle.  Area  =  12V3  sq.  units. 
4  +  h  j4~Th 


(b)  cos  a 


V8V4  +  h 


V8 


tan  a  = 


Vie 


4  +  /i 


Area  =  2(|j(v'l6  -  ^^{4  +  h) 

-  {4  +  hYtana 
=  64  cos"  a  tan  a 
A  '{a)  =  64[cos''  a  sec^  a  +  4  cos'  (—  sin  a)tan  a]  =  0 
^   cos"  a  sec-  a  =  4  cos'  a  sin  a  tan  a 
1=4  cos  a  sin  a  tan  a 
1        .  , 


sin  a  =  —  =>  a  =  30°  and  A  =  12  V3. 


(c)  Equilateral  triangle 


28.    A  =  2ry  =  2x^r'^  —  x^    (see  figure) 


dA 
dx 


2{r^  -  2x^) 


0  when  x 


72r 
2   ■ 


By  the  First  Derivative  Test,  A  is  maximum  when  the  rectangle  has  dimensions 

V2rby(72r)/2. 


U  7:317 
\ 


(-r.  0) 


.^/P^] 


(r.O) 


Section  3. 7        Optimization  Problems       423 


30.  xy  =  36  =>  y  =  — 


36 


A  =  {x  +  3)(v  +  3)  =  U  +  3)1  —  +  3 

=  36  +  M  +  3^  +  9 
x 


dA       -108 


Dimensions:  9x9 


+  3  =  0  =>  3j:2  =  108  =>  X  =  6,  .V  =  6 


32.     V  =  Trr-^/i  =  Vq  cubic  units  or  /i  = 


V„ 


5  =  2wr-  +  lirrh  =  2(  Ttr^  +  -^ 


^  =  lilirr  -  -^)  =  0  when  r=  ^^  units. 
dr         \  r~  I  \   2ir 


h  = 


Vn 


Voi^nT-''       2Vo 


1/3 


2r 


77{  yV2^)2  77^/3  (2^)1/3 

By  the  First  Derivative  Test,  this  will  yield  the  minimum  surface  area. 


34.  V  =  Trr^x 

x  +  2TTr=  108  =>  X  =  108  -  27rr    (see  figure) 

V  =  7rr-(108  -  27rr)  =  77<108r-  -  2m^) 

dV 


dr 


7r(216r  —  Gvr-)  =  6Trr(36  —  irr) 


=  0  when  r  =  —  and  x  =  36. 

i2t/  "Si* 

— -r  =  77(216  -  127rr)  <  0  when  r  =  — . 
dr-  TT 

Volume  is  maximum  when  x  =  36  inches  and  r  =  36/ tt  =  1 1.459  inches. 
36.     V  =  TTX^h  =  'TTx-\2^/r  —  jr)  =  2itx-Jr~  —  x~     (see  figure) 


f  =4"' 


i)(r-  -  x^y-(-2x)  +  2a- Vr-  -  x^ 


2ttx 


K2r2  -  3;c2) 


=  0  when  x  -  0  and x-  =  -—-  =>  x  =  — r— ■ 

3  3 

By  the  First  Derivative  Test,  the  volume  is  a  maximum  when 

X  =  -^ —  and  n  =  — ;=. 

3  73 

Thus,  the  maximum  volume  is 
4Trr^ 


'--{Hih 


73/       373' 


UT^^l 


U-V^. 


424       Chapters        Applications  of  Differentiation 


38.  No.  The  volume  will  change  because  the  shape  of  the  container  changes  when  squeezed. 


40.  V  =  3000  =  -Txr'  +  irr-h 


,       3000      4 

h  =  T  -  T'" 

7rr'       3 


Let  k  =  cost  per  square  foot  of  the  surface  area  of  the  sides,  then  2k  =  cost  per  square  foot  of  the  hemispherical  ends. 


C  =  2k(4Trr^)  +  kilirrh)  =  k\  Strr^  +  l-rrr 


V 


3000      4 


Trr' 


]-[ 


16      ,  ,  6000 
3  r 


dr 


^TTr  -  ^^1  =  0  when  r  =    ^/-^  -  5.636  feet  and  /i  =  22.545  feet. 
.3  r^  ]  V    2iT 


By  the  Second  Derivative  Test,  we  have 


dr^ 


32          12,000 
^r-T  + -, — 


>  0  when  r  =  ^i 


'1125 

277  • 


Therefore,  these  dimensions  will  produce  a  minimum  cost. 


42.  (a)  Let  x  be  the  side  of  the  triangle  and  y  the  side  of  the 
square. 


(b)  Let  X  be  the  side  of  the  square  and  y  the  side  of  the  pen- 
tagon. 


A  =  -(cot^W2  +  -|cot-jj>'- where  3x  +  4y  =20 


^,.W5-U;o...^. 


A'  = 


f'-(-J')H)=» 


60 


4V3 +  9 

When  x  =  0,A  =  25,  when  x  =  60/(473  +  9), 

A  «  10.847,  and  when  x  =  20/3,  A  ==  19.245.  Area  is 

maximum  when  all  20  feet  are  used  on  the  square. 

(c)  Let  X  be  the  side  of  the  pentagon  and  y  the  side  of  the 
hexagon. 

A  =  jfcot  ^|;i:2  +    (cot  ^\y^  where  5x  +  6y  =  20 


=  5U^U,2(^) 


20  -  5xV 


'4'  =  |(cot|)j:  +  3 


^(-1 


6 

20  -  5x 


0<  x<A. 


=  0 


A  =  tIcoI^W^  +  -lcot^Mwhere4;c  +  5>'  =  20 


4  \2 


=  x^  +  1.72047741  4  - -^j  ,  0  <  x  <  5. 

A'=2x-  2.75276384(4  -  ^.x]  =  0 

X  =  2.62 

When.1  =  0,A  =  27.528,  when.x  =  2.62,  A  =  13.102, 
and  when  x  =  5.A  ~  25.  Area  is  maximum  when  all  20 
feet  are  used  on  the  pentagon. 


(d)  Let  X  be  the  side  of  the  hexagon  and  r  the  radius  of  the 
circle. 


'?)^ 


A  =  -I  cot  —  1x2  +  nr~  where  6x  +  2'nr  =  20 
3v^   ,  ^     AO      3x\2  10 

A'=3v^-6fi«-^)  =  0 

\  77  77/ 

x  =  1.748 


;c  =  2.0475 

When  ;c  =  0,  A  =  28.868,  when  x  -  2.0475, 

/4  «  14.091,  and  when  ;c  =  4,  -4  =  27.528.  Area 

is  maximum  when  all  20  feet  are  used  on  the  hexagon 


When  j;  =  0,-4  =  31.831,  when;c  =  1.748,  A  =  15.138, 
and  when  x  =  10/3,  A  =  28.868.  Area  is  maximum  when 
all  20  feet  are  used  on  the  circle. 

In  general,  using  all  of  the  wire  for  the  figure  with  more 
sides  will  enclose  the  most  area. 


Section  3.7        Optimization  Problems       425 


44.  Let  A  be  the  amount  of  the  power  line. 


A  =  h-y  +  Ijx-  +  / 


dy 


j^r+ 


=  0  when  y 


V3- 


d^A  2;c2  ^^  X 

T^  =  T^; ;tt7;  >  0  tor  V  =  — ?=. 

dy-      {x-  +  ffl^  ■'      73 


The  amount  of  power  line  is  minimum  when  y  =  j:/ 73 . 


(-;t,  0)  (.t.  0) 


46.  fix)  =  |;c2  ^W  =  i^;c^  -  \x^  on  [0,  4] 

(a)  9 


-^ 


(b)    rfU)  =  f(x)  -  g(x)  =  5X^  -  [j^x*  -  \x^)  =  x^-  YiX'^ 
d'{x)  =  2x-\x^  =  Q=^?,x  =  T' 

=>;c  =  0,272  (in  [0,4]) 

The  maximum  distance  is  d  =  4  when  x  =  2  V2. 


(c)  fix)  =  X,  Tangent  line  at  [ijl,  4)  is 

y  -  4  =  272(;c  -  2V2) 
y  =  2V2X  -  4. 
g'{x)  =  \ic'  -  X,  Tangent  line  at  (2V2,  o)  is 
y-Q  =  (i(2v^)3  -  2ji){x  -  272) 

y  =  ijlx  -  8. 
The  tangent  lines  are  parallel  and  4  vertical  units  apart. 

(d)  The  tangent  lines  will  be  parallel.  \i  dix)  =  f(x)  —  g{x), 
then  d'{x)  =  0  =  f'(x)  —  g'(x)  implies  that/'(x)  =  g'(x) 
at  the  point  x  where  the  distance  is  maximum. 


48.  Let  F  be  the  illumination  at  point  P  which  is  x  imits  from  source  1. 


0  when 


F  = 

X- 

U-, 

id 

-xT- 

dF 
dx 

-2W, 
x' 

+ 

2U2 
id  -  xy 

/^.. 

X 

r'     id-  xy 


i/K~  d-x 
id  -  x)  Vfi  =  X  l/T, 

dVT,=x{i/T,+  VQ 
di/T, 


l/T,+  k/L 


d^F      6W, 


2 
6W0 


dx^        x^        id  -  xY 
This  is  the  minimum  point. 


>  0  when  x 


dl/T, 


l/T,+  l/T. 


5o.(a)r=-^^  +  i^ 


dT 

(b)         :7r  = 


—CONTINUED— 


dx       2jx~  +  4      4 
.t  \_ 

v^?Tl~  2 

Z\~  =  .r=  +  4 
x^  =  4 
x  =  2 

7T2)  =  V2  +  ^  hours 


-  -  =  0 


426       Chapters        Applications  of  Differentiation 


50. 

— CONTDWE 

(c)           r  = 

D— 

^2 

Jx^  +  A 

A 

dT_ 
dx 

X 

1 

=  0 

V,  ^X^  +  4         V2 

X 

V2 

Vx2  +  4 

sine  = 

V2 

T 

d  depends  on  —  only. 

52. 

Jx^  +  d 
^1 

ll+V^r 

V2 

^)^ 

dT 

X 

+  

X  - 

a 

dx       v,Vx2  +  rfi2       VjVrf,^  +  (a  -  x)- 
Since 


=  0 


Jx^  +  rfi^ 
we  have 


sin  S]  and     , .  ^  ,   ,  =  -  sin  e. 


Jdi  +  {a-  xY 


sin  01       sin  St      „        sin  6,       sin  0-, 
=  0  => = -. 

V,  V,  V,  V, 


Since 

d^T  _  d{^ 


d^ 


dx^         V,(;c2  +  rf,2)3/2  vld.2  +   (^  _  ^)2]3/; 

this  condition  yields  a  minimum  time. 


->  0 


(d)  Cost  =  Jx^  +  4  C,  +  (3  -  x)C2 


7FT4      (3  -  x) 


(1/C,) 
From  above,  sin  9  = 


(I/C2) 
1/Ci  _  Q 

i/Q     c, 


54.    CW  =  Ikjx^  +  4  +  A:(4  -  x) 


C'W  = 


Vx2  +  4 


A:  =  0 


2x  =  V^^  +  4 

4;c2  =  jc2  +  4 

3x2  =  4 

2 
73 


Or,  use  Exercise  50(d):  sin  0  =  —  =  - 


e  =  30° 


Thus,  X 


73- 


56.     V  =  ];TTr^h  =  ^nr^JXAA  -  r^ 
3  3 


=  |Jr2[|](144  -  r2)-'/2(-2r)  +  2rVl44  -  rA 


By  the  First  Derivative  Test,  V  is  maximum  when  r  =  4^6  and  h  =  4V3. 

Area  of  circle:  A  =  7r(12)2  =  14477 

Lateral  surface  area  of  cone:  S  =  'n{A^)J{A^Y  +  (473)^  =  48>/6i7 

Area  of  sector:  14477  -  48^677  =  -  Or^  =  128 

14477  -  48n/677         277/  f-:\  ,    ,  ^, 

e  = -—^ —  =  -—(3  -  V6)  "  1.153  radians  or  66° 

72  3  ^  '^ 


Section  3.7        Optimization  Problems       427 


58.  Let  d  be  the  amount  deposited  in  the  bank,  i  be  the  interest  rate  paid  by  the  bank,  and  P  be  the  profit. 
P  =  (0.12)rf  -  id 
d  =  ki^  (since  d  is  proportional  to  i^) 

p  =  (o.i2)(w2)  -  i(ki^)  =  kio.m^  -  (3) 


^  =  A:(0.24i  -  2i^)  =  0  when  /  =  ^  =  0.08. 
di  3 


d^P 
di 


T^  =  k(0.24  -  di)  <  0  when  /  =  0.08  (Note:  k  >  0). 


The  profit  is  a  maximum  when  i  =  8%. 


60.       P  =  -—s^  +  6s'  +  400 

dP  2  3 

(a)    —  =  -— J=  +  I2s  =  -— j(5  -  40)  =  0  when  a:  =  0,  i  =  40. 
ds  10  10 


d-P  ^      3 
di^  ~      5 

d^-P 


s  +  n 


_,  ,  (0)  >  0  =^  J  =  0  yields  a  minimum. 


d-P 

-p;-(40)  <  0  =>  i  =  40  yields  a  maximum. 

ds- 


The  maximum  profit  occurs  when  s  =  40,  which  corresponds  to  $40,000  {P  =  $3,600,000). 

(b)~=  -Is  +12  =  0  when  s  =  20. 

ds^  5  . 

The  point  of  diminishing  returns  occurs  when  5  =  20,  which  corresonds  to  $20,000  being  spent  on  advertising. 


62.  5,  =  |4m  -  1|  +  \5m  -  6|  +  |10m  -  3| 

Using  a  graphing  utility,  you  can  see  that  the  minimum  occurs  when  m  =  0.3. 
Line  ^  =  0.3^: 

^2  =  |4(0.3)  -  1|  +  |5(0.3)  -  6|  +  1 10(0.3)  -  3|  =  4.7  mi. 


428        Chapter  3       Applications  of  Differentiation 


64.  (a)  Label  the  figure  so  that  r^  =  x^  +  h^. 

Then,  the  area  A  is  8  times  the  area  of  the  region 
given  by  OPQR: 


h 

y^^N 

V 

■wryiWv":  :    V 

x    :; 

if 

V- 

% 

V    ii 

:ii^  ^ 

^  ii 

m  y 

=  8  he-  +  (jc  -  h)h 

=  ^\(r^  -  x")  +  [x-  >/;^^^)vr2rrpj 


=  &xVr^  -  x^  +  4x2  -  4r2 


A  '(x)  =  8vV— 12  - 


8^2 


8^2 


7^ 


+  8x  =  0 


Vr^ 


=  8x  +  8Vr2  -  x^ 


x'^  =  xVr^  -  ^2  +  (r2  -  x2) 
2^2  -  /^  =  xVr^  -  x~ 
4jc^  -  4xV  +  A^  =  x^(r^  -  x^) 
5x^  -  5x^r^  +  r^  =  0     Quadratic  in  x^. 


Sf-  ±  725/  -  20/^  _  r^t  r^-i 

10  -  inP  ±  ^5J- 


lO"- 


Take  positive  value. 


/TTT! 


=  0.85065r    Critical  number 


-2  v2 

(c)  Note  that  x^  =  — (s  +  Vs)  and  r^  -  x^  =  — (s  -  Vs). 


a       u  fi       X 

Co)  Note  that  sin  -  =  -  and  cos  -  =  -.  The  area  A  of  the 

2       r  2       r 

cross  equals  the  sum  of  two  large  rectangles  minus 
the  common  square  in  the  middle. 


A  =  2(2x){2^)  -  4^12  =  %xh  -  4h^ 

=  8/^  sin  -  cos  -  —  4r^  sin^  - 
2        2  2 


A(x)  =  8x7^2  -  x2  +  4x2  _  4^ 

=  8[^(5  +  75)^(5  -  75)]"'  +  4^(5  +  75)  -  4;- 


=  iro^^'^] 


'''2  2      r- 

+  2r^  +  -75r2  _  4^ 


=  1^75  -  2.2  +  ^^ 


=  2r2 


5^--f 


2.2(75  -  1) 


=  4r2  sin  0  -  sin2 


A'(d)  =  4r2(cos  e  -  sin  -cos  ~  )  =  0 

a  a 

COS  0  =  sin  -  cos  -  =  2  sin  0 

2        2 

tane  =  2 

e  =  arctan(2)  »  1.10715     or    63.4° 


Using  the  angle  approach,  note  that  tan  0  =  2,  sin  0  =  — ^  and  sin2|  - 1  =  — (1  -  cos  6)  =  -\\ 


J. 

75 


Thus,  A(e)  =  4.21  sin  0  -  sin2: 


V75      A*       V5 


^  4^^  -  1)  ,  ,^(^  _  ^) 


Section  3.8        Newton's  Method       429 


Section  3.8      Newton's  Method 


2.    /U)  =  2x2-3 
fix)  =  4x 


x,  =  l 


n 

^n 

/uj 

/K) 

X       ^^'"^ 
"      f'ix„) 

1 

1 

-1 

4 

I 

4 

5 
4 

2 

0.125 

5.0 

0.025 

1.225 

4.  /(x)  =  tanjc 
fix)  =  sec-j: 
jci  =  0.1 


n 

x„ 

/u„) 

/'UJ 

"  /'UJ 

I 

0.1000 

0.1003 

1.0101 

0.0993 

0.0007 

2 

0.0007 

0.0007 

1.0000 

0.0007 

0.0000 

6.  /W  =  x5  +  ;c  -  1 
fix)  =  5.^+\ 

Approximation  of  the  zero  of/ is  0.755. 


n 

■l^n 

/UJ 

/'UJ 

"    fiXn) 

1 

0.5000 

-0.4688 

1.3125 

-0.3571 

0.8571 

2 

0.8571 

0.3196 

3.6983 

0.0864 

0.7707 

3 

0.7707 

0.0426 

2.7641 

0.0154 

0.7553 

4 

0.7553 

0.0011 

2.6272 

0,0004 

0.7549 

8.  fix)  =  x-  2jx  +  1 
/'W  =  1  ^ 


Vx+  1 
Approximation  of  the  zero  of/ is  4.8284. 


n 

^. 

/(^J 

/'(xj 

/'UJ 

1 

5 

0.1010 

0.5918 

0.1707 

4.8293 

2 

4.8293 

0.0005 

0.5858 

.00085 

4.8284 

10.  fix)  =1-2x3 
/'W  =  -&r2 
Approximation  of  the  zero  of/ is  0.7937. 


n 

x„ 

/U„) 

/'UJ 

n-\) 

fK) 

"  /'UJ 

1 

1 

-1 

-6 

0.1667 

0.8333 

2 

0.8333 

-0.1573 

-4.1663 

0.0378 

0.7955 

3 

0.7955 

-0.0068 

-3.7969 

0.0018 

0.7937 

4 

0.7937 

0.0000 

-3.7798 

0.0000 

0.7937 

430        Chapters        Applications  of  Differentiation 


12.  fix)  =  ^x' 


3x 


fix)  =  2jc3  -  3 

Approximation  of  the  zero  of/ is  -0.8937. 


Approximation  of  the  zero  of/ is  2.0720. 


n 

x„ 

/U„) 

nx„) 

fix,) 
f'(x„) 

X       -^^^"^ 
"      f'ixj 

1 

-1 

0.5 

-5 

-0.1 

-0.9 

2 

-0.9 

0.0281 

-4.458 

-0.0063 

-0.8937 

3 

-0.8937 

0.0001 

-4.4276 

0.0000 

-0.8937 

n 

J^. 

fixj 

fK) 

fix,) 
f'ixJ 

X       ^^'"^ 
"      fix,) 

1 

2 

-1 

13 

-0.0769 

2.0769 

2 

2.0769 

0.0725 

14.9175 

0.0049 

2.0720 

3 

2.0720 

-0.0003 

14.7910 

0.0000 

2.0720 

14.  f{x)  =  x^  —  cos  X 
fix)  =  3x^  +  slnjc 
Approximation  of  the  zero  of/ is  0.866. 


n 

Xn 

fix,) 

fix,) 

fix,) 
fix,) 

X         ^^^"^ 
"      fix,) 

1 

0.9000 

0.1074 

3.2133 

0.0334 

0.8666 

2 

0.8666 

0.0034 

3.0151 

0.001 1 

0.8655 

3 

0.8655 

0.0001 

3.0087 

0.0000 

0.8655 

16.    h{x)=f{x)-g{x)  =  3-x- 


x^+  1 


h'ix) 


■1  + 


Ix 


(x^  +  1)2 


Point  of  intersection  of  the  graphs  of /and  g  occurs 
whenx«  2.893. 


n 

x. 

hix,) 

h'ix,) 

hix,) 
h'ix  J 

X        ^^^"^ 
"      h'ix,) 

1 

2.9000 

-0.0063 

-0.9345 

0.0067 

2.8933 

2 

2.8933 

0.0000 

-0.9341 

0.0000 

2.8933 

18.    hix)  =  fix)  -  gix)  =  x^ 
h'ix)  =  2x  +  sin;ic 


cosx 


One  point  of  intersection  of  the  graphs  of/ and  g  occurs 
when  X  ~  0.824.  Since /U)  =  x^  and  gix)  =  cos  x  are 
both  symmetric  with  respect  to  the  y-axis,  the  other  point 
of  intersection  occurs  when  x  ~  —  0.824. 


n 

X, 

hix,) 

h'ix,) 

hix,) 
h'ix,) 

X        '"^"""'^ 
"""      h'ix,) 

1 

0.8000 

-0.0567 

2311 A 

-0.0245 

0.8245 

2 

0.8245 

0.0009 

2.3832 

0.0004 

0.8241 

20.  fix)=x"-a  =  0 
fix)  =  nx"-^ 


X,."  -  xn  +  a  _  in  -  l)x,"  +  a 


Section  3.8        Newton's  Method       431 


_xl±J_ 


i 

1 

2 

3 

4 

Xi 

2.0000 

2.2500 

2.2361 

2.2361 

75  =  2.236 


24.  j:,,,=-^ 


2x:,3  +  15 


3.r,' 


I 

1 

2 

3 

4 

.r, 

2.5000 

2.4667 

2.4662 

2.4662 

Vl5  =  2.466 


26.  /(jc)  =  tan  ;c 
/'W  =  sec^jc 
Approximation  of  the  zero:  3. 142 


n 

x„ 

fiXn) 

n\) 

f'ixj 

1 

3.0000 

-0.1425 

1.0203 

-0.1397 

3.1397 

2 

3.1397 

-0.0019 

1.0000 

-0.0019 

3.1416 

3 

3.1416 

0.0000 

1.0000 

0.0000 

3.1416 

28.    y  =  4x^-\2x^+l2x-3=  f{x) 
y'=  12x-  -  24x  +  12  = /'(x) 


3 


/'Uj)  =  0;  therefore,  the  method  fails. 


n 

■^^ 

/UJ 

/'UJ 

/'UJ 

"     /'UJ 

1 

3 

2 

3 

2 

3 

1 

2 

1 

2 

1 

1 

0 

— 

— 

30.  f{x)  =  2  sin  ;c  +  cos  2x 
fix)  =  2  cos  X  -  2  sin  2x 

377 

Fails  because/'(.x,)  =  0. 


377 

2 


/UJ 


/'UJ 


32.  Newton's  Method  could  fail  if  f'{c)  =  0,  or  if  the  initial  value  x^  is  far  from  c. 


34.  Let  g{x)  =  /U)  -  X  =  cot  .r  -  jc 
g'ix)  =  -csc^x  -  1. 
The  fixed  point  is  approximately  0.86. 


n 

x„ 

8{x„) 

g'ix„) 

H.vJ 
^'U„) 

,        ^UJ 

"     ^'UJ 

1 

1.0000 

-0.3579 

-2.4123 

0.1484 

0.8516 

2 

0.8516 

0.0240 

-2.7668 

-0.0087 

0.8603 

3 

0.8603 

0.0001 

-2.7403 

0.0000 

0.8603 

36.  f(x)  =  sin  X,  f'(x)  =  cos  x 
(a) 


2 


(b)  .t,  =  1.8 

x.  =  X,  -  ^r4  =  6.086 

/Ui) 

(c)  A-,  =  3 

X,  =  X,  -  ^7^  -  3.143 
/U,) 


(d) 


2- 

;    \  (1.8.  0.974) 

1  ■ 

>OL    (3,0.141) 

. /'^Vy...^,_^l6.086. 0) 

/ 

■'f'/V^ 

-1- 

(3.143.  01 V-^ 

-2- 

\ 

The  .r-intercepts  correspond  to  the  values  resulting 
from  the  first  iteration  of  Newton's  Method. 

(e)  If  the  Initial  guess  .v,  is  not  "close  to"  the  desired  zero 
of  the  function,  the  .v-intercept  of  the  tangent  line  may 
approximate  another  zero  of  the  function. 


432       Chapter  3        Applications  of  Differentiation 


38.  (s0x„,,=x„{2-2x„) 


(h)  x„^i  =xll-  llxj 


(■ 

1 

2 

3 

4 

^, 

0.3000 

0.3300 

0.3333 

0.3333 

( 

1 

2 

3 

4 

^i 

0.1000 

0.0900 

0.0909 

0.0909 

\  =  0.333 

40.  f(x)  =  ;c  sin  jt,  (0,  it) 

f'(x)  =  x  cos  X  +  sin  jc  =  0 

Letting  F{x)  =  /'(x),  we  can  use  Newton's  Method  as  follows. 
\F'{x)  =  2  cos  JC  —  a:  sin  x\ 


n  =  0.091 


n 

^n 

F{x^) 

nxr) 

X        ^^'"^ 
"      F'{x„) 

1 

2.0000 

0.0770 

-2.6509 

-0.0290 

2.0290 

2 

2.0290 

-0.0007 

-2.7044 

0.0002 

2.0288 

Approximation  to  the  critical  number:  2.029 

42.  y=f{x)=x\  (4,-3) 

d=  J{x  -AY  +  {y  +  3)2  =  V(x  -  4)2  +  (jc^  +  3)2  =  Jx!^  +  7x^  -  8x  +  25 

rf  is  minimum  when  D  =  x^  +  Ix^  —  8x  +  25  is  minimum. 

g{x)  =  D'=  4x3  +  14a:  -  8 
g'ix)  =  12x2  +  14 


n 

J^. 

gixj 

^'UJ 

H^„) 

X       ^(^^^ 

1 

0.5000 

-0.5000 

17.0000 

-0.0294 

0.5294 

2 

0.5294 

0.0051 

17.3632 

0.0003 

0.5291 

3 

0.5291 

-0.0001 

17.3594 

0.0000 

0.5291 

X  =  0.529 
Point  closest  to  (4,  -  3)  is  approximately  (0.529,  0.280). 


(4, -3). 


44.  Maximize:  C 


C'  = 


3f2  +  t 
50  +  t^ 

-2t*  -  2f3  +  300r+  50 


=  0 


(50  +  r3)2 
Let/(x)  =  3/^  +  2«3  -  300;  -  50 
fix)  =  12r3  +  6f2  -  300. 

Since /(4)  =  -354  and/(5)  =  575,  the  solution  is  in  the  mterval  (4,  5). 
Approximation:  t  =  4.486  hours 


n 

x„ 

fix  J 

f'ixj 

f'ixj 

X        ^^'"^ 

"    f'W) 

1 

4.5000 

12.4375 

915.0000 

0.0136 

4.4864 

2 

4.4864 

0.0658 

904.3822 

0.0001 

4.4863 

Section  3.8        Newton's  Method       433 


46.  170  =  O.SO&c^  -  n.974x^  +  71.248;c  +  110.843,  1  <  jc  <  5 
Let/W  =  0.808;c3  -  17.974jc2  +  71.248;c  -  59.157 
fix)  =  2.424x2  _  35,948;(  +  71.248. 

From  the  graph,  choose  x^  =  I  and  Jt,  =  3.5.  Apply  Newton's  Method. 


n 

x„ 

/UJ 

/'UJ 

no 

"     /'UJ 

1 

1.0000 

-5.0750 

37.7240 

-0.1345 

1.1345 

2 

1.1345 

-0.2805 

33.5849 

-0.0084 

1.1429 

3 

1.1429 

0.0006 

33.3293 

0.0000 

1.1429 

n 

Xn 

/UJ 

f'U„) 

fUn) 

X       -^^'"^ 

1 

3.5000 

4.6725 

-24.8760 

-0.1878 

3.6878 

2 

3.6878 

-0.3286 

-28.3550 

0.01 16 

3.6762 

3 

3.6762 

-0.0009 

-28.1450 

0.0000 

3.6762 

The  zeros  occur  when  x  =  1. 1429  and  x  =  3.6762.  These  approximately  correspond  to  engine  speeds  of  1 143  rev/min  and 
3676  rev/min. 


48.  True 


50.  True 


52.  f{x)  =  J  A  -  x^  sin(jc  -  2) 
'    Domain:  [-2,  2] 
x  =  -1  and  x  =  2  are  both  zeros. 
fix)  =  J  A  -  x-  cosU  -  2)  - 
Let  ;c,  =  -  1. 


V4  -  X- 


=  sin(jr  —  2) 


n 

Xn 

/(.vj 

/'UJ 

"    /'UJ 

1 

-1.0000 

-0.2444 

-1.7962 

0.1361 

-1.1361 

2 

-1.1361 

-0.0090 

-1.6498 

0.0055 

-1.1416 

3 

-1.1416 

0.0000 

- 1.6422 

0,0000 

-1.1416 

Zeros:  x  =  ±2,x=  -1.142 


434       Chapters       Applications  of  Differentiation 


Section  3.9      Differentials 


2.  fix)  =  -  =  6x-^ 


fix)  =  -  \lx-^ 


■12 


Tangent  line  at    2 


3       -12 


-f  (.  -  2) 


-"  2        2 


X 

1.9 

1.99 

2 

2.01 

2.1 

f{x)  = 

6 

1.6620 

1.5151 

1.5 

1.4851 

1.3605 

T{x)  = 

3 

-f 

1.65 

1.515 

1 

1.5 

1.485 

1.35 

4.  fix)  =  ^x 
1 


fix) 


lj~x 

Tangent  line  at  (2,  Jl): 
y  -  fi2)  =  f'i2)ix  -  2) 

1 


72 


2^ 


U-2) 


^     +     1 


272       v^ 


x 

1.9 

1.99 

2 

2.01 

2.1 

f{x)  = 

-Ji 

1.3784 

1.4107 

1.4142 

1.4177 

1.4491 

T{x)- 

->.^ 

1 

72 

1.3789 

1.4107 

1.4142 

1.4177 

1.4496 

6.  fix)  =  CSC  ;c 

fix)  =  -cscjTCOtj: 

Tangent  line  at  (2,  esc  2):    y  -  /(2)  =  /'(2)(;c  -  2) 

y  —  CSC  2  =  (—esc  2  cot  2)(x  -  2) 

>;  =  (-CSC  2  cot  2)(.x;  -  2)  +  CSC  2 


x 

1.9 

1.99 

2 

2.01 

2.1 

fix)  =  cscx 

1.0567 

1.0948 

1,0998 

1.1049 

1.1585 

r(;c)  =  (-csc2cot2)(x- 

-  2)  +  esc  2 

1.0494 

1.0947 

1.0998 

1.1048 

1.1501 

8.  y  =  fix)  =  1  -  2x\f'ix)  =  -Ax,x  =  Q,Lx  =  dx  = 

Ay  =  fix  +  Ax)  -  fix) 

=  /(-0.1)-/(0) 

=  [1  -  2(-0.1)2]  -  [1  -  2(0)2]  =  _o.02 


-0.1 


dy=f'ix)dx 
=  /'(0)(-0.1) 
=  (0)(-0.1)  =  0 


10.  y=fix)  =  2x+  \J'ix)  =  2,x  =  2,Ax  =  dx  =  0.01 

Ay  =  fix  +  Ax)-  fix)  dy  =  fix)  dx 
=  /(2.01)-/(2)  =/'(2)(0.01) 

=  [2(2.01)  4-  1]  -  [2(2)  +  1]  =  0.02  =  2(0.01)  =  0.02 


Section  3.9        Differentials       435 


12.    y  =  3jc2/' 


dy  =  Ix'^'^dx  =  -jj^dx 


14.   y  =  V9^^ 

tfy  =  -{9  -  jc2)-'/2(-2x)<ic  =      Z^^t 
2  V9  -;c2 


16.    y  =  v^  + 


v^ 


-^      'iv^      IxJ'x)''^      IxJ'x'^ 


18.    y  =  j:  sin  a: 

dy  =  U  cos  ;c  +  sin  j:)  (it 


20.    y 


^^+  1 


rU^  +  1)2  sec^jftanx  -  sec^j:(2j:)1   , 

^^  =  [ x^f-^. J^ 

[2  sec-j:(jr^tan  j:  +  tan  x  —  x)1   , 
U^TTp J^ 


22.  (a)  /(1. 9)  =/(2  -  0.1)  -/(2)  +/'(2)(-0.1) 

»  1  +(-l)(-0.1)=  1.1 
(b)  /(2.04)  =/(2  +  0.04)  =/(2)  +/'(2)(0.04) 

=  1  +  (-1)(0.04)  =  0.96 


24.  (a)  /(1.9)  =/(2  -  0.1)  »/(2)  +/'(2)(-0.1) 
«  1  +  O(-O.l)  =  1 
(b)  /(2.04)  =  /(2  +  0.04)  «  /(2)  +  /'(2)(0.04)       , 
=  1  +  0(0.04)  =  1 

28.  (a)  g(2.93)  =  ^(3  -  0.07)  -  g(3)  +  g'(3)(-0.07) 

«  8  +  5(-0.07)  =  7.65 
(b)  g(3.1)  =  g(3  +  0.1)  =  g(3)  +  g'(3)(0.1)       ^ 
=  8  +  5(0.1)  =  8.5 


26.  (a)  5(2.93)  =  ^(3  -  0.07)  «  g(3)  +  5'(3)(-0.07) 

-  8  +  (3)(-0.07)  =  7.79 
(b)  g(3.1)  =  g(3  +  0.1)  =  g(3)  +  g'(3)(0.1) 
-  8  +  (3)(0.1)  =  8.3 

30.     A  =  \bh,  i)  =  36,  /!  =  50 

db  =  dh  =  ±0.25 
oW  =  ^fc  d/z  +  U  rfi 

^A^dA  =  3(36)(±0.25)  +  3(50)(±0.25) 
=  ±10.75  square  centimeters 


32.     j:  =  1 2  inches 

l^x  =  dx  =  ±0.03  inch 

(a)  V  =  x^ 

dV=  3x'dx  =  3(12)2(±0.03) 
=  ±  12.96  cubic  inches 

(b)  5  =  6x2 

dS=  \2xdx=  12(12)(±0.03) 
=  ±4.32  square  inches 


34.  (a)     C  =  56  centimeters 

AC  =  rfC  =  ±  1 .2  centimeters 
C 


C  =  2n-r : 


A  =  Trr*  =  M:: 


77/         47r 


dA  =  -^CrfC  =  -^(56)(±1.2)  =  — 

277  277  77 


dA 


33.6/77 


A       [1/(477)1(56)- 


=^  0.042857  =  4.2857% 


dA      (\/27T)CdC      2dC 
^^T-     (1/477)C=    --^^0.03 

^  ,  0^  =  0.015  =  1.5% 


436       Chapter  3        Applications  of  Differentiation 


36.    P  =  (500.x  -  x^)  -  i^-x^  -  llx  +  3000],  x  changes  from  1 15  to  120 

dP  =  (500  -2x-  X  +  ll)dx  =  (577  - 'ix)  dx  =  [577  -  3(115)](120  -  115)  =  1160 
Approximate  percentage  change:  —(100)  =  (100)  =  2.7% 


38.  V  =  f  777^,  r  =  100  cm,  dr  =  0.2  cm 

AV  =  dV  =  Airr^dr  =  4-77(100)2(0.2)  =  SOOOTrcm^ 


40.       E  =  IR 


R 

^    _ 

E 
I 

dR  =  -~dl 

R 

-{E/ndi 

dl 

E/I 

I 

dR 
R 

= 

dl 
J 

= 

dl 
I 

42.  See  Exercise  41. 


A  =  |(base)(height)  =  |(9.5cot  e)(9.5)  =  45.125  cot  6 
dA  =  -45.125  csc^erffii 

csc^  e  de         de 


cot  6         sin  6  cos  6 

^ 025^ 

(sin  26.75°)(cos  26.75°) 

^ 0.0044 

(sin  0.4669)(cos  0.4669) 

=  0.0109  =  1.09%  (in  radians) 


44.    /z  =  50  tan  9 

9  =  71.5°  =  1.2479  radians 
dh  =  50  sec^  d  •  dd 


50  sec2(1.2479) 


50tan(1.2479) 
9.9316 


■de 


2.9886 


■de 


<  0.06 


<  0.06 


\de\  <  0.018 


46.  Let/(;c)  =  ^,x  =  21,dx=  - 1 
fix  +  A;c)  -  fix)  +  /'(x)dc  =  ^  + 


3^ 


etc 


^^  =-  ^7  +  3-i^(-  1)  =  3  -  ^  -  2.9630 
Using  a  calculator,  ,^26  =  2.9625 


48.  Let  fix)  =x^,x  =  3,dx=  -0.01. 

fix  +  Ax)  '-fix)  ■+f'ix)  dx  =  x'  +  3x^dx 
fix  +  Ax)  =  (2.99)3  =  33  +  3(3)2(-0.01)  =  27  -  0.27  =  26.73 
Using  a  calculator:  (2.99)^  =  26.7309 


Review  Exercises  for  Chapter  3       437 


50.  Let/(jt)  =  tanjc,;c  =  0,  ^  =  0.05,/'(x)  =  sec^x 
Then 

/(0.05)»/(0)+/'(0)<it 

tan  0.05  «=  tan  0  +  sec^  0(0.05)  =  0  +  1(0.05). 


52.  Propagated  error  =  f{x  +  Aa:)  -  f(x). 


relative  error  = 


,  and  the  percent  error 


X  100. 


54.True,^  =  ^  =  a 
Ax      dx 


56.  False 

Let/(j;)  =  -/x,  X  =  \,  and  Ax  =  aLc  =  3.  Then 
^y  =f(x  +  Ax)  -f(x)  =/(4)  -/(I)  =  1 
and 

..=/W^  =  ^(3)  =  f. 
Thus,  dy  >  Ay  in  this  example. 


Review  Exercises  for  Chapter  3 


2.  (a)  /(4)  =  -/(-4)  = 
(c) 


-3 


At  least  six  critical  numbers  on  (—  6,  6). 


^■fi^)-^^,^^^^-\ 


fix)  =  X 


1 


+  (x2  +    l)-'/2 


(b)/(-3)=  -/(3)=  -(-4)  =  4 

(d)  Yes.  Since/ (-2)  =  -/(2)  =  -(-1)  =  1  and 

/(I)  =  — /(—  1)  =  —2,  the  Mean  Value  says  that  there 
exists  at  least  one  value  c  in  (—2.  1)  such  that 


f\c) 


/(l)-/(-2)       -2-1 


1  -  (-2) 


1  +2 


=  -1. 


(e)  No,  lim/(x)  exists  because /is  continuous  at  (0,  0). 

j:-»0 

(0  Yes, /is  differentiable  at  x  =  2. 


6.  No. /is  not  differentiable  at  .t  =  2. 


(x2  +    1)3/2 

No  critical  numbers  ■        - 

Left  endpoint:  (0,  0)  Minimum 
Right  endpoint:  (2,2/^5)  Maximum 

8.  No;  the  function  is  discontinuous  at  .r  =  0  which  is  in  the  interval  [—2,  1]. 


10.  /(x)  =  -    1  <  X  <  4 


fix)  =  --, 

f(b)-f(a)  _{\/A)-  1  _  -3/4 
b -  a  4-1  3 


12. 


f(x)  =  Vx  -  2r.  0  <  X  <  4 


"4 


fix)  = 

2J-.-' 

m 

b  - 

-/(«) 
-  a 

-6-0 
4-0 

/'(c)  =  -i 
c 


1       1 


no  =  ^ 


c  =  2 


c  =  1 


438        Chapter  3       Applications  of  Differentiation 


14.  fix)  =  lx^-2,x+  \ 

fix)  =  Ax-3 

f(b)-f(a)  _2\  -  1  _ 
b  -  a  4-0 

f\c)  =  4c  -  3  =  5 

c  =  2  =  Midpoint  of  [0,4] 


16.    g(x)  =  (x  +  1)3 
g'U)  =  3U  +  1)2 
Critical  number:  x  =  —\ 


Interval 

-oo  <  x  <  -\ 

-\    <  X   <   CO 

Signofg'U) 

g'(x)  >  0 

g'{x)  >  0 

Conclusion 

Increasing 

Increasing 

18.  f(x)  =  sinj:  +  cosjc,    0  <  ;c  <  2ir 
/'U)  =  cos  j:  —  sin  j: 


Critical  numbers:  x  =  —,x 

4 


5lT 

4 


Interval 

0<x<^ 

4 

TT               Sir 
4                4 

—  <  X  <  27r 

Sign  of  fix) 

fix)  >  0 

/'W  <  0 

fix)  >  0 

Conclusion 

Increasing 

Decreasing 

Increasing 

20.    gix)  =  ^sm(f-l],  [0,4] 


^'U)  =  |(f   cos(f -1 


2  2 

=  0  when  x  =  1  +  -,  3  +  — 

TT  IT 


Relative  maximum:  (1  H — ,  - 

2      3 
Relative  minimum:  I  3  H — .  — - 

TT         2 


Test  Interval 

0  <  X  <  1  +- 

77 

l+-<x<3+- 

3  +-  <  X  <  4 

TT 

Signofg'W 

g'W  >  0 

g'ix)  <  0 

g'ix)  >  0 

Conclusion 

Increasing 

Decreasing 

Increasing 

22.  (a)    y  =  /I  sin(Vfc7^f)  +  Bcos{Vk/mt) 

y'  =  A ^/kjm cosy  Jkjmt)  -  B^/kJmsiny^/kJmt) 

s'm^k/mt      A  i    r—r-  \      A 

••tan(VfeAwr)  =  -. 


=  0  when 


Therefore, 


zosjkjmt      B 


sin(  Vfc/m  t)  = 
cosy  Vk/mt)  = 


B 

JA^  +  B^' 


When  V  =  y '  =  0, 
>1 


y  =  A 


vM^+S2 


VA^  +  52 


VA2  +  52 


(b)  Period: 


27r 


Frequency: 


1 


1 


iTT/Vk/m       277 


/k/m 


Review  Exercises  for  Chapter  3        439 


24.   fix)  =  (x  +  2)Hx  -  4)  =  x3  -  lit  -  16 
fix)  =  3;c2  -  12 

fix)  =  6x  =  Owhen^  =  0. 
Point  of  inflection:  (0,  -  16) 


Test  Interval 

-OO   <  AT  <  0 

0  <  a:  <  OO 

Sign  of /"(or) 

f"(x)  <  0 

fix)  >  0 

Conclusion 

Concave  downward 

Concave  upward 

26.     h(t)  =  t  -  4jt+l     Domain:  [-l,oo) 

9 


h'{t)=l 


h"(t) 


Vr  +  1 


0  =>  f  =  3 


1 


(/  +    1)3/2 
1 


/i"(3)  =  o  >  0     (3,  —5)  is  a  relative  minimum. 


28. 


12     3     4     5     6     7 


30.     C=(£)..(f), 

x^  ^  2 


32.  (a)  S  =  -0.1222f3  +  1.3655f-  -  0.9052r  +  4.8429 

fb)        35 


(c)  S'{t)  =  0  when  t  =  3.7.  This  is  a  maximum  by  the 
First  Derivative  Test. 

(d)  No,  because  the  t^  coefficient  term  is  negative. 


Iv  2/v 

34.    hm  -  .,   ,   ^  =   lim  .  _^  ^  ,  ,  =  0 


36.    lim      ,  .,"         =   lim      ,  ,  = 

ar->oo  Vx^  +  4         Jr-.oo  Vl    +  4/.t- 


=  3 


38.  g{x) 


x=  +  2 


lim 


5.t= 


=   lim 


.t  ^oc  X^  +  2        ;t  -.OO  1   +  (2/x2) 

Horizontal  asymptote:  y  =  5 


=  5 


40.  f(x) 


3x 


lim      .  .,  =   hm      ,  .,        — = 

^-»°o  VAT  +  2      ■'-►OO  Vx-  +  2/vj: 


=   lim 


^-^0°  Vl  +  (2/.v=) 


=  3 


lim 


3j: 


j:-»-oo  ^x^  +  2         x-«-oc 


3x/x 


3 


=    lim    —    ^ 

X-----V1  +(2/.r^) 


=  -3 


Horizontal  asymptotes:  v  =  ±3 


440        Chapters        Applications  of  Differentiation 


42.  fix)  =  \x^  -  3.r2  +  2x|  =  \x{x  -  l)ix  -  2)| 
Relative  minima:  (0,  0),  (1,  0),  (2,  0) 
Relative  maxima:  (1.577,  0.38),  (0.423,  0.38) 


44.  g{x)  =  — —  4  cos  X  +  cos  2x 

Relative  minima:  {Itrk,  0.29)  where  k  is  any  integer. 
Relative  maxima:  {(2k  -  1)tt,  8.29)  where  k  is  any  integer. 


46.  fix)  =  4x^  -  xf  =  x^i'i  -  x) 

Domain:  (—oo,  oo);  Range:  (— oo,  27) 
fix)  =  12.x:2  -  4x^  =  4;c2(3  -  x)  =  0  when  x  =  0,  3. 
f'U)  =  2Ax  -  \2x-  =  12t(2  -  ;c)  =  0  when.x:  =  0,  2. 
/"(3)  <  0 

Therefore,  (3,  27)  is  a  relative  maximum. 
Points  of  inflection:  (0,  0),  (2,  16) 
Intercepts:  (0,  0),  (4,  0) 


48.  fix)  =  (x2  -  4)2  ■ 

Domain:  (-oo,  oo);  Range:  [0,  oo) 
fix)  =  Axix-  -  4)  =  0  when  a-  =  0,  ±2. 
fix)  =  4(3.t-  -  4)  =  0  when;c  =  ±^. 

/"(O)  <  0 
Therefore,  (0,  16)  is  a  relative  maximum. 

/"(±2)  >  0 
Therefore,  (±2,  0)  are  relative  minima. 

Points  of  inflection:  (±273/3,  64/9) 
Intercepts:  (-2,  0),  (0,  16),  (2,  0) 
Symmetry  with  respect  to  y-axis 

50.  fix)  =  ix-  3)(;c  +  2)3 

Domain:  (-cx),  oo);  Range:  [-^^6^,oo) 
fix)  =  ix-  3)(3)(;c  +  2)2  +  ix  +  If 

=  (4a;  -  l)ix  +  2)2  =  0  when;c  =  -2,\. 
fix)  =  iAx  -  l)i2)ix  +  2)  +  (x  +  2)2(4) 

=  6(2;c  -  \)ix  +  2)  =  0when;c  =  -2,\. 


Therefore, 


16,875 


■2se~)  is  a  relative  minimum. 


Points  of  inflection:  (-2,  0),  (5, 
Intercepts:  (-2,  0),  (0,  -24),  (3,  0) 


m5\ 

16) 


Review  Exercises  for  Chapter  3       441 


52.  f(x)  =  (x-  ly^^x  +  1)2/3 

Graph  of  Exercise  39  translated  2  units  to  the  right  (x  replaces  by  j:  -  2). 
(—  1,  0)  is  a  relative  maximum, 
(l,  -  l/i)  is  a  relative  minimum. 
(2,  0)  is  a  point  of  inflection. 
Intercepts:  (-1,0),  (2,0) 


54.  fix)  = 


2x 


1  +x'- 

Domain:  (—oo,  oo);  Range:  [—1,1] 

.,,  ,       2(1  -  x)il  +  x)      ^    .  _^, 

/  (x)  = ,.    .     -^.^ =  0  when  ;c  =  ±  1. 

(1  +  x-y 

f"(x)  =  ~,^^^  ~.f  •*  =  0  when  x  =  0,  +  ^. 

(1  +  x-y 

/"(I)  <  0 
Therefore.  (1,  1)  is  a  relative  maximum. 

/"(-I)  >  0 
Therefore,  (—  1,  —  1)  is  a  relative  minimum. 

Points  of  inflection:  (-^3,  -^3/2),  (0,  0),  (73,  73/2) 

Intercept:  (0,  0) 

Symmetric  with  respect  to  the  origin 

Horizontal  asymptote:  y  =  0 


56.  f(x)  = 


Domain:  (— oo,  oo);  Range: 


"■{ 


(1  +  X*){2x)  -  xMx>)      ^x{l  -  x)(l  +  x){\  +  X-) 
/  W  =  — (TTTP = (TTl^p =  0  when.v  =  0.  ±1. 

,,.  ^       (1  +  x^yq  -  10:c^)  -{2x-  2r^)(2)(l  +  .x^^Ax^)      2(1  -  12v^  +  3.t^)      ^    . 

/"(±1)  <  0 

Therefore,  I  ±  1,  - 1  are  relative  maxima 

/"(O)  >  0 
Therefore.  (0, 0)  is  a  relative  minimum. 


J 6  ±  733 


Points  of  inflection 

Intercept:  (0,0) 
Symmetric  to  the  >'-axis 
Horizontal  asymptote:  v  =  0 


.(.7^,o.4(.^ 


733 


0.40 


-I 1 f— NtH 1 (-> 


442        Chapters        Applications  of  Differentiation 


58.  fix)  =  .r2  +  -  =  ^^^^ 

X  X 

Domain:  (-00,  0),  (0,  oo);  Range:  (-00,00) 
/  U)  =  2x  -  ^  =       ^;       =  0  when  a;  =  ^. 
/"W  =  2  +  ^  =  ^^^^^^  =  0  when;c  =  - 1. 

Airi^  > » 

/  1      3  \ 
Therefore,    — ;=,  —p^    is  a  relative  minimum. 

Point  of  inflection:  (-1,0) 
Intercept:  (-1,0) 
Vertical  asymptote:  x  =  0 


60. /(jc)  =  |;c-  1|  +  |;c-  3| 

Domain:  (-00,00) 
Range:  [2,  00) 
Intercept:  (0,4) 


y 

4 1[  (0,  4) 

/ 

3- 
2- 
1- 

v 

J 

/ 

— 

h- 

1 

— H — 

2 

— 1 — 
3 

1 ^^ 

4 

62.  f(x)  =  —(2  sin  ttj:  -  sin  l-nx) 


Domain:  [-  1,  1];  Range: 


-373  373 


277      '     277 

f\x)  =  2(cos  TTx  -  cos  Itm)  =  -2(2  cos  im  +  l)(cos  Trt  -  1)  =  0 


Critical  Numbers:  x  =  +-,  0 


f"(x)  =  2it(— sin  TTx  +  2  sin  277x)  =  277  sin  77x(—  1  +  4  cos  •nx)  =  0  whenx  =  0,  ±1,  ±0.420. 

2   -373^ 


By  the  First  Derivative  Test: 


3'        277 

2  3V3 


is  a  relative  minimum. 


is  a  relative  maximum. 


v3'   277 

Points  of  inflection:  (-0.420,  -0.462),  (0.420,  0.462),  (±1,  0),  (0,  0) 
Intercepts:  (- 1,  0),  (0,  0),  (1,  0) 
Symmetric  with  respect  to  the  origin 


64.  f{x)  =  x",    n  is  a  positive  integer. 
(a)/'(x)  =  /j^-' 

The  function  has  a  relative  minimum  at  (0,  0)  when  n  is  even, 
(b)  f"{x)  =  nin-  \)x"-^ 

The  function  has  a  point  of  inflection  at  (0, 0)  when  n  is  odd  and  n  >  3. 


Review  Exercises  for  Chapter  3       443 


f 


66.  Ellipse:  frr  +  fz  =  1'  >"  =  tV144  -  jc^ 
144       16  3 


A  =  (It)!  |Vl44  -  X-  1  =  ^;cVl44  -  x'^ 


dA  ^41" ^ 


dx      3LVl44  -a:- 

_  41"  144  -  2jc^ 
~  3Lvi44-x- 


=  +  yi44 


^] 


=  Owhenx=  772  =  672. 


The  dimensions  of  the  rectangle  are  Ix  =  12^2  by  y  =  -Vl44  —  72  =  4^2. 


68.  We  have  points  (0,  y),  [x,  0),  and  (4,  5).  Thus, 


y-  5       5-0  5x 

m  = 7  = or  V 


0-4      A-  x      ■       X  -  4 
5x    \2 


Let/U)  =  l2  =  ;c2  + 


X  -  4 


fix)  =  2;c  +  50| 


X-  4 


X  -  4  —  X 

.  (x  -  4Y 


]  =  „ 


100^         n 
X  —  -, -;t  =  0 


U  -  4)3 
■:i(x  -  4)3  -  100]  =  Owhen.r  =  Oor^:  =  4  +    3/lOO. 


L  = 


V^ 


25.r= 


(x  -  4)2      X-  4 


J{x  -  4Y-  +  25 


yiOO  +  4 

yioo 


7100-/3  +  25  =  12.7  feet 


70.  Label  triangle  with  vertices  (0,  0),  (a,  0),  and  {b,  c).  The  equations  of  the  sides  of  the  triangle  are  y  =  (c/b)x  and 
y  =  [c/(b  —  a)]ix  —  a).  Let  (x,  0)  be  a  vertex  of  the  inscribed  rectangle.  The  coordinates  of  the  upper  left  vertex  are 
(x,  {c/b)x).  The  y-coordinate  of  the  upper  right  vertex  of  the  rectangle  is  {c/b)x.  Solving  for  the  .t-coordinate  x  of  the 
rectangle's  upper  right  vertex,  you  get 


c 

7 


—  a 
(b  —  a)x  =  bijc  —  a 

b-  a 


-(x-a) 


X  = 


a-b 
X  +  a  =  a ; — X. 


Finally,  the  lower  right  vertex  is 
Width  of  rectangle:  a — x  —  x 


(b.c) 


^l.x-a) 


(0.0)       (.1,0)  /    (aO) 

(o-ilf*..0) 


Height  of  rectangle:  -rx    (see  figure) 
b 


A  =  (Width)(Height)  =  [a-  ^-j^x  -  ;cj(^.v]  =  (a  -  ^xj^x 


dA      I        a   \c      I  c 

-Ix^V-'bTb^^^' 


a\       ac       lac        „     ,  b 

-  r    = T^x  =  0  when  .r  =  — 

bl        b         kr  2 


Al)  =  {"  -  \%%%  =  (f)(f)  =  r^  =  %''']  =  |(Area  of  triangle) 


444        Chapters       Applications  of  Differentiation 


72.  You  can  form  a  right  triangle  with  vertices  (0,  y),  (0,  0),  and  (x,  0).  Choosing  a  point  {a,  b)  on  the  hypotenuse 
(assuming  the  triangle  is  in  the  first  quadrant),  the  slope  is 


b      b-0 


■y 


-bx 


0  —  a      a  —  X 

Let  fix)  =  L^  =  x^  +  y^  =  x^  + 

fix)  =  2x  +  21 


a  —  x 

-bx  \2 


a  -  X 

-bx 
a  —  X 


-ab    1 

a  -  xy\ 


2x[{a  -  xy  +  ab^]       .     ,  .      ^    .r-r^ 

— ^=^ -^-: =  0  when  x  =  0,a  +   </ab^. 

(a  -  xy 

Choosing  the  nonzero  value,  we  have  y  =  b  +  l/a^b. 


L  =  J{a  +  i/^Y  +  {b  +  i/^y 

=  (a^  +  3a''''3&2/3  +  3^2/3^4/3  +  ijiyr- 
=  (a2/3  +  ^2/3)3/2  meters 


74.  Using  Exercise  73  as  a  guide  we  have  L,  =  a  esc  9  and  Lj  =  ^  sec  d.  Then  dL/dd  —  —  a  esc  0  col  0  +  b  sec  Oiaa  0  =  Q  when 


.      ^r-rr       „      7^2/3  +  ^2/3               7^2/3  +  ^2/3 
tan  6  =  </a/b,  sec  6  = 1-775 ,  esc  6  = —^ and 


^1/3 

L  —  L^  +  L2  =  a  CSC  d  +  b  sec  6  =  a 
This  matches  the  result  of  Exercise  72. 


,1/3 


(a2/3  +  j,2/3)l/2  (a2/3  +  ^2/3)1/2 

a'/3  +  ^  /,l/3 


(^2/3   +   ^2/3)3/2^ 


76.  Total  cost  =  (Cost  per  hour)(Number  of  hours) 

'2  ^/110\       llv      825 

50         V 


^^^•^«/Vv 


dT^  11^_  825  ^  11  v^  -  41,250 
dv  ~  50        v2   ~  50v2 


=  0  when  v  =  V3750  =  25  V^  «  61.2  mph. 
d'^T      1650 


dv^ 


0  when  v  =  25  V6  so  this  value  yields  a  minimum. 


78.  fix)  =x^  +  lx+  \ 

From  the  graph,  you  can  see  that/(x)  has  one  real  zero. 

fix)  =  3^2  +  2 
/changes  sign  in  [—  1,  0]. 


n 

Xn 

/UJ 

/'UJ 

fi^n) 

1 

-0.5000 

-0.1250 

2.7500 

-0.0455 

-0.4545 

2 

-0.4545 

-0.0029 

2.6197 

-0.0011 

-0.4534 

On  the  interval  [-1,0]:  ;c  ==  -0.453. 


Problem  Solving  for  Chapter  3 


445 


80.  Find  the  zeros  of/(jc)  =  smirx  +  x  —  \. 

f'(x)   =   TTCOS  ITX  +    1 

From  the  graph  you  can  see  that/U)  has  three  real  zeros. 


n 

K 

/U„) 

/'UJ 

/'UJ 

X        ^^'"^ 

1 

0.2000 

-0.2122 

3.5416 

-0.0599 

0.2599 

2 

0.2599 

-0.0113 

3.1513 

-0.0036 

0.2635 

3 

0.2635 

0.0000 

3.1253 

0.0000 

0.2635 

n 

■\ 

/UJ 

/'U„) 

f'UJ 

"  /V„) 

1 

1.0000 

0.0000 

-2.1416 

0.0000 

1.0000 

n 

-"^n 

fix  J 

/'UJ 

nx„) 

"  fix  J 

1 

1.8000 

0.2122 

3.5416 

0.0599 

1.7401 

2 

1.7401 

0.0113 

3.1513 

0.0036 

1.7365 

3 

1.7365 

0.0000 

3.1253 

0.0000 

1.7365 

The  three  real  zeros  of/(.r)  are  a:  =  0.264,  x  =  1,  and  x  ^  1.737. 


82,    y  =  V36  -  x- 

dx      2^  736  -:<^ 


afy  = 


v'^ 


=5  (it 


84.     p  =  75  -  jx 

4 

Ap  =  ;7(8)  -  p(7) 

^5-«Ul75 


[Ap  =  o'p  because  p  is  linear] 


Problem  Solving  for  Chapter  3 

2.  (a)  dV  =  3x2a[x:  =  3x2Ax 

AV  =  (x  +  Ax)3  -  ;c^  =  3.t2AA:  +  3.r(A.t)=  +  (Ax)' 

AV-  dV  =  3x{Axy  +  (AxY  =  [3xAx  +  (Ax)2]Ax 

^  ^  ^ 

e 

=  eAjt,  where  e  — >  0  as  Ax  — )  0. 

Av 
(b)  Let  fi  =  -^  -  /'(x).  Then  e^O  as  Ax->0. 


Furthermore,  Ay  —  dy  =  Ay  -  f'ix)dx  =  eAx. 


446 


Chapter  3       Applications  of  Differentiation 


4.  Let  h{x)  —  g{x)  —  fix),  which  is  continuous  on  [a,  b]  and 
differentiable  on  [a,  b).  h(a)  =  0  and  h{b)  =  gib)  -  fib). 

By  the  Mean  Value  Theorem,  there  exists  c  in  ia,  b) 
such  that 


h'ic) 


hib)  -  hja)      gib)  -  fib) 


b  —  a  b  —  a     ' 

Since  h  '(c)  =  g  '(c)  —  /'(c)  >  0  and  b  -  a  >  0, 
gib) -fib)  >0  ^  gib)  >fib). 


3a 


One  point  of  inflection. 


6.  (a)  /'  =  lax  +  b,f"  =  2a  i=  0.  No  points  of  inflection. 

(b)  /'  =  3ax^  -  2bx  +  c,f"  =6ax  +  2i  =  0=>   x  = 

(c)  y'  =  kyiL  —  y)  =  kLy  —  IqP- 

y"  =  kLy'  -  2kyy'  =  ky'iL  -  2y) 

If  y  =  —,  then  y"  =  0  and  this  is  a  point  of  inflection  because  of  the  analysis  below. 


++++++ 

.V":  1- 


d  =  JWn?,  sin  d  =  -. 
a 

Let  A  be  the  amount  of  illumination  at  one 

of  the  comers,  as  indicated  in  the  figure.  Then 

kl  .    „  klx 


(13^  +  x") 


sin  0  ■ 


(132  +  ;c2)3/2 


(x2  +  169)3/2(1)  -  .r  I  I(x2  +  169)'/2(2x)      "^ 
A'W  =  kl ^^^^, =  0 

=^   (x^  +  169)3/2  =  3xHx^  +  169)'/2 
x^  +  169  =  3x^ 
2x2  =  169 

13 


72 


9.19  feet 


By  the  First  Derivative  Test,  this  is  a  maximum. 


Problem  Solving  for  Chapter  3        447 


10.  Let  T  be  the  intersection  of  PQ  and  RS.  Let  MN  be  the  perf>endicular  to  SQ  and  PR  passing  through  T. 
Let  TM  =  X  and  TN  =  b  -  X. 


SN         MR 
b  -  X        X 

SN  =  - — -MR 

X 

b  -  X        X                           X 

SQ  =  ^^^{MR  +  PM)  =  ^^^d 

AW  =  Area  =  i^.  +  {('  "  'd)ib  -  .)  =  ^^d[x  +  ^'  '  ""^'^ 

A'U)=^d 

'x(4x  -  2b)  -  [Ix-  -  2bx  +  tr)' 

[                        x^                        J 

2x2  _  2bx  +  b- 


A  \x)  =  0  ^  4^2  -  Ixb  =  2x-  -2bx  +  Ir 

2x^  =  IP- 
b 

X  =  — 7= 

v/2 

Hence,  we  have  SQ  = d  = 7—= — '-d  =  I  v  2  - 

X  b/j2 


\)d. 


Using  the  Second  Derivative  Test,  this  is  a  minimum.  There  is  no  maximum. 

S  N  Q 


12.  (a)  Let  M  >  0  be  given.  Take  N  =  ^/m.  Then  whenever  x  >  N  =  Jm, 
you  have 


f(x)  =  x~  >  M. 

(b)  Let  8  >  0  be  given.  Let  M 
you  have 


Then  whenever  x  >  M 


e  .r' 


1 


(c)  Let  E  >  0  be  given.  There  exists  N  >  0  such  that  |/(.r)  -  L\  <  e  whenever  .v  >  N. 

Let  6  =  —  Let  x  =  -. 

N.  y 

If  0  <  V  <  S  =  — ,  then  -  <  —  =>  .v  >  Af  and 

N  X       N 


[fix)  -  L\ 


/(;)-^ 


448        Chapters        Applications  of  Differentiation 


14.  Distance  =  J^^Tl?  +  7(4  -  xY  +  4^  =  f(x) 

X  4  -  X 


f'(x) 


0 


74^  +  x^      V(4  -  x)2  +  42 
xV(4  -  x)2  +  42  =  U  -  4)742  +  ;c2 
x2[16  -  8a:  +  ^  +  16]  =  (x2  -  fo  +  16)(16  +  ;c2) 

32x2  _  8^3  +  j;"  =  x''  -  8;c3  +  32;c2  -  128x  +  256 
128x  =  256 
x  =  2 
The  bug  should  head  towards  the  midpoint  of  the  opposite  side. 
Without  Calculus;  Imagine  opening  up  the  cube: 


The  shortest  distance  is  the  line  PQ,  passing  through  the  midpoint. 


16.  (a)  s  = 


v^^lOOO-^ 
hr  \  km 


3600 


sec 
hr 


18 


V 

20 

40 

60 

80 

100 

s 

5.56 

11.11 

16.67 

22.22 

27.78 

d 

5.1 

13.7 

27.2 

44.2 

66.4 

d{t}  =  0.071^2  +  0.389i  +  0.727 
(c)     1° 


T  =  -(O.O7I52  +  0.3895  +  0.727)  +  — 
s  s 

The  minimum  is  attained  when  5  =  9.365  m/sec. 


(b)  The  distance  between  the  back  of  the  first  vehicle 
and  the  front  of  the  second  vehicle  is  d{t),  the  safe 
stopping  distance.  The  first  vehicle  passes  the  given 
point  in  5.5/ s  seconds,  and  the  second  vehicle  takes 
d(s)/s  more  seconds.  Hence, 

^      d{s)      5.5 
s  s 


(d) 


T(s)  =  0.0715  +  0.389  + 


6.227 


T'{s)  =  0.071 


6.227 


,  ^  6.227 
■  ■^       0.071 

•  5  ~  9.365  m/sec 


r(9.365)  «  1.719  seconds 

9.365  m/sec  •  ^^  =  3.37  km/hr 

(e)  49.365)  =  10.597  m 


18.  (a) 


X 

0 

0.5 

1 

2 

1 

1.2247 

1.4142 

1.7321 

71  +x 

f- 

1 

1.25 

1.5 

2 

(h)  Let  f(x}  =  71  +  X.  Using  the  Mean  Value  Theorem  on  the  interval  [0,  x], 
there  exists  c,0  <  c  <  x,  satisfying 

1  /U)-/(0)  _  7m^-  1 

271  +  c  X  -  0  x 


Ac)  = 


Thus  71  +  X 


— ,  +  1  <  — 1-1  (because  7l  +  c  >  1). 

271  +  c  2 


CHAPTER     4 
Integration 


Section  4.1      Antiderivatives  and  Indefinite  Integration    450 

Section  4.2      Area 456 

Section  4.3      Riemann  Sums  and  Definite  Integrals 462 

Section  4.4      The  Fundamental  Theorem  of  Calculus    466 

Section  4.5      Integration  by  Substitution 472 

Section  4.6      Numerical  Integration     479 

Review  Exercises      483 

Problem  Solving 488 


CHAPTER     4 

Integration 

Section  4.1       Antiderivatives  and  Indefinite  Integration 

Solutions  to  Even-Numbered  Exercises 


dx\  X  XT 


dx\     37^  J      dx\3 

x^  -  1 
=  tA/2  _  ^-3/2  =  ± i 


4.     '^' 


r=  -nG^  C 


Check:  —  [ttO  +  C]  =  77 


8.?  =  2;c-3 
ax 

;>'  =  — —  +  C  =  — r  +  c 


-2 


Check: 


+  C 


=  2x- 


Given 


10. 


Rewrite 


J^^  :  ]■ 


X  ^cbc 


Integrate 


-1 


+  C 


Simplify 


12.    L(a:2  +  3)  ^  I  (jc3  +  3x)  die  j  +  sfyj  +  C       jx''  +  ^x^  +  C 


"•J(3^  i       if 


-^dx 


I/JC" 


9V-1 


+  C 


4  2 


9x 


+  C 


/' 


16.      (5  -  x)^  =  5x  -  y  +  C 

Check:  ^5^-Y  +  C'=5-a: 


/ 


18.      (4x3  +  6^2  _  1)^  =  ^4  +  2x3  -  X  +  C 


Check:  -f  [x"  +  2x3  -  x  +  C]  =  4x3  +6x2-1 
ax 


/< 


20.    I  (x3  -  4x  +  2)rfx  =  —  -  2x2  +  2x  +  C 


Check:  4" 

dx 


x^ 

—  -  2x2  +  2x  +  C 

4 


=  x3  -  4x  +  2 


22./ 


^^ "  ^)  ^  =  /(^"^ "  r'')  "^-Iti^  iQ  ^  ^  -  ¥''  -  ^"'  ^  ^ 


Check:  -^f  |x3/2  +  x'/2  +  c)  =  x'/^  +  ix-'/2  =  v^  +  -^ 
dx\Z  I  2  2Vx 


450 


Section  4. 1        Antiderivatives  and  Indefinite  Integration       451 


i.  Uv^  +  i)dx=  I  (. 


24.    I  (i/x^  +  l)dx=   I  (jc^/"  +  1)  dx  =  V/t  +X+  C 
Check:  ^f^^^''''  +  ;c  +  c)  =  .x^/"  +  1  =  V?  +  1 


26. 


1^-  =  / 


;c-''dx  =  — +  C 


Check:  "rl  "A  +  c)  =  ^ 


2x' 


+  C 


28.   r'"^y — -dx  =  1^-2  +  2x-3  -  3x-'')d:x  30.   j  (2/2  -  1)^  dt  =  j  (4r'  -  4?^  +  1)  rfr 


-1 


X~'  2x~2  "Ir-J 

-1        -2         -3 


J  +  -  +  C 


Check: 


dx 


X       x'^       jc" 


^  x-2  +  2x'^  -  3x-'* 
x^  +  2x-2 

X* 


4.       4 


f3  +  ;  +  C 


Check: 


^(1,5   _  1,3 


dt\5         3 


r^  +  ;  +  c    =  4r*  -  4/2  +  1 


(2/2  -  1)2 


32.    1(1  +  3f)r2d;  =  j(;2 


+  3/3)  rfr  =  |/3  +  I''  +  C 


Check:  ^(j/'  +  I/-*  +  C)  =  /2  +  3/'  =  (1  +  3/)/2 


34.      3  A  =  3/  +  C 


Check:  —(3/  +  C)  =  3 
dt 


36.    I  (f2  -  sin  /)  dt  =  -/^  +  cos  /  +  C 

Check:  —  -/^  +  cos  /  +  C    =  /2  -  sin  / 
dt\3  J 


38. 


(e-  +  sec2  e)  (ie  =  -e^  +  tan  e  +  c 

Check:  — (-e^  +  tan  6  +  c]  =  6-  +  sec2  e 


40.      sec  ^(tan  y  —  sec  y)  dy  =     (sec  y  tan  y  —  sec2  y)  dy 

=  sec  y  -  tan  y  +  C 

Check:  -;-(sec  y  —  tan  y  +  C)  =  sec  y  tan  v  —  sec2y 
dy 

=  sec  y(tan  y  -  sec  y) 


42.  f-^^?iViv=  f^iT=  ff-^y^ix 

J  1  —  cos-x  J  sin-.x  J  \sin.x/Vsin.x/ 

=     esc  X  cot  X  d.x  =  -  CSC  X  +  C 

_,       ,       li  r  ^T  1  cos  X 

Check:  -H -esc  x  +  CI  =  esc  x  cot  x  +  — —  •  — — 
dx  sin  X     Sin  x 

cosx 


1  —  cos2x 


44.  f(x)  =  Jx 


46.  /'(x)  =  X 


48.  fix)  = 


fU) 


+  C 


452       Chapter  4        Integration 


50.  ^  =  2U  -  1)  =  2x  -  2,  (3,  2) 
ax 


=  \2{x  - 


l)dx  =  x^  -2x+  C 


2  =  (3)2  -  2(3)  +  C  =>  C  =  - 1 
y  =  x^-2x-l 


52. 


dy 
dx 

y 


=  -x-2-  (1,3) 


/- 


;c-2cic  =  -  +  C 


3  =  Y+C=>  C  =  2 


v  =  -  +  2,  x>0 


54.  (a) 


x" 


1.  (-1,3) 


y=j-x+C 
3=^-(-l)  +  C 


3  =  --+  1  +  C 


C  = 


56.  g'(^)  =  6x2,g(0)=  -1 

g(0)  =  - 1  =  2(0)3  +  C  =*  C  ^ 
^(;c)  =  2^3-1 


58.  f'is)  =  6s  -  Ss\  /(2)  =  3 

fis)  =   \{6s  -  8s^)ds  =  3^2  -  2j''  +  C 

/(2)  =  3  =  3(2)2  _  2(2)t  +  C=  12- 32 +  C^C  =  23 
/(i)  =  3*2- 2*^+23 


60.  /"(x)  =  x^ 
/'(O)  =  6 
/(O)  =  3 


/'W  =  |. 


x^dx  =  h^  +  Ci 


/'(O)  =  0  +  Ci  =  6^  Ci  =  6 


/'(;c)  =  3^  +  6 


=10' 


/(;c)  =  \{-x^  +  6]dx  =  —x"  +  6x  +  C2 


/(O)  =  0  +  0  + Q  =  3 
fix)  =  — x"  +  6j:  +  3 


C2  =  3 


62.  fix)  =  sinx 
/'(O)  =  1 
/(O)  =  6 


/'W  =  I 


sin  X  £&  =  —  cos  X  +  C 


/'(O)  =-l+Ci  =  l=>Ci  =  2 
/'(x)  =  —  cos  X  +  2 


•(^)  =  J 


fix)  =  I  (-  COS  X  +  2)dx  =  —  sinx  +  2x+  C2 

/(O)  =  0  +  0  +  C2  =  6  =>  Q  =  6 
fix)  =  -sinx  +  2x  +  6 


Section  4.1        Antiderivatives  and  Indefinite  Integration       453 


64.  ^  =  k^t,  0  <  f  <  10 
dt 


Pit) 


=   ffa'/2A  = 


rfa3/2  +  C 


P(0)  =  0  +  C  =  500  =>  C  =  500 


PW  =  t/c  +  500  =  600  =>  A:  =  150 


Pit)  =  T{150)f3/2  +  500  =  i00r3/2  +  500 
P(7)  =  100(7)3/2  +  500  =  2352  bacteria 


66.  Since/" is  negative  on  (-co,  0),/'  is  decreasing  on 
(-00,  0).  Since/' is  positive  on  (0,  co),/'  is  increasing 
on  (0,  oo)./'  has  a  relative  minimum  at  (0,  0).  Since/'  is 
positive  on  (-oo,  oo),/is  increasing  on  (-oo,  oo). 


68.  /'to  =  ait)  =  -32ft/sec2 
/'(O)  =  Wo 
/(0)  =  ^o 
fit)  =  v(r)  =  I 
/'(O)  =  0  +  C,  =  vo  =»  C, 


32d?=  -32r  +  C, 


/'(f)  =  -32f  +  vo 

fit)  =  j(0  =  J  (-32r  +  vo)  dt=  -  16f2  +  VqI  +  Q 

/(O)  =  0  +  0  +  Cj  =  io  =*  Q  =  •5o 
/(r)  =  -  16r-  +  vof  +  Jo 


70.  Vo  =  16  ft/sec 
ig  =  64  ft 

(a)  j(f)  =  -16f'+  16f +  64  =  0 

-I6(t^-  f-4)  =  0 

1  ±  yi7 

Choosing  the  positive  value, 

1  +  yr? 


(b) 


~  2.562  seconds. 


v{t)  =  s'it)  =  -32r+  16 


<^) 


1  +  yn 


2       /        -32^^1  +  16 


-16yi7  =  -65.970  ft/ sec 


72.  From  Exercise  7 l,/(r)  =  -4.9?^  +  1600.  (Using  the 
canyon  floor  as  position  0.) 

fit)  =  0  =  -4.9f2  +  1600 

4.9^2  =  1600 

,      1600 


4.9 


f  =  7326.53  =  18.1: 


74.  From  Exercise  71,  f(t)  =  -4.9F  +  Vor  +  2.  If 
/(f)  =  200  =  -4.9f2  +  vof  +  2, 
then 


Kr) 


-9.8f  +  Vo  =  0 


for  this  f  value.  Hence,  f  =  Vo/9.8  and  we  solve 


-'■'[ts)  ^  "its)  ^  ^  =  2o« 

(9.8)2    +98      198 

-4.9vo=  +  9.8vo2  =  (9.8)2  198 
4.9  vo^  =  (9.8)2 198 

Vo2  =  3880.8  =>  Vo  =  62.3  m/sec. 


454        Chapter  4        Integration 


76. 


V  dv  = 

-GM 

-dy 

r 

¥^ 

y 

Wheny  ■■ 

=  R,v-- 

=  Vo- 

y 

GM 
R 

+  C 

c 

-k 

GM 
R 

2^ 


GM      1    ,      GM 


IGM 


v2  =  Vq^  +  2GM| 


e-a 


78.  x(t)  =  {t-  l)(t  -  3)2  0  <  r  <  5 

=  t^  -  7f2  +  15f  -  9 

(a)  v(r)  =  x'it)  =  3r2  -  Ut  +  15  =  (3f  -  5)(r  -  3) 
ait)  =  v'(r)  =  6f-  14 

(b)  v(r)  >  0  when  0<r<-and3<?<5. 


(c)  a{t)  =  6t  -  14  =  0  when  /  =  -. 


^«l)-)(l-)-H)- 


80.  (a)  a{t)  =  cos  t 

v{t)  =  J  a(t)  dt  =   I  cos  t  dt  =  sin  t  +  Ci  =  sin  t  (since  Vq  =  0) 

/W  =  I  v(r)  rff  =  I  sin  f  rff  =  -cos  t  +  Cj 

/(O)  =  3  =  -cos(O)  +  C,  =  - 1  +  C2  =>  C2  =  4 
fit)  =  -  cos  r  +  4 
(b)  v(r)  =  0  =  sin  f  for  f  =  kir,  k  =  0,\,2,.  .  . 


82.  v(0)  =  45  mph  =  66  ft/sec 

30  mph  =  44  ft/ sec 
15  mph  =  22  ft/sec 
ait)  =  -a 
v(l)  =  -at  +  66 

■y(f)  =  -|f2  +  66t  (Leti(O)  =  0.) 

v(?)  =  0  after  car  moves  132  ft. 

—at  +  66  =  0  whenr 


66 

a  ' 


■66\  ^      a (66 


2\a 


+  661 


?) 


=  132  when  a 


33 


=  16.5. 


ait)  =  - 16.5 

v{r)  =  -  I6.5t  +  66 

sit)  =  -8.25t2  +  66f 


(a) 

-  16.5r  +  66  =  44 

22 

/  22  \ 
<,6.5)-^3.33ft 

(b) 

-  16.5r  +  66  =  22 

44 
t  =  ^^^^  ^  2.667 

.(^)  =  117.33  ft 


(c) 


# 

^ 


73.33      117.33 
feet        feet 


It  takes  1.333  seconds  to  reduce  the  speed  from  45  mph  to 
30  mph,  1.333  seconds  to  reduce  the  speed  from  30  mph 
to  15  mph,  and  1.333  seconds  to  reduce  the  speed  from 
15  mph  to  0  mph.  Each  time,  less  distance  is  needed  to 
reach  the  next  speed  reduction. 


Section  4. 1        Antiderivatives  and  Indefinite  Integration       455 


/■30  r30 

84.  No,  car  2  will  be  ahead  of  car  1.  If  v,(f)  and  V2(f)  are  the  respective  velocities,  then        \v2{t)\dt  >         \v^(t)\dt. 

Jo  Jo 


86.  (a)  V  =  0.6139f3  -  5.525r"  +  0.0492f  +  65.9881 


,^^    ,,       ,    ,,^       0.6139?*      5.525/^   ,   0.0492^2      ^^„„„, 
(b)  i(f)  =     v{t)dt  = : : —  + z +  65.988U 


=  jvO 


4  3  2 

(Note:  Assume  ^(0)  =  0  is  initial  position) 

s(6)  =  196.1  feet 


88.  Let  the  aircrafts  be  located  10  and  17  miles  away  from  the  aiiport,  as  indicated  in  the  figure. 
v^(t)  =  Z:^  r  -  150  Vg  =  kgt  -  250  Airpon 


■Sa(')  =  h^  '-  -  150:  +10  Sb  =  ^kg  e-  -  250t  +  17 


A       -•— B 

H h- 


(a)  When  aircraft  A  lands  at  time  r^  you  have 


^aUa)  =  ^a  ?a  -  150 


100 


50 


^AiO  =  ^I^A  tl  -  150r.  +  10  =  0 


"A^'-Al  t'^A  'a 


1/50^, 


^      150r^=-10 


125f^  =  10 


=  i°- 
'^  "  125- 


50 


125 


625    , 


/t^  =  —  =  50(— -)  =  625  =^  S^it)  =  5,W  =  ^^t--  150f  +  10 


Similarly,  when  aircraft  B  lands  at  time  tg  you  have 

135 

Vgitg)     =    kg  tg    "    250    =     "   1  1 5      =>      Ag    =    


SB{tg)=-kgtl-250tg+  17  =  0 

U—]ti  -  250tg  =  -  17 

365 

2    * 


2Vr    '''^ 


34 
'«  "  365- 


135       ,.,,/365\       49,275        ^,,       ^,,       49,275,      .,,„ 


(b)      20 


(c)  d  =  Sgit)  -  s^{t) 

Yes,  tf  <  3  for  f  >  0.0505. 


20 

^ 

3 

/ 

— ^1 

90.  True 


92.  True 


456       Chapter  4        Integration 


94.  False.  /  has  an  infinite  number  of  antiderivatives,  each 
differing  by  a  constant. 


96.  j^{s{x)Y  +  [c{x)i\  =  2s{x)s'(x)  +  2c{x)c'{x) 

=  ls{x)c{x)  -  2c{x)s{x) 

=  0 

Thus,  \s{x)Y  +  \c{xJY  =  k  for  some  constant  k.  Since, 

5(0)  =  0  and  c(0)  =  1,  A:  =  1. 

Therefore, 

[six)f  +  [cixW  =  1. 

[Note  that  s{x)  =  sin  x  and  c{x)  =  cos  x  satisfy  these 
properties.] 


Section  4.2       Area 


2,   ^k(k-2)  =  3(1)  +  4(2)  +  5(3)  +  6(4)  =  50 


*=3 


4.^1=1+1  +  1  =  47 
^•,4y       3      4      5      60 


4 

I 

1  =  1 


6.  ^[(/  -  1)2  +  (i  +  1)3]  =  (0  +  8)  +  (1  +  27)  +  (4  +  64)  +  (9  +  125)  =  238 


15         5 


10. 


l['-(i 


16.  ;£(2(-3)  =  22'-3(15) 

i=l  i=l 


=  2 


15(16) 


45  =  195 


9    " 

12. -y 

[■-(!-')! 

10                                10                 10 

18.  2(r-l)  =  X''-Il 

1=1                                      /=1                  (=1 

rio(ii)(2i)" 

L        6 

"•;sv^ 


10  =  375 


10 

1 

i=l 


10  10 


20.  2*^  +  1)  =  2^''  +  E' 


1=1     1=1 


102(11)2  ,  r  10(11) 


L- 


3080 


22.  sum  seq(x  03  -  2x,  x,  1,  15,  1)  =  14,160    (71-82) 
■g(;3  _  2i)  =  (15)'('5  +  ^y  _  ;  15(15  +  1) 


4 
(15)2(16)2 


15(16)  =  14,160 


24.  5  =  [5 +  5+4  +  2](1)  =  16 
5  =  [4 +  4  +  2  +  0](1)  =  10 


26.  5  = 


2       1 
5+2+1+-+- 

2  +  1+l  +  Ul" 
3      2      3 


55 
6 


28.  5(8) 


1    ,  „\1 


+  2^.  L/l  +  ^U.      /!.zU.(yr.z)l 


lV2,V3,,,V5,V6,y7 


--/^-^ 


=  7!  16  +  ^  +  ^  +  ^+  1  +-V  +  -^  +  ^+  VIH  6.038 
4V222  222' 


5(8)  =  (0  +  2)-  + 


'1       _\1 


-a*'Ia* 


v^h 


7  +  2)7 -5.685 

4         14 


Section  4.2        Area       457 


3...,5,=.(i)./Tf(i).y 
-i 


-'Di^v-gmi^v-erd 


Ifj  ^  V24  ^  v^  _^  yi6  _^  79" 


=  0.859 


„     ,-      r/64\n(«  +  1)(2«  +  1)1       64,.      \2n^  +  ?,n~  +  n 
32.    hm      — H^ ^ ^    =  -r'™    3 

34.    hm      -r   „  =xlim    ^    = -(i)  = - 


6^  -^       3 


36.  2^^V^  =  -3E(4/-  +  3)  = 


An(n  +  1) 


+  3/j 


2/1  +  5 


=  5W 


5(10)  =  §  =  2.5 

5(100)  =  2.05 

5(1000)  =  2.005 

5(10,000)  =  2.0005 


,„    ^APJi-  1)       4^3       ., 


n4 


+  1)2      n{n  +  l)(2n  +  1) 


] 

^  4r»^  +  2«-  +  n  _  2n-  +  3«  +  1] 
"  /j4  4  6  1 


=  T-?[3«3  +  6^2  +  3«  -  4/j-  -  6«  -  2] 
3« 


=  Jir[3n'  +  2n^  -  3n  -  2]  =  S{n) 


5(10)  =  1.056 
5(100)  =  1.006566 
5(1000)  =  1.00066567 
5(10,000)  =  1.000066657 


40.   lim  y  -    -    =  lim  — "V  ('  =  lim 


4  /n(w  + 
nA       2 


limfl+iU2 

n— *oo  Z\  /I/ 


'>iV/2 


42.    lim  y    1  +-      -    =   lim  ^Y  (/j  +  2/)- 

n->oo/e^,\  nj    \n/         n->oo /I-",^, 

=  lim  4rn3  +  (4„)(^?(^^  +  4(.)(.  +  1)(2„  +0 


r  2      4      2        2  1 

2  lim     1+2+-  +  -  +  -  +  -^ 
n->cc  L  /I       3       /I       3n-J 


=21+2+ 


4\       26 


458        Chapter  4        Integration 


2iY  2 


44.    Urn  2[i  +-)[-]  =  2\im -^^{n  +  2i) 


nj  \nl        n-»oo  n^ 


1   ^ 


2  lim  -7  y  (n^  +  6nH  +  I2ni^  +  Si^) 

n->oo  n^  i^, 

2  1im   (l+3+-  +  4  +  -  +  ^  +  2+-  +  4 
n->oo  \  n  n       n'-  n       n'' 


=  2  lim  I  10  + 

/I— »co 


20 


46.  (a)      y 


(b)  Ax  = 


3-1       2 


n  n 

Endpoints: 


n  n  n 


■(!) 


i<i.iiei<i  +  2g)<..-<,+(,-i)g)<i.„g) 


(c)  Since  y  =  j:  is  increasing, /(m,)  =  /(j;,_ ,)  on  [x,^ ,,  jc,]. 


1/ 


M:[ 


iM.--i)(^ 


i.(.-i)^^ 

(d)/(M,.)=/(Ac,)on[;c,_„A:,] 
(e) 


j: 

5 

10 

50 

100 

^W 

3.6 

3.8 

3.96 

3.98 

5(«) 

4.4 

4.2 

4.04 

4.02 

,![-"-« 


(f)    lim  y\\  +0-  1) 


limp 

n->oo  \n 


n  + 


2/«(«  +  1) 


")] 


lim  2 


1    +   (• 


,.      [„       2n  +  2       4]       ,.      r,       21       , 
=   hm     2  + =  hm    4 =4 

n^oo  L  n  n\        n-^oa  L  n] 

^]  =   lim  ^n  +  P)^^^l 
nJ       n^oo  n\_         \n)       2       J 

=  lim  [2  +  21:^^1=,,  [4^21      ^ 


Section  4.2        Area       459 


48.  y  =  3a;  -  4  on  [2,  5].       [Note:  Ax  = =  - j 


5W  =  2/2  + 


3A/3 


i=lL 


3(2  +  ^1-4 


3A    .18  ^3(1^2' -12 


,       27/(/j  +  \)n\       ^       111,    ,    1 


Area  =  lim  S{n)  =  6  + 


27      39 


SO.  y  =  x^  +  1  on  [0,  3].    Note:  Ax 


3-0      3 


*)=i/(?)e)=i,[(!r-B 


97     n  •J     n 

^  27  n(w  +  l)(2n  +  1)   ,   3 ,  ,  ^  9  2/i^  +  3«  +  1 
w^  6  n  2  n'^ 


Area  =   lim    S{n)  =  -(2)  +  3  =  12 
«  — *oo  2 


1 »-x 


SI.  y  =  \  -  x~  on  [-  1, 1].    Find  area  of  region  over  the  interval  [0,  1].       I  Note:  A.r  =  - 


*.=i/e)(M[.-(i)l 


,        1  ^..       ,       n(>z  +  l)(2n  +  1)  1/9,3,1 

=  1  -  ^  X(-  =  1 —. =  1  -  7  2  +  -  +  — 

rv'  /e',  6n^  6\         n       n- 

1  12 

-  Area  =   lim  s(n)  =  1  -  t  =  - 


Area 


4 


54.  >'  =  Ix:  -  x3  on  [0,  1].       [Note:  Ax  = =  -j 

Since  y  both  increases  and  decreases  on  [0,  1],  T(n)  is  neither  an  upper  nor  lower  sum. 


=  lV-lv-3  =  "("  +  1)  _   1  \"Hn  +  1)'] 


1  + 


1    1 


1 


4       4n       4n- 


Area  =  lim  T(n)  =1-7  =  7 

n->oo  4         4 


460        Chapter  4        Integration 


56.  y  =  )?  -  ^  oni-  1,  0].       [Note:  Aa:  = ^^  =  -j 

.»)=i/(-.4)(^i[(-V-(-i)i 


iW^'i^f-'m-^-nrn:'-74; 


2      In      3       n  "*"  3«3      4      2n      4n2 


,-■      /  ^      .       5      4       1        7 
Area  =  hm  s{n)  =  2--  +  --j  =  T:r 


58.  gCy)  =^y,2<y<4.  (Note:  Ay  =  ^^^ — -  =  - 


Sin)  =  2  ^(2  + 


n  + 


1  /;(«  +  1) 


2  + 


«  +  1 


Area  =   lim  S{n)  =  2+1=3 


12         3        4        5 


60.  f(y)  =  4y-yM  <y  <2.  f  Note:  Ay  = =  - 


^W  =  E/(i+f)(i 


1  " 


4„.i-     ,.i 


=  ^3n+^^ 
n\_  n 


n       n 

+  1)        1   n{n  +  l)(2n  +  1) 


3  + 


«  +  1       (n  +  l)(2n  +  1) 


Area  =   lim  S{n)  =  3  +  1 


i  =  ii 
3       3 


12         3        4         5 


62.  /;(>■)  =  y  +  1,  1  <  >-  <  2  I  Note:  Ay  =  - 

«")=IX'+^)(i) 


n  /^[  \        n'       n'^       n 


In  + 


1   nKn  +\Y  ,    3  «(«  +  1)(2»  +  1)  ^   3  n{n  +  1) 


+  ■ 


.   ,   («  +  IP   ,    1  (n  +  l)(2n  +  1)   ,   3(n  +  1) 
n24  2  n^  2/i 

Area  =    lim  Sin)  =  2  +  7+l+|  =  ^ 

n  -trjj  4  2  4 


Section  4.2        Area        461 


64.  fix)  =x^  +  4x,0  <  X  <  4,n  =  4 


Let  c,  = 


Xi  +  x. 


66.  f{x)  =  sin  X,  0  <  X  <  -,  n  =  4 


Let  C;  = 


Aj:  =  L  c,  =  -,  c. 


Area=|;/(c,)Ax=  ^^r  +  4c,](l) 


i")^(!-)-(f-»)^(f-* 


53 


.77  77  Stt 


_  Stt        _  Vtt 


Area  «  ^-^^'''^  ^  =  E  (^'"  ^^^ 


=  1 

77-/'    .       77  377  -577  .      777\ 


68.  /(x) 


^2+  1 


on  [2,  6]. 


« 

4 

8 

12 

16 

20 

Approximate  area 

2.3397 

2.3755 

2.3824 

2.3848 

2.3860 

70.  fix)  =  cosv/x  on  [0,  2]. 


n 

4 

8 

12 

16 

20 

Approximate  area 

1.1041 

1.1053 

1.1055 

1.1056 

1.1056 

72.  See  the  Definition  of  Area.  Page  259. 


74.  fix)  =l/x,Q  <  X  < 


n 

10 

20 

50 

100 

200 

sin) 

10.998 

11.519 

11.816 

11.910 

11.956 

Sin) 

12.598 

12.319 

12.136 

12.070 

12.036 

Min) 

12.040 

12.016 

12.005 

12.002 

12.001 

(Note:  exact  answer  is  12.) 


76. 


78.  True.     (Theorem  4.3) 


a.  A  =  3  square  units 


462        Chapter  4        Integration 


lir 


80.  (a)  d  = 


(b)  sin  0  =  - 

r 


h  =  rsin  6 

A  =  -bh  =  -r{r  sin  9)  =  -i^  sin  0 


(c)  A„  =  n\  -r~  sm  —    =  —  sin  —  =  -nr-^f 


1  ,   .    27r\       r-n   .    2it 
-r~  sm  —    =  — -  sin  — 

2  n  J        2  n 


lir/n 


Let.r  =  2Tr/n.  As  «  — >  oo,  x  — >  0. 


lim  A„  =  lim  Trr-  1  =  irr^l) 


n-»oo  jr->0 


82.  (a)  J]2i  =  n(n+  1) 


The  formula  is  true  for  «  =  1:  2  =  1(1  +  1)  =  2 
Assume  tliat  the  formula  is  true  for  n  =  k: 

k 


^2i  =  k{k+  1). 


k+l 
I 


Then  we  have  ^  2i  =  ^2/  +  2(/t  +  1) 


=  k{k  +  1)  +  2(A:  +  1) 
=  {k+  l)(/t  +  2) 
Which  shows  that  the  formula  is  true  for  n  =  A:  +  1. 


The  formula  is  true  for  n  =  1  because 
P(1  +  1P_4_ 
4  4 

Assume  that  the  formula  is  true  for  n  =  k: 


e{k  +    1)2 


k+\  k 

Then  we  have  ^  i^  =  "^P  +  {k  +  1) 

i=l  ;=1 


k\k  +   1)2 

4 

ik  +  1)2 

4      ^^ 

ik  4-  1)2„ 

+  ()t  +   1)3 

{k^  +  4(k  +  1)] 
ik  +  2)2 


which  shows  that  the  formula  is  true  foTn  =  k+  1 . 


Section  4.3       Riemann  Sums  and  Definite  Integrals 


2.  f(x)  =l^,y  =  0,x  =  0,x=l,c^  =  ^ 


Ax, 


i^    a  - 1)3    3(2  -  3t  + 1 


n-"  w 


n  n  /;3  r^,-2  _  ^;  4.    1  "1 

lim  2  /(c,)  Ax,  =  lim  X  V  T  ^^ T^ 

n-.cc  ,^j  n->os  ,^j  V    n^  L  1  J 


lim  ^2(3'-'- 3'' +  0 


=  lim  — 

n->oo  n 


=  lim 


lim  — 

1— »oo  /Z 


n2(„  +  1)2 


Jnjn  +  l)(2n  +  1)\  ^  n(n  +  1)1 


3n*  +  6n3  +  3«2  _  2n^  +  3n^  +  n      n-  +  n] 
4  2  "^       2     J 

3/2"   ,   n^      „2-|  1-3        1  1  ]       3 


Section  4.3        Riemann  Sums  and  Definite  Integrals        463 


4.  >>  =  JT  on  [-2,  3].        Note:  Ax  = 


3  -  (-2)  _  5 


n  n 


►  0  as  n-^oo 


2/W^,=  2/(-2.^B  =  2U.|)(5)  =  -,o.iy, 


r 


-,„.(|)*fil  =  -,o.f(,.i).^i 


j:a:x=  lira    -  +  —    =- 

,  n^oo  \2       2n/       2 


6.  y  =  Ix'^  on  [l,  3].  (Note:  Ajc  = 


3-1       2 


2A/2 


X3  1  + 


n  i\n 
liVIl 


n     \n 


>0  as  «^oo 


4  n(n  +1)        4  «(n  +  l)(2n  +  1) 

«  "I :: 1 — ^ :: 


=  6+12^^  +  4(^^±il%l^ 


r 


3x'dx  =    lim 


.  _^  12(n  +  1)  ^  4{n  +  1)(2«  +  1) 


=  6  +  12  +  8  =  26 


8.  y  =  3x=  +  2  on  [-  1,  2].  (Note:  Ax  = 

|/Wi.,  =  |/(-i.f)(2 


2-(-l)_3 


is 


3(-l  +-1    +2 
«/ 

3|l-^  +  ^K2 
n        n 


>0  as  «— >oo 


3n 


18  n(n  +  1)   ^  27  n(n  +  1)(2«  +  1) 


3„] 


£.'"= 


=  15  _  27(n  +  1)  _^  27  (n  +  Djln  +  1) 
n  2  «' 

+  2)..  =    lim  [15  -  27^^^^  +  ^k±_feM)l 

n  ->oo  L  /I  2  n'  J 

=  15  -  27  +  27  =  15 


10.    lim    V6c,(4- qpAt,  =       6x(4-x)2dr 

IAI-.0    ,/e,  Jo 


on  the  interval  [0, 4]. 


12.    lim    vfAKv,  =   \  ^dx 
on  the  interval  [1.  3]. 


Jo 


(4  -  2x)  (ic 


16.    f'x- 

Jo 


dx 


18.    f  ^ 


(it 


r»/4 
20.  t: 

Jo 


tan  X  dx 


464        Chapter  4        Integration 


Jo 


22.       {y-2Ydy 


24.  Rectangle 

A  =  bh  =  2(4)(a) 


J  -a 


4dx  =  ^a 


5- 


":  24-       -S^  Rectangle 

f       m 
pmm — -. 

-a  I  a 


28.  Triangle 


A  =  ^bh  =  |(8)(8)  =  32 


30.  Triangle 

A  =  |m  =  ^(2a)a 


Jo 


x)dx  =  32 


A  = 


x\)  dx--  a^ 


J  '4  r4  r4 

x^dx  =  60,\xdx  =  6,\dx  =  2. 
2  Jz  J2 


26.  Triangle 

A=\bh  =  |(4)(2) 


32.  Semicircle 

A  =  ^Trr^ 

A=  fy 

a,. 

r^  -  x^dx-- 

y 

u 

r 

Semicircle 

jpy^'' 

*^ 

^3^  =  0 


r4  r4  ("4 

38.       (a:3  +  4)a:r  =   Legate  +  4  Lie  =  60  +  4(2)  =  68 

42.  (a;    \  f{x)  dx  =  \f{x)dx+  \f{x)dx  =  4  +  (-1)  =  3 
Jo  Jo  h 


(b) 


\f{x)dx=  -J 


f(x)dx=  -(-1)  =  1 


(c)      fix)  dx=0 
(d) 


-5fix)  dx=  -5\  fix)  dx=  -5i-l)  =  5 


36.   I  15dx=l5\  dx=  15(2)  =  30 

/•4  /•4  r4  r4 

40.       (6  +  2;i:  -  jc^)^  =6     dx  +  21  xdx  -      x^dx 

=  6(2)  +  2(6)  -  60  =  -36 

44.  (a)   j   fix)  dx=   \    f(x)dx-   ifix)dx  =  0-5  = 

(b)  fix)  dx-  \  fix)  dx  =  5  -  i-5)  =  10 

(c)  j    3/(;c)  dx  =  3j    fix)  dx  =  3(0)  =  0 

(d)  3fix)  dx  =  3\  fix)dx  =  3(5)  =  15 
Jo  Jo 


Section  4.3        Riemann  Sums  and  Definite  Integrals       465 


46.  (a)       [f(x)  +  2]dx  =      f{x)  dx  +      2dx  =  4+  10=  H       (b)       f(x  +  2)dx=      f(x)  dx  =  4-      (Let  //  =  ;c  +  2.) 

Jo  Jo  Jo  J-2  Jo 

1> 


(c)       fix)  A  =  2    fix)  dx  =  2(4)  =  8       (/  even) 


(d)       fix)  dx  =  0      if  odd) 


48.  The  right  endpoint  approximation  will  be  less  than  the 
actual  area:  < 


50.  The  average  of  Exercise  39  and  Exercise  40  consists  of  a 
trapezoidal  approximation,  and  is  greater  than  the  exact 
area:  > 


52.  fix)  =  \x\/x  is  integrable  on  [—  1,  l],  but  is  not  contin- 
uous on  [—  1,  1].  There  is  discontinuity  atx  =  0.  To  see 
that 


r 


M 


dx 


is  integrable,  sketch  a  graph  of  the  region  bounded  by 
fix)  =  \x\/x  and  the  .t-axis  for  -  1  <  .x  <  1.  You  see  that 
the  integral  equals  0. 


-i — 1^ 


H 1- 


56.     > 


1:  2'  3:  *  5!  6:  7:   8;   * 


c.  Area  =  27. 


Jo 


60.    I  X  sin  ,r  dx 


54. 


1 — I — *-' 


b.  A  =  3  square  units 


Jo  -1^-  +  J 


dx 


n 

4 

8 

12 

16 

20 

Lin) 

2.8186 

2.9985 

3.0434 

3.0631 

3.0740 

Min) 

3.1784 

3.1277 

3.1185 

3.1152 

3.1138 

Rin) 

3.1361 

3.1573 

3.1493 

3.1425 

3.1375 

n 

4 

8 

12 

16 

20 

Lin) 

7.9224 

7.0855 

6.8062 

6.6662 

6.5822 

Min) 

6.2485 

6.2470 

7.2460 

6.2457 

6.2455 

Rin) 

4.5474 

5.3980 

5.6812 

5.8225 

5.9072 

62.  False 


f..v^ ...(/;...-)(/; 


64.  True 


'x  dx 


66.  False 


i: 


V  dx  =  6 


466       Chapter  4        Integration 


68.  f(x)  =  sin;c,  [0,  2Tr] 


Xq  =  0,  Xy   =  ~r,  X2  =  —,  Xj   =   1T,X^  =  LIT 
TT  TT  '2.TT 


TT 


TT  2t7 


377 


-'"6' ^2  -3.  -3  3-M  2 

i /(c,)  .y.,  =  /(f)  Ax,  +  /(f)  ^,  +  /(l^)  ^X,  +  /(f)  Ax, 

=(i)(f)^(f)te)^(f)(f)^(-)(^)-o- 


70.  To  find  /o  W  dx-  use  a  geometric  approach. 


H M         It 1 1 — » 


1  2  3 


Thus, 


Jo 


ldjc=  1(2  -  1)  =  1. 


Section  4.4       The  Fundamental  Theorem  of  Calculus 


2.  f{x)  =  cos  X 

TT 

cosxdx  =  0 


Jo 


4.  fix)  =  .tV2  -  X 

r2 


r 


,rV2  —  X  dx  is  negative,      -z 


\.v  =  [3v]; 


3(7)  -  3(2)  =  15 


|V3„ 


+  4)  (fv  = 


--v^  +  4v 


■fH-20    -(-6  +  8)  =  -f 


-I 


10.       (3jc2  +  5x-  A)dx 


,       5x2 

x3  + 4x 

2 


3       /  45 

=    27  + 12 

I       \  2 


1+2-^ 


12.|V-90..  =  [i.-f,2];_ 


=  38 
1       9\       /I       9 


4      2/       V4      2 


-i:('-z^)-[^^i: 


;=(i-,)-(.-iu-. 


Section  4.4        The  Fundamental  Theorem  of  Calculus       467 


£v'/3rf,  =  gv^/3]'^^  =  l[(yr3)4]  _  (yz3)4]  =  o 


^f 


^dx=  J2\  x''/^dx  = 


72(2)x'/2l*  =  [272^1*  =  8  -  2v^ 
20.   I  (2  -  t)Jtdt  =  f  (2f>/2  -  r3/2)  ^,  =  r|,3/2  _  1^/2!^  =  [7^(20  -  6r)l^ 

22.     I        ^^^  Cix  =  I  I        U2/3   -  ;c5/3)  dx 

J-8  2^  2j_8 


¥<»--)=¥ 


3  3 

5  8 


^n 


80 


;24  -  15;c) 


'  =  -^(39) +  §(144)  =  ^5^^ 


80'     '       80' 


80 


24.       {I  -  \x-l\)dx=       [i  +  {x-?,)]dx+       [3  -  (x  -  3)]  (& 


(6  -  jc)  cit 


.2. 

3 

1 

[-f] 

/9 
I2" 

4)- 

f 

(24- 

4+16-18 


9  ^  n 

2  ~   2 


26.    fV^  -  4;c  +  3 1  ir  =   \\x^-  -  Ax  +  3)  dx  -   \\x^  -  Ax  +  I)  dx  +   \\x^  -  Ax  +  3)  dx      *^P'«  "P  *e  integral  at  the  zeros 
Jo  Jo  Ji  J3  -":  =  1-  3) 


J  -  2x2  +  3;c 


.^3 


-  Zx~  +  3x 


x" 


2x-  +  3x 


=  [j  -  2  +  3  j  -  (9  -  18  +  9)  +  f|  -  2  +  3  j  +  (y  -  32  +  12  )  -  (9  -  18  +  9) 

4  4      4 

=T-0+T+T-0=4 
3  3       3 


28. 


30. 


■7T/4 

de=  I    de  = 


0  4 


Jo         COS'  e  Jo 

r-^n  ^  r  yn 

(2  —  csc^  x)  dx  =  \2x  +  cotxl       =  (ir 

32.  £\2.  +  cos  t)  dt  =  [r^  +  sin  rj^;;^^  =  (f  +  ^  "  (t  "  ' 


+  0)-(f+l)=f-l=^ 


34.  P  =  -  I      s[nddd  = 

1T 


-]7r/2 

•1    - 


r 

36.  A  =        (1  -;c'»)atc=    x- 

40.  A  =       (.T  +  sin  x)  dx  =  \-i —  cos  .v 


0         yi'^        1  ■) 

--  cos  e  I       =  --(0  -  1)  =  -  -  63.7% 


38.  A  =      \dx  =    --  "  =  -^  +  1  =  ^ 
Ji-t-  L    A-Ji  2  2 


=  —  +  -)  =  '""""'"'* 


468        Chapter  4        Integration 


42.  Since  y  >  0  on  [0.  8], 

Area=      (1  +  x^'^)dx  = 
Jo 

44.  Since  y  >  0  on  [0,  3], 


r 


(3x  -  x^dx 


X  +  -x^l^ 
4 


3  ,      y? 
2  3 


=  8  +  -(16)  =  20 
0  4 


3^9 

0      2- 


r 


46.    I  -^dx 


■2;c2 


^=4.?  =  4 


2       2 


/(c)(3  -  1)  =  4 

I- 
-I 


r77-/3  r  -|7r/3 

48.  cos  j:  (ic  =    sin  j:  =  V3 

J-,r/3  L  J-^/3 


373 


52. 


cos 

'^-      277 

c^± 

0.5971 

1        f'^ 

dx  = 

'2         1"'^ 
—  sinx        = 

.77          Jo 

2 

/      ,„v         „           cos  A 

(it/2)  -  Ojo 

77 

2 
Average  value  =  — 

77 

2 
cos  j:  =  — 

77 

X  -  0.881 

54.  (a)   I  fix)  dx  =  Sum  of  the 


areas 


=  |(3  +  1)  +  |(1  +  2)  +  |{2  +  1)  +  (3)(1) 


c  =  ^1  ---  1.6510 


50. 


3  -  1 


^d!x  =  2f(l  +x-2)dtc  =  2L 


26 

3 


(b)  Average  value  = 


i' 


fix)dx 


8      4 


7-1         63 

(c)  A  =  8  +  (6)(2)  =  20 

20       10 
Average  value  =  "7"  =  ~;~ 


\a. 


2.     -- 


12      3      4      5      6      7 


12       14      5      6      7 


Section  4.4        The  Fundamental  Theorem  of  Calculus       469 


^f 


56,    I  fix)  dx  =  (area  or  region  B)  =  \  f{x)  dx  -      fix)  dx  58.       -  2fix)  dx  =  -ll  fix)  dx 

Jo  Jo  Jo  Jo 


-2(-1.5)  =  3.0 


=  3.5  -  (-1.5)  =  5.0 


=  U^ 


60.  Average  value  =  - 1  /(x)  tic  =  -(3.5)  =  0.5833 


64.  P  =  5(7f  +  30' 
(a) 


62. 


^ojy 


2\  J  '^ 


«'-! 


"  _  2kR- 

0  "     3 


t 

1 

2 

3 

4 

5 

6 

p 

155 

157.071 

158.660 

160 

161.180 

162.247 

1  QC4  150 

Average  profit  =  7(155  +  157.071  +  158.660  +  160  +  161.180  +  162.247)  =  — -. —  ==  159.026 
6  o 


(b)  I  j     5(7f  +  30)  dt  =  ^  si^^'-  +  30r 


6.5 


954.061 


J5.0  6 

(c)  The  definite  integral  yields  a  better  approximation. 

66.  (a)  R  =  2.33f^  -  14.67f3  +  l.61i^  +  70.67r 
(b)  100 


=  159.010 


Jo 


(c)       Rit)  dt  = 


2.33f5       14.67;*      3.67f^      70.67f- 


5  4 

=  181.957 


68.  (a)  histogram 


N 
,. 
18-- 
16-- 
14-- 
12 


123456789 


(b)  [6  +  7  +  9  +  12  +  15  +  14  +  11  +  7  +  2]60  =  (83)60  =  4980  customers 

(c)  Using  a  graphing  utility,  you  obtain 

Nit)  =  -0.084175f3  +  0.63492r2  +  0.79052  +  4.10317. 
(d) 


Jo 


(e)  Nit)dt'^  85.162 
Jo 

The  estimated  number  of  customers  is  (85. 162)(60)  =  5110. 

(f)  Between  3  p.m.  and  7  p.m.,  the  number  of  customers  is  approximately 
Hence,  3017/240  =  12.6  per  minute. 


(  I  Nit)  dtjieO)  = 


(50.28)(60)  =  3017. 


470        Chapter  4        Integration 


70.  F{x) 

=       i^  +  2t-2)dt  = 

B-' 

"  X 

-  2r 

_2 

=  ( J  +  ;c2  -  2;c)  -  (4  +  4  -  4) 

=  ^  +  ;c2  _  2;c  -  4 
4 

F(2) 

=  4  +  4-4-4  =  0              Note:  F(2)  =       ifi  +  It  -  2)  dt  =  0 

h 

F(5) 

=  ^  +  25-10-4=  167.25 
4 

F(8) 

=  ^  +  64-16-4=  1068 
4 

72.  Fix) 

P-2               P                 ll 
=      -^dt=-     2t-^dt  =  \ 

1            1 

2           X^         4 

F{1) 

44- 

F(5) 

=^4=-^=-«- 

F(8) 

_    1        1  _      15 
~  64      4  ^      64 

74.  Fix) 

■x                                            -pr 

=      sin  9^9=  -cose      =  -cos  j:  +  cosO  =  1  -  cos;c 
Jo                               Jo 

Fil) 

=  1  -cos  2-  1.4161 

F(5) 

=  1  -  cos  5  ^  0.7163 

F(8) 

=  1  -  cos  8  =  1.1455 

76.  (a)      tif-  +  1)  dr  =      (r^  +  t)  rfr  = 
Jo  Jo 

d 


1^     1, 


^        1  1  x^ 

=  -.X*  +  -x^  =  — (;c2  +  2) 
0      4         2  4^  ■* 


(b) 


cic 


1    4_u    1    2 

4  2 


x^  +  ;c  =  ;c(jc2  +  1) 


78.  (a) 


P..= 


2 

_^/2 

3 


=  f.3/2_|.|,3/2_8) 


I     sec  r  tan  t  (it  =    s 

Jv3  L 


80.  (a)    I     sec  r  tan  t  (it  =  I  sec  t 

V3 


=  sec  X  —  2 


ir/3 


(b)f   1x3/^ 


16 


=  rl/2  = 


(b)  —[sec  X  -  2]  =  sec  X  tan  X 


82.    F(x) 


rff 


F'(x)  = 


84.    Fix)  =  I  Vtrft 
F'(x)  =  ifx 


Jo 


86.  F(x)  =      sec' t  (if 
Jo 

F'(x)  =  sec'x 


x2+  1 


Section  4.4        The  Fundamental  Theorem  of  Calculus       471 


n,)  =  £,>.,4g>o 


F\x)  =  0 


Alternate  solution 

F{x)  =   \    t^dt 


=       t^dt+   \  t^dt 

=  -)     fidt+  \  ^ 
Jo  Jo 


dt 


F'(x)  =  -(-xn-l)  +  {x^)  =  0 


90.  Fix 


.)  =  f  r3..  =  [^l  =  [-^];  =  ^  4^  F'W  =  2.- 


Alternate  solution:  F'(.r)  =  (x^)~\2x)  =  2x' 


=   I    sin  d-c 
Jo 


91.  F{x)  =   I    sin  e-dd 

F'ix)  =  sin  (x2)2  (2x)  =  Zrsinjc" 


94.  (a) 


X 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

gix) 

1 

2 

0 

-2 

-4 

-6 

-3 

0 

3 

e 

(c)  Minimum  of  ^  at  (6,  -  6). 

(d)  Minimum  at  (10,  6).  Relative  maximum  at  (2,  2). 

12 

(e)  On  [6,  10]  g  increases  at  a  rate  of  —  =  3. 

(f)  Zeros  of  g:  x  =  i,x  =  &. 


96.  (a)  g{t)  =  4  -  ^ 


(b) 


lim  g(t)  =  4 

r->oo 

Horizontal  asymptote:  v  =  4 


(b)  A{x) 


r 


4-1). 


4> 
4r  +  -     = 
t]\ 


4.t  +  -  -  8 


4x-  -  8.T  +  4      4(.t  -  1)- 


lim  A(x)  =  lim4.r  +  --8=oo  +  0-8  =  oo 

X— >o<:  x->o<:  \  .t  / 

The  graph  of  A(x)  does  not  have  a  horizontal  asymptote. 


98.  True 


100.  Let  F{t)  be  an  artiderivative  of/(r).  Then, 


d^ 

dx 


J-i-(-t) 
/(f)  dt 
uW 

/(f)  dt 


F{t) 


■iti 


4-c) 


Rv(.r))  -  F(,u{x)) 


u(x) 


=  ^f(v(.t))  -  F{u{x)) 

=  F'(v(.t))v'(x)  -  F'(M(:t))«'(^) 
=  f(v(,x))v\x)  -  f{u{x))u\x). 


472        Chapter  4        Integration 


102.  G{x) 


Jo  I   Jo 


f(t)dt 


(a)  G(0) 


Jo  L  Jo 


ds 


fit)  dt 


ds  =  0 


(c)  G"(x)  =  X  ■  fix)  +  \fit)dt 

Jo 

(d)  G"(0)  =  0-/(0)+   \  fit)dt  =  Q 

Jo 


104.  xit)  =  it-  Dit  -  3)2  =  r'  -  7^2  +  15r  -  9 
x'(r)  =  3f-  -  14f  +  15 
Using  a  graphing  utility, 


(b)  Let  Fis)  =  J    /(f)  dt. 
Jo 

G(x)  =      F(5)  ds 
Jo 


Total  distance 


Jo 


\dt  ~  27.37  units 


Section  4.5       Integration  by  Substitution 

\figix))g'ix)dx  u  =  gix)  du  =  g'ix)dx 

2.    |xV;c3  +  \dx 


4.      sec  2;c  tan  2;c  ^ 


^  +  1 

2x 


6.    I^^dx 


2d:x 

COS  j:  dx 


8.   [u^ 


9)3(2;c)  dx  =  ^      ^     '    +  C 


Check:  ^ 

ax 


(x^  -  9)" 
4 


+  C 


4(^2  -  9)3 


(2x)  =  ^2  -  mix) 


../, 


10.     I  (1  -  2x2)'/3(-4x)  <fe  =  ^(1  -  2x2)''/3  +  c 


Check:  -^ 


^(1  -  2x2)4/3  +  C 


G'(x)  =  Fix)  =xlfit)dt 
Jo 

G'(0)  =  o( /Wdr  =  0 
Jo 


=  I  •  |(1  -  2x2)i/3(-4x)  =  (1  -  2x2)i/3(-4x) 


../. 


x^U'  +  5)''d:t  =  ||"(x3  +  5)4(3x2)  dx  =  l^^^y^  +  C  =  ^^^-Js^  "^  ^ 


Check: 


^[(xL+ili  ,    J  ^  5(x3  +  5[ 
dxl      15  J  15 


3        5 
5)^(3x2)  _  ^ 


x3  +  5)V 


14.    |x(4x2  +  3)3  ^  =  M  (4x2  +  3)3(8j,)  ^  =  i 


(4x2  +  3)4- 


.,c  =  (^^i±^  +  c 


32 


Check: 


otc 


(4x2  +   3)4 

32 


+  C 


4(4x2  +  3)3(8;t) 
32 


=  x(4x2  +  3)3 


Section  4.5        Integration  by  Substitution       473 


ft'VFT5dt  =  ^f{ 


16.   I  t^VFTldt  =  tI  (r»  +  5)'/2(4r3)  dt  =  \^^^jp^  '^^^h''^  ^^'''^  "^  ^ 


Check:  4 


7(r*  +  5)3/2  +  c 
6 


1      1 
6   '  2 


(f*  +  5)i/2(4f3)  =  (f  +  5)'''2(t3) 


S.      mV«^  +  2  ^"  =  T    ("^ 


18.    I  «V«3  +  2du  =  ~\{u^  +  2)'/2(3«2)  rftt  =  ^^      ^r^'       +C=    ^      ^    '      +  C 


+  c]  =  I  •  |(«3  +  2)'/2(3«=)  =  («3  +  2)'/2(«=) 


20. 


'^7)5^  =  ^J(l+^")-W)^=4(l+^)"'  +  C  =  ^^j 


+  c 


Check: 


dx 


x^ 


(1  +  x^P 


2^-  /(T6^'^  =  4/('^  -  -^)-=(-3-)^v  =  -|[^^^^] 


+  C 


1 


3(16 -x3) 


+  C 


Check: 


dx 


^  +c]=|(-l)(16-x3)-2(3x2)=         •» 


3(16  -  x^) 


(16  -  x^r- 


24. 


/^-i/' 


x^  1  r  1(1+  x^)'/-  /I  +  v^ 


Check: 


dx 


ym? 


+  c 


4        1/2 

-•-(1  +.v4)-'/2(4.v3)  =  --=^== 
2    2  VTT^ 


26. 


/['-i5V]-=/('-H-=f-l(9-=?-^^-- 


r'-  1 
9x 


+  C 


Check: 


<& 


^-r'  +  C 


,       1  _.        ,         1 


Check:  ^[V^  +  C]  =  ^ 
30.    y-^-T^'it  =  I  (i'/2  +  2f3/2)  A  =  |f3/2  +  |rV2  +  c  =  ^^^''-(5  +  6f)  +  C 


Check:  4 


2  4 

£f3/2  +  1^/2  +   c 


;l/2  +  2r3/2  = 


f  +  2f2 


Check: 


¥*i? 


474        Chapter  4        Integration 


34.   j  2773^(8  -  f/^)  dy  =  iTrU^y  -  f'^)  dy  =  ItUy^  -  ^fA  +  C  =  ^(14  -  y^/^)  +  C 


Check: 


dy 


477 -r. 


14  -  y3/2)  +   c 


d_ 
dy 


277(4/  -^7/2  I   +   C 


=  \6TTy  -  l-nfl'^  =  (277)')(8  -  y^/z) 


1.  V  =        ,  dx 

=  y|(l  +  y?)-^l\Zx^)  dx 

_  ior(i+^3)i^i 


1       1/2       J 


20 


=  ^yrT^  +  c 


40.  (a) 


M^'^SM 


-I-- 

-3- 


M^?W 


38.  j; 


X-  4 


--dx 


J  Vx^  -  8a:  +  r 


{x^  -8x+  l)'/2 
1/2 


+  C 


=  V';c2  -  8;c  +  1  +  C 


(b)  V-  =  ^  cos  x^,  (0,  1) 


y  =   I  ;i:  cos  x^  dx  =  —\  cos(j:2)2x  dx 


1 


sin  (x^)   +  C 


(0,  1):   1  =  -  sm(0)  +  C  =>  C  =  1 


y  =  -  sinU^)  +  1 


j  4^:^  sin  a:^  ^  =   I : 


42.      4^3  sin;i^^  =     sin;d(4x3)  dx  =  -cosx^  +  C 


I  cos  6x  dx  =  -\  {< 


1    . 


44.    I  cos  6xdx  =  -\  (cos  6j:)(6)  dx  =  —  sin  6;t  +  C 


5.    J  X  sin  x^  ctr  =  -  I  ( 


46.    I  X  sin  x^  ctr  =  - 1  (sin  x^){2x)  dx  =  --  cos  x^  +  C 


/^ 


-/' 


48.     sec(l  -  x)  tan(l  -  x)  dx  =  -  \  [sec(l  -  jc)  tan(l  -  x)]{-  I)  dx  =  -sec(l  -  x)  +  C 


»■/■ 


50.    I  Vtanlc sec^ ;c dt  =     ™^^ h  C  =  -(tanx^/^  +  C 


52.       ^'V  ^  =  -    {cosx)-\-smx)dx  =  -        ^       +  C  =  t r-  +  C  =  -scc^a:  +  C 

Jcos^x  J  -2  2cos2x  2 


54.Jcsc2(f)^  =  2jcsc^ 


;c\/l 


2/V2 


dx  =  -2  cot  -    +  C 


(f) 


-I"" 


56.  /(j:)  =   I  77  sec  77X  tan  nxdx  =  sec  77X  +  C 

Since /(1/3)  =  1  =  sec(77/3)  +  C,  C  =  - 1.  Thus 

f(x)  =  sec  77X  -  1. 


Section  4.5        Integration  by  Substitution        475 


5%.  u  =  2x+  \,x  =  -(u-  1),  dx  =  ]rdu 

I xjlx  +  1  dx  =   \hu  -  \)^]-du 
=  \\^{u'''-u''')du 


„3/2 


=  3^(2r  +  l)V2[3(2x  +  1)  -  5]  +  C 


2 
30 


(2;t  +  \y'\6x  -  2)  +  C 


60.  M  =  2—  X,  x  =  2-M,  iit=  —du 

\{x+  \)J2  -  xdx=  -    (3  -m)v^ 

=  -    (3u  '    -  u 


du 

3/2 


)rftt 


=    -(2tt3/2-|„5/2)+c 


2m3/2 


{5  -  m)  +  C 


=  -j(2-xm5-(2-x)]  +  C 


=  -|(2  -  ;c)3/2(;c  +  3)  +  C 


=  ^{2x  +  l)3/2(3;c  -  1)  +  C 


62.  Let  u  =  X  +  4,  X  =  u  -  4,  du  =  dx. 

=  |(2«'/'-7M-'/2)d« 


=  |m3/2  -    14„l/2  +   C 


:  jm'/2(2«  -  21)  +  C 


64.  u  =  r  -  4,  r  =  M  +  4,  rff  =  rfu 

I  t^t-  4  dt=     («  +  4)m'/3  dtt 


/• 


=      («  +  4)m 


,4/3   +4„l/3)d„ 


=  ^«'/3   +   3„4/3   +   C 


3«^/3 


iu  +  1)  +  C 


=  ->A  +  4[2(-T  +  4)  -  21]  +  C 


=  =jit-  4)''/3[(r  -  4)  +  7]  +  C 


;-VFT4(2x  -  13)  +  c 


=  ^r  -  4)^/3(f  +  3)  +  C 


66.  Let  «  =  x^  +  8,  rfM  =  3^^  dx. 


r 


c 


x2(x3  +  8)2  ate  =  ^  I    (x^  +  8)2(3^2)  die 


3        3       J-- 


=  ^[(64  +  8)3  -  (-8  +  8)3]  =  41,472 


68.  Let  M  =  1  -  .r^,  du  =  -Ixdx. 


f  x^V^^dx  =  -||"  (1  -  .t2)'/2(-2v)  cfe  =  r-|(l  -  .X'V 


:>-r; 


70.  Let  M  =  1  +  2x-,  c/m  =  4x  dx. 


C       X        ^^1  p 

Jo  v-m^  '   4jo 


(1  +  lx-)-'/-(4.r)d:r  =    ^71  +  li 


[i- 


^-i=l 


476        Chapter  4        Integration 


72.  Let  «  =  4  +  .x\  du  =  2xdx. 


xi/4  +  x'^dx  =  ^\ 
Jo  ^Jo 


xi/4Tl(^  dx  =  i-\   (4  +  x^y/^{2x)  dx=\^{4  +  x^Y'^ 


=  ^(S''/^  -  4*/3)  =  6  -  ^^  -  3.619 

0         5  2 


74.  Let  H  =  2x  -  L  rfu  =  2  A,  x  =  -(«  +  1). 


When  ;c  =  1,  M  =  L  When  x  =  5,u  =  9. 


Ji  72F^M  J,         v4        2  4ji 


^[f^(27)  +  2(3))  -  (I  +  2 


4LV3 

26 

3 


,6.  £;v .  cos,)* = [f .  si„,]:;; .  (f . ,)  -  (g .  f ) .  f 


'tt^   ,    73\  _  517^  _^  2-73 


78.  u  =  x  +  2,  x  =  u  —  2,  dx  =  du 

Whenx  =  -2,  m  =  0.  When  a:  =  6,  m  =  8. 


Area 


(      ;C-3/^rT2  die  =     I     (m  -  2)2  34rfM  =     (    (m'/3  _  4„4/3   +  4„l/3)  J„ 
J-2  Jo  Jo 


3      ,0/3   _  il„7/3    +   3„4/3 


4752 
35 


Jo 


80.  A  =       (sin  j:  +  cos  2x)  dx  = 


-  cos  j:  +  -  sin  2x  I    =2 


•r 


82.  Let  «  =  2x,  dM  =  2  iic. 


rnM  J  p/4  r       J  "1^/4  J 

Area  =  esc  2Ar  cot  2x  dr  =  -        esc  2jccot  2jr(2)  dx  =     -— esc  2;c  =- 

J7r/12  2J^/i2  L      2  J,r/12         2 


Jo 


84.       x^^x  +  2(ic  =  7.581 


^/: 


86.       xVx  -  1  otc  =  67.505 


90.   I  sin  X  cos  X  ate  =   I  (sin  x)' (cos  x  ate)  = — r— +  Q 


sin  X  cos  X  otc  =   I 
sinxcosxdr  =  ~ 


sinxcosxiic=  -    (cosx)'(— sinxatc)  = 


+  C, 


(1  -  sin^x) 


^sin^_l 

^  (-2  2  2 


J-ir/2 
si 
0 


88.  sin2xatt  =  LO 


.^ 


They  differ  by  a  constant:  €2=  C,  + 


1 


Section  4.5        Integration  by  Substitution        477 


92.  f{x)  =  sin^  X  cos  x  is  even. 


■w/Z 

rnn 

. 

sin^ 

^ccos  j: 

dx 

=          sin^  j:(cos  x)  dx 

-7r/2 

Jo 
fsin^ 
L    3 

_2 
3 

-0 

94.  /(a:)  =  sin  j:  cos  x  is  odd. 

rir/2 

sin  X  cos  j:  A:  =  0 

-ir/2 


J-% 


rir/4 

96.  (a)  s 

J-ir/4 


sin  X  dtc  =  0  since  sin  x  is  symmetric  to  the  origin. 


(b) 


rn/4  r-w/i  r  -|Tr/4 

COS  xdx  =  2]      cos  j:  A  =    2  sin  X        =  v^  since  cos  jr  is  symmetric  to  the  y-axis. 

J-T/i  Jo  I  Jo 

r-^/2  r-r/2  r  -1^/2 

(c)  I       cos  xdx  =  2\      cos  xatc=2sinjc        =2 
J-V2  Jo  L  Jo 

p/2 

(d)  sin  X  cos  .r  tic  =  0  since  sin(— j:)  cos(— j:)  =  —  sin  j:  cos  x  and  hence,  is  symmetric  to  the  origin. 

J-Tr/2 


98.    j     (sin  3x  +  cos  3x)  dx  =   I     sin  3j:  lic  +        cos  3xdx  =  0  +  21    cos  3j;  tic  = 
J-w  J-TT  J-TT  Jo  L 


cos  3x  dx  =  I  —  sin  3x 


=  0 


'/' 


100.  If«  =  5  -  x^,thendu  =  -2x&and  \x{5  -  x^f  dx  =  "T    (5  -  x2)3(-2x)  A  =  --|«3(i„. 


^1' 


=  4P 


102.        ^  =  /t(100  -  r)^ 


f 


Q{t)  =   I  A:(100  -  tf  dt  =  --(100  -  f)'  +  C 
(2(100)  =  C  =  0 


<2(r)  =  -jdOO  -  tf 


Q(0)  =  -j(100)3  =  2,000,000  =>  /t  =  -6 

Thus,  Q{t)  =  2(100  -  tf.  When  t  =  50,  2(50)  = 
$250,000. 


106.  (a)     70 


104.  R  =  3.121  +  2.399  sin(0.524f  +  1.377) 
(a)     ^ 


Relative  minimum:  (6.4,  0.7)  or  June 
Relative  maximum:  (0.4,  5.5)  or  January 


(b)  Volume 


Jo 

if"  1 

I    R{i)dt- 


(b)  I    R{{)  dt  =  37.47  inches 

(c)  7 1    y?(f)  ^f  =  T-(13)  =  4.33  inches 


1272  (5  thousand  of  gallons) 


Maximum  flow:  /?==  61.713  at  r  =  9.36. 
[(18.861,  61.178)  is  a  relative  maximum.] 


478        Chapter  4        Integration 


108.  (a)     " 


(b)  g  is  normegative  because  the  graph  of/ is  positive  at  the 
beginning,  and  generally  has  more  positive  sections  than 
negative  ones. 


(c)  The  points  on  g  that  correspond  to  the  extrema  of/ are 
points  of  inflection  of  g. 


(e)     4 


^^-^ 


The  graph  of  h  is  that  of  g  shifted  2  units  downward. 

g{t)  =   I /U)  dx 
Jo 


I      f(x)dx+   I    f 

Jo  Jtt/I 


fix)  dx+   \    f(x)dx  =  2  +  hit). 


(d)  No,  some  zeros  of/,  like  x  =  tt/2,  do  not  correspond  to 
an  extrema  of  g.  The  graph  of  g  continues  to  increase 
after  x  =  ir/l  because /remains  above  the  j:-axis. 


110.  False 


Lix^  +  l)2(fa  =  11  (;c2  +  l)(2;c)  dx  =  ^ix^  +  l)^  +  C 


112, 

True 

•* 
sin  j: 

Ja 

dx  = 

114. 

False 

i 


—  cos  x\    =  -  cos  b  +  cos  a  =  -  cos(fe  +  2 


tt)  +  cos  a  =   I 


sin  j:  lie 


I  sLn^ 2x cos 2xdx  =  -\  (sin 


1  I  1  (sin2x)'  1 

:cos2xdx  =  -\  (sin  2x)2(2  cos  2x)  dx  =  -  - — r—'-  +  C  =  -  sin^  2x  +  C 

21  I        i  o 


116.  Because /is  odd, /(-At)  =  -/(jc).  Then 

ra  ro  fa 

fix)  dx  =        fix)  dx  +      fix)  dx 

J-a  J-a  Jo 

=  -(     fix)dx+  \fix)dx. 
Jo  Jo 

Let  x  =  —u,dx=  —  rfM  in  the  first  integral. 
When  X  =  Q,u  =  0.  When  x  =  -a,u  =  a. 

I    fix)dx=  -  \fi-u)i'du)  +  \fix)dx 

J~a  Jo  Jo 

=  -\  fiu)du+   \fix)dx==0 
Jo  Jo 


Section  4.6        Numerical  Integration       479 


Section  4.6       Numerical  Integration 


2.  Exact: 


f(f 


+  1  Uc  = 


x^ 


+  X 


1.1667 


Simpson's: 

4.  Exact: 
Trapezoidal: 
Simpson's: 

6.  Exact: 


i.4|M:.i).2(M)!,,),4(l«.i).g.i 


75 
=  £-1.1719 
64 


=  1.1667 


=  0.5000 


l+4|i)=  +  2(i)"  +  4(f +  i].0.5004 


12.0000 


Trapezoidal:  iG dx  =  ^[0  +  2  +  2^/2  +  23/3  +  23/4  +  2^5  +  2^6  +  2^7  +  2]  «  11.7296 

Jo  2 

Simpson's:  .^ otc  ==  :^[0  +  4  +  2^2  +  4^  +  2i/4  +  4^5  +  2i/6  +  4i/l  +  2]  «  11.8632 

Jo  3 


8.  Exact: 


(4  -  jc2)  dx  -■ 
Trapezoidal:  (4  -  x^)dx  ^  ^3  +  2  4 

Simpson's:         I  (4  -  x^)  a[r  =  -  3  +  4(4 


1  i 


2  ^ 
"3 

+  2(0)  +  2 


-0.6667 


4 
4,  +  0  +  4(4-f 


iJ] 

5  I  -  -0, 


5    =  -0.7500 


6667 


10.  Exact: 


I 


x^x^  +  \dx  =  - 


(.^  +    1)3/2 


'  =  i(53/2  -    1)  ^  3.393 

0       3 


Trapezoidal: 


+  1 A  -  Ifo  +  2(^)^(1/2)-  +  1  +  2(i)yFTT  +  2(|)v(3/2)^  +  1  +  27FTTJ  - 


3.457 


xjx-  +  1  A  =  ^1  0 
Simpson's:        j  xV^lH'aLc  =  |  0  +  4[ijV(l/2)2  +  1  +  2(l)VPin'  +  4f|jV(3/2)-  +  1  +  2v'2^"+T  j  -  3.39 


12.  Trapezoidal:  J- dx  =  7  1  +  21     ,      ^       =)  +  2(^=1= 

jov/m?     4     \vi  +  (1/2)3/    \jY+ 

Simpson's:  ,  etc  =  -  1  -I-  4      ,  = 

JoTrn?     6L     vvi  +  (1/2) 


vTTTs 
1 


+  2' 


+  4 


1 


1 


Vl  +  (3/2)3/       3 


1 


ym3/     \vi  +  (3/2)3/    3 J 


1.397 


=  1.405 


Graphing  utility:   1.402 


480       Chapter  4        Integration 


14. 
16. 

Trapezoidal: 

Simpson's: 
Graphing  utility 

Trapezoidal: 
Simpson's: 

^xsmxdx  =  — 

n/2                                    16 

"tt 

Jx  sin  xdx'=^  -— 

.12                        24 

:   1.458 

V 
V 

77/4 

'^nw,       f^-i^A^-,      f^-C^AA.-,      f^-PA^r. 

«=  1.430 
1.458 

0                                     ^ 
«  0.271 

tanCv2^  Wv            V^V4 

V     4     y               \     2     /               V      4      /            \\J  A) 
tan  0  .  4  tan(^)%  2  tanf^^)^  .  4  tanf^^//^)^  .  tanf    ^V 

V   4   /          V   2   ;          V    4    y        W  4/. 

0 

12 

■  Q.l'il 


Graphing  utility:  0.256 

J-ir/2 
Vl  +  zos^xdx'-  -^v/^  +  2Vl  +  cos^dr/S)  +  2Vl  +  cos2(Tr/4)  +  2Vl  +  cos2(37r/8)  +  l]  =  1.910 
0  16 

J-7r/2 
Vl  +  cos2A:dx«:^v/2  +4Vl  +  cos2(7r/8)  +2^1  +  cos2(tt/4)  +  4V1  +  cos2(37r/8)  +  l]  =  1.910 
0  24 


Graphing  utility:   1.910 


,„   ^           .J,        r  sinj:  ,        ttF,       2sm(7r/4)       2  sin(7r/2)       2  sm(37r/4)        1       ,  „.,^ 
20.  Trapezoidal:  dx  «  -  1  + 7;^  + 7^^-^  +  — J^     '      +  0    =»  1.836 

f  ^gJM  ^  ^  4 1  ^  iji'Ml)  ^  2sin(^  ^  4  sin(3,r/4)  ^    1  ^ 
Jo     ^  I2L  7^/4  7r/2  3Tr/4  J 


Simpson's: 

Graphing  utility:   1.852 

22.  Trapezoidal:  Linear  polynomials 
Simpson's:  Quadratic  polynomials 


24.     f(x)  = 
fix)  = 

/'W  = 
f"U)  = 

.       f'Kx)  = 


X 

+  1 

-1 

{x 

+  1)^ 

2 

(x 

+    1)3 

-6 

ix 

+  1)" 

24 

(x  +  ly 


(a)  Trapezoidal:  Error  <    ,.,-^.  (2)  =  —  =  0.01  since 
1 2(4  }  96 

f"{x)  is  maximum  in  [0,  1]  when  x  =  0. 
(h)  Simpson's:  Error  <  ^^^^(24)  =  ^^  »  0.0005 
since /**"(x)  is  maximum  in  [0,  1]  when  x  =  0. 


Section  4.6        Numerical  Integration       481 


26.  ru 


in  [0,  1]. 


(1  +  xY 
(a)  |/'tx)|  is  maximum  whenx  =  0  and  |/"(0)|  =  2. 

12/1 


Trapezoidal:  Error  <  7:^3(2)  <  0.00001,  n-  >  16,666.67,  n  >   129.10;  let  n  =  130. 


f'\x) 


24 


in  [0,  1] 


(1  +  xf 
(b)  \f'^*\x)\  is  maximum  when  a:  =  0  and  |/''"(0)|  =  24. 

Simpson's:  Error  <  ^(24)  <  0.00001.  n-*  >   13,333.33,  «  >  10.75;  let  n=  12.  (In  Simpson's  Rule /i  must  be  even.) 


28.  fix)  =  (x  +  1)2/3 
(a)  /'W  = 


9{x  +  l)'*/3 


in  [0,  2]. 


l/'lt)  I  is  maximum  when  x  =  Q  and  |/'tO)  | 


Trapezoidal:  Error  <  Ty^l^l  <  0.00001,  w^  >   14,814.81,  n  >  121.72;  let  n  =  122. 


(b)  /WW  =  - 


56 


81U  +  l)i»/3 


.  [0,  2] 


\f''\x)\  is  maximum  when  .r  =  0  and  [/("'(O)!  =  — . 

ol 

Simpson's:  Error  <  t^^(^]  <  0.00001, /i"*  >  12,290.81,  n  >   10.53;  let  «  =  12.  (In  Simpson's  Rule  n  must 
,  .  1 0O/7  \  8 1  / 

be  even.) 


30.  fix)  =  sin(.t^) 

(a)  fix)  =  2[-2x=  sinU-)  +  cosix^)]  in  [0.  1]. 

\f"ix)\  is  maximum  when.r  =  1  and  |/"(1)|  =  2.2853. 

Trapezoidal:  Error  <  ^'  ~  ,    (2.2853)  <  0.00001,  n-  >   19,044.17,  n  >   138.00;  let/!  =  139. 
'  (b)  /W(x)  =  (16x^  -  12)  sin(x2)  -  48x^  cos(a^)  in  [0,  1] 

[/(■"(x)!  is  maximum  when  x  ==  0.852  and  |/<'"(0.852)|  ==  28.4285. 
(1  -  0)5 


Simpson's:  Error  < 


180«'' 


-(28.4285)  <  0.00001, «■»  >   15,793.61,  «  >  11.21;let/i=  12. 


32.  The  program  will  vary  depending  upon  the  computer  or  programmable  calculator  that  you  use. 


34.  fix)  =  Vl  -  .r=  on  [0,  1]. 


n 

Un) 

Min) 

Rin) 

7t") 

Sin) 

4 

0.8739 

0.7960 

0.6239 

0.7489 

0.7709 

8 

0.8350 

0.7892 

0.7100 

0.7725 

0.7803 

10 

0.8261 

0.7881 

0.7261 

0.7761 

0.7818 

12 

0.8200 

0.7875 

0.7367 

0.7783 

0.7826 

16 

0.8121 

0.7867 

0.7496 

0.7808 

0.7836 

20 

0.8071 

0.7864 

0.7571 

0.7821 

0.7841 

482        Chapter  4        Integration 


36. /W  =  ^  on  [1,2]. 


n 

L{n) 

M{n) 

R{n) 

Tin) 

Sin) 

4 

Q.IQIQ 

0.6597 

0.6103 

0.6586 

0.6593 

8 

0.6833 

0.6594 

0.6350 

0.6592 

0.6593 

10 

0.6786 

0.6594 

0.6399 

0.6592 

0.6593 

12 

0.6754 

0.6594 

0.6431 

0.6593 

0.6593 

16 

0.6714 

0.6594 

0.6472 

0.6593 

0.6593 

20 

0.6690 

0.6593 

0.6496 

0.6593 

0.6593 

38.  Simpson's  Rule;  «  =  8 


l-lsm^dde^'  ^  V  ^  ~  f  ^'"'  0  +  4^] 


6 
^  17.476 


sin2  0  +  4.^/l  -|sin2:^  +  2 
3  16 


>yrri^+...+^ 


1  2     .    ,  TT 

1  —  r  sm'^  — 
3         2 


40.  (a)  Trapezoidal: 


I  fix)dx^  Wf'^-^^  "^  ^'"^-^^^  "^  ^^"^-^^^  "^  ^^^-"^^^  "^  ^^^-^"^^  "^  ^^''■^^^  "*"  ^(^-^^  "^  ^(^-^^^  "^  ^•^''■]  "  ^^-^^^ 


Simpson's: 

2 


/: 


fix)  dx  -  ^[4.32  +  4(4.36)  +  2(4.58)  +  4(5.79)  +  2(6.14)  +  4(7.25)  +  2(7.64)  +  4(8.08)  +  8.14]  =  12.592 
(b)  Using  a  graphing  utility, 

V  =  -  1.3727x3  +  4.0092x2  -  0.6202x  +  4.2844 


Integrating, 


ydx'='n. 
Jo 


53 


42.  Simpson's  Rule:  n  =  6 


77  =  4 


Jo  1  +  ^- 


4 
3(6) 


4  2  4  2  4  1" 

1    +    .       .      ..    ,,x.    +    .       .      .^,...    +    ■       .      ..,„..+    .      .      ...,..+    .       .      .    +■ 


1  +  (1/6)2      1  +  (2/6)2      1  +  (3/6)2      1  +  (4/6)2      j  +  (5/5)2      2J 


^  3.14159 


120 
44.  Area  =  ^7J^[75  +  2(81)  +  2(84)  +  2(76)  +  2(67)  +  2(68)  +  2(69)  +  2(72)  +  2(68)  +  2(56)  +  2(42)  +  2(23)  +  0] 

=  7435  sq  m 


46.  The  quadratic  polynomial 

p(^^  ^  Jl^LJ^imhL       I     (^  -  x,)ix  -  x^)        I     jx  -  x,)ix  -  X,) 

(x,   -  X2)(Xi   -  X3)      '  (X2  -  Xi)(x2  -  X3)     2         (jj^  -  x^)iXi  -  Xj)     ^ 

passes  through  the  three  points. 


Review  Exercises  for  Chapter  4       483 


Review  Exercises  for  Chapter  4 


2. 


4.    M  =  3x 

du  =  3,dx 

2 


/j|-f/ 


{3jc)-'/3(3)d:t=(3;c)2/3  +  C 


6-   [^^ §~~^^  =  f  U  -  2  +  x-2)  ^ 


-j:^  -  2x  -  -  +  C 
2  j: 


10.  fix)  =  6U  -  1) 

/'W  =     6(;c  -  1)  dx  =  3{x  -  1)2  +  C, 


Since  the  slope  of  the  tangent  line  at  (2,  1)  is  3,  it  follows 
that/'(2)  =  3  +  Ci  =  3  when  Ci  =  0. 

fix)  =  3(.t  -  1)2 

fix)  =     3U  -  \)'dx  =  (x  -  1)3  +  Q 

/(2)  =  1  +  C2  =  1  when  Cj  =  0. 
/W  =  U  -  1)3 


../, 


8.    I  (5  cos  x  -  2  sec^  x)dx  =  5s\nx-2tanx  +  C 


12.  45  mph  =  66  ft/sec 
30  mph  =  44  ft/sec 
a(f)  =  -a 


at  +  66  since  v(0)  =  66  ft/sec. 


-t~  +  66r  since  s{0}  =  0. 


v(r) 

Solving  the  system 

v(f)  =  -at  +  66  =  44 

s(t)  =  -^-  +  66r  =  264 

we  obtain  t  =  24/5  and  a  =  55/12.  We  now  solve 
-(55/12)f  +  66  =  0  and  get  r  =  72/5.  Thus, 


72 


■mm.eeiii 


"  475.2  ft. 


Stopping  distance  from  30  mph  to  rest  is 
475.2  -  264  =  211.2  ft. 


14.  a(t}  =  -9.8m/sec2 

v(f)  =  -9.8t  +  Vq  =  -9.8f  +  40 
s{t)  =  -4.9?2  +  40t    (5(0)  =  0) 


40 


(a)  v(t)  =  -9.8r  +  40  =  0  when  f  =  ^  ^  4.08  sec. 


(b)  i(4.08)  =  81.63  m 

(c)  v(t)  =  -9.8f  +  40  =  20  when  t 

(d)  i(2.04)«=  61.2  m 


20 
9.8 


2.04  sec. 


484        Chapter  4        Integration 


16.  Xj  =  2,  j:2  ~  —  1,  ^3  =  5,  ;c4  =  3,  X5  =  7 
mjinf-h-  l+5  +  3  +  7)--!| 


37_ 
5   ■   3   ■  7      210 


(c)  2(2^,-  -  ^,')  =  [2(2)  -  (2)2]  +  [2(-  1)  -  (- 1)2]  +  [2(5)  -  (5)^]  +  [2(3)  -  (3)^]  +  [2(7)  -  (7)^]  = 
1  =  1 

(d)  2(x,  -  x,_,)  =  (-1  -  2)  +  [5  -  (- 1)]  +  (3  -  5)  +  (7  -  3)  =  5 


-56 


18.   y  =  9  -  -x\  Ax  =  1,  n  =  4 


5(4)  =  1 


9  -  i(4))  +  (9  -  ^(9))  +  (9  -  ^(16))  +  9  -  |(25)] 


=  22.5 


5(4)  =  1 
==  14.5 


9-^(9)1  + 


9  -  ^(16))  +  (9  -  |(25))  +  (9  -  9)] 


2 

20.  y  =  X-  +  3,  Ax  =  -    right  endpoints 

n 

Area  =  lim  y*  f{ci)  Ax 

=  lim  ^X  Ft +  3 

"4  w(«+  1)(2«+  1)   ,  ,  1 

V 1 — ~^H 

r^(n+l)(2n+l)^    1       8^^ 
_3  w^  J      3 


=  lim  - 

n— >oo  n 


—  lim 


26 
3 


1  2 

22.  >>  =  -X?,  Ax  =  - 

4  w 


Area  =  lim  V  /(ci)  Ax 


,.     1  -^Tn    24i    24/2    s/n 

lim  —  y    8  +  —  +  — ^  +  — r 
n->oc2n-^,L  n         «  n  J 

n->oo  n  j^i  L  "         «  «  J 


=  1-      if     I   3  w(«  +  1)   ^    3  n{n  +  l)(2n  +  1)   ,    1  w2(n  +  l)^"! 
n-^co  nL«2  «2  6  n'4j 

=  4  +  6  +  4+1  =  15 


12         3         4 


Review  Exercises  for  Chapter  4       485 


-  <».  ^  ^  m  -  <m  -  «(f )(!)  ^  "(t)© = if  <■  — ' = ^ 


J  =  m(0) 


(!) 


-i!)(!) -(!)(!-» 


4JU/        16' 


(1  +  2  +  3)  = 


8 


0\      wfc^(«  +  1) 
2n 


•« = lao = !"(!)© = -er  %  - """-  ^  "-^  -  ""--^^' 


«^ 


2« 


(c)  Area  =  lim  ^?^%1I)  =  u„,  ^^^^n  -  1)  ^  1      ,  ^  1  ^^^^^^^  ^  ^  (base) (height) 
n->oo         2n  n-»oo         2n  2  2  2 


f         ri    1*    1 

(d)    I  mxdx  =  \  -nvxP-     =  -wi^ 


26.     lim    V3c((9  -  c/^)  ^xi  =       3;c(9  -  x^)  dx 


28. 


r. 


Vl6  -jc^atc  =  x'^^^)- 


Stt    (semicircle) 


30.  (a)  J /(;c)^  =  j /(^)dx  +   \  f{x)  dx  =  4  +  (-1)  =  3 

(b)  J/(;c)(&=  -J/(x)d:x=  -(-1)=  1 

(c)  \f{x)dx  =  Q 

(d)  -  \Qf(x)  dx=  -\o\  f(x)dx=  - 10(-  1)  =  10 

„     Pl2  ,       ri2x-21'      r-67      -6      ,       16  „, 


34.J_V  +  2)..=  [f.2r];_=f 


£ 


36.   I    {x!^  +  Ix- -  5)  dx  = 


-{ 


L 


32       16 


+  10 


52 
15 


^«-f(i4)'^  =  />-^-^-')^  =  [-^2^ 


-       / 

'  1    1\ 

/     ,       1\ 

1 

-1  +  - 

I 

^    2      8^ 

V            2/ 

8 

rw/4  r  -1^4 

I.  sec^  r  rf/ =    tan  n        =  1  -  (- 1)  =  2 

J-ir/4  L  J-7r/4 


486        Chapter  4        Integration 


i 


42.       {x  +  A)dx  = 


V 


+  Ax 


10 


-2-1  12       3       4       5 


44. 


/> 


x^  +  X  +  2)  dx  = 


x^      x^ 


■I— )-(i4-) 


=  12      7  ^9 
3       6      2 


46.       V^( 

Jo 


\-x)dx^  (;c'/2  -  ^3/2)  dx 


2^/2  _ 

.3 

2       T 
5       Jo 

2  2 

3  5  " 

4 
"  15 

48.    Area 


rV3 
Jo 


=  tanjc 


sec^  j:  etc 


=  V3 


;c  =  3/2 


50.  :r^  \  x'dx  = 

x^  =  2 


y 


=  2 


52.  F'ix)  =  - 
x^ 


54.  F'(x)  =  csc2;c 


56.      (^  +  ;^)  dx^  I  (jc2  +  2  +  ;c-2)  die 

j;3  1 

3  X 


Review  Exercises  for  Chapter  4        487 


58.  u  =  jc'  +  2,,  du  =  2>x^  dx 


jx^VJ^TI^  =  \U^  +  3)'^'  3j;2alr  =  |(x3  +  3)3/2  +  c 


60.  M  =  jr^  +  6j:  -  5,  (ftt  =  (2x  +  6)  ^ 


\{x4V-5f  =  ij(.2?6x-5P  'i^  =  ^U^  +  6.-5)-'  +  C=  2(;,2  +  ^  _  5)  +  C 


62.     .r  sin  3x^  dx  =  -\  (sin  3Ar2)(6.t)  iir  =  -7  cos  3x-  +  C 

64.    M^^£it=     (sin;c)-'/2j,os^^  =  2(sinjc)'/2  + c  =  27ii^  + C 
J  Vsinjc  J 

66.    I  sec  2.r  tan  2r  ^  =  -  I  (sec  2x  tan  2x)(2)  (ic  =  -  sec  Ir  +  C 
68.    I  cor'  a  CSC-  ada  =  -    (cot  a)''(-csc-  a)  da  =  --cot^a  +  C 


f  ;cV+  l)3A  =  ^f  I 
Jo  -^Jo 


70.    I  ;cV  +  1)3  A  =  11   (x3  +  l)3(3.r:)d:x  =  ^ 


Jo       12 


(x3+  1)^1    =^16-1)      ^ 


72. 


f  ^::#^'^  =  C^-^  ~  8)-./2(2x)^  =  [f(^  -  8)-];  =  1(277  -  1) 


74.  m  =  j:+1,x  =  m—  l,cir  =  rf« 

When  x=  -  I,  m  =  0.  When  .r  =  0,  m  =  1. 


76. 


27r|    xVa:  +  1  dx  =  27r     («  -  D^Judu 

=  2tt\     (tt5/2  _  2„3/2  +  „l/2)  ^„  =  27Tf|«'/2  _  l„5/2  +  ^    3/2I'   =  HE 

Jq  L'  5  3       Jo       1U5 

r-n/4 

sin  2r 

J--7r/4 


It  otr  =  0  since  sin  2a:  is  an  odd  function. 


78.  «  =  1  —  x,x  =  1  —  u,  dx  =  —du 

When  .X  =  a,  M  =  1  -a.  When  .v  =  fc,  «  =  1  -  fc. 


^0=   I 

Ja 


''^155-.v3(l-.)3/2^.=    l'55'— 


32 


32 


Jl-n 


(1    -m)3m3/2^„ 


1155 

32 


(„9/2  _  3„7/2  +  3„5/2  _  „3/2)  ^„   =  1122    ^„112  _  r„9/2  +  £„,,,,  _  £^^, 
Jl-a  32    [11  3  7  5         Jl-n 

=  -^  7777(105"'  -  385m=  +  495«  -  231)         =    -r^(105u3  -  385m-  -i-  495m  -  231) 
32  L1155  Jl-n       L  lo  Ji-o 


(a)  P, 
(b) 


mV2 
16 


(lOStt'  -  385m=  +  495m  -  231) 


"10.75 

-  0.025  = 


0.  0.25 

r,,5/2  no 

^oj  1  =    Tr(105M3  -  385m-  +  495m  -  231)       =  0.736  =  73.6% 
L  lo  Jo.5 


488        Chapter  4        Integration 


f 

Jo 


TTt  2 

80.    I   1.75  sin  ^;- A  = 

2  77 


1.75  cos 


f]' 


--(1.75)(- 1  -  1)  =  -  -  2.2282  liters 

IT  IT 


Increase  is 

2  _  5J_^  L9 

77  TT  TT 


=  0.6048  liters. 


J"'        y3/2 

Simpson's  Rule  (n  =  4): 

Jo 

Grapliing  utility:  0.166 


£&    = 


■  2(1/4)3/^         2(1/2)3/^         2(3/4)3/^        r 

_        3  -  (1/4)2  +  3  _  (1/2)2  -^  3  _  (3/4)2  "^  2. 

4(1/4)V2         2(1/2PA         4(3/4)V2        f 
3  -  (1/4)2  -^  3  _  (1/2)2      3  _  (3/4)2      2. 


==  0.172 
=  0.166 


Jo 


84.  Trapezoidal  Rule  (n  =  4):        J\  +  %\v?xdx  =»  3.820 

Jo 

Simpson's  Rule  («  =  4):  3.820 
Grapliing  utility:  3.820 


Problem  Solving  for  Chapter  4 


2.  (a)  F(x)  =       sin  r^  dt 


r 


X 

0 

1.0 

1.5 

1.9 

2.0 

2.1 

2.5 

3.0 

4.0 

5.0 

F(x) 

-0.8048 

-0.4945 

-0.0265 

0.061 1 

0 

-0.0867 

-0.3743 

-0.0312 

-0.0576 

-0.2769 

(b)  G{x)  = 


x-2 


i 


sin  f2  dt 


X 

1.9 

1.95 

1.99 

2.01 

2.05 

2.1 

G(x) 

-0.6106 

-0.6873 

-0.7436 

-0.7697 

-0.8174 

-0.8671 

limG(x)  = -0.75 

(c)F'(2)  =  lim^^W^ 

i-»2         X  —  2 


=  lim  — 

Jr-»2X 


-2J2 


sin  t^  dt 


=  lim  G{x) 

i->2 

Since  F'{x)  =  sinx^,  F'{2)  =  sin4  =  lim  G(x). 

x^2 

(Note:  sin  4=  -0.7568) 


Problem  Solving  for  Chapter  4       489 


4.  Let  d  be  the  distance  traversed  and  a  be  the  uniform  acceleration. 
We  can  assume  that  v(0)  =  0  and  s{0)  =  0.  Then 


a{t)  =  a 

v(r)  =  at 

s{t)  =  -ai^. 

s(t)  =  d  when  t  =  -./  — . 
V    a 

The  highest  speed  is  v  =  a 

/2d_ 
/    a 

Jlad. 

The  lowest  speed  is  v  =  0. 

The  mean  speed  is  -(j2ad  +  o)  =  . 

f7d 
V    2 

The  time  necessary  to  traverse  the  distance  d  at  the  mean  speed  is 
d  fid 


t  = 


Jadjl        V     a 
which  is  the  same  as  the  time  calculated  above. 


6.  (a) 


I  I  I  I  I  I  t  I  I  I*  < 

0.2     0.4     0.6     0.8      1.0 


(b)  V  is  increasing  (positive  acceleration)  on  (0,  0.4)  and  (0.7,  1.0). 
v(0.4)  -  v(0)  _  60  -  0 


(c)  Average  acceleration  = 


0.4  -  0  0.4 

(d)  This  integral  is  the  total  distance  traveled  in  miles. 


=  150mi/hr- 


1 


385 


v(i)  dt  =  -^[0  +  2(20)  +  2(60)  +  2(40)  +  2(40)  +  65]  =  ^  =  38.5  miles 
Jo  1"  10 


(e)  One  approximation  is 

,-  -,  _    v(0.9)  -  v(0.8)      50-40       ,^     ...2 

(other  answers  possible) 


490        Chapter  4        Integration 


8.    I  mix  -t)dt=  \  xf{t)  dt-\  tfit)  dt  =  x\  fit)  dt-  \  tfit)  dt 
h  Jo  Jo  Jo  Jo 

Thus,  £  j  f(t)(x  -t)dt  =  xfix)  +  j  fit)  dt  -  xfix)  =  J  fit)  dt 
Differentiating  the  other  integral. 

Thus,  the  two  original  integrals  have  equal  derivatives. 


\fit)ix  -')dt=\  M /(v)  dv\dt  +  C 


Letting  Jt  =  0,  we  see  that  C  =  0. 


J"'  2       T       2 

Vx  dx  =  -x'''^     =  -.  The  corresponding 
0  3       Jo      3 

Riemann  Sum  usmg  right-hand  endpoints  is 


5(n)  = 


'1 


Thus,  lim 


=  -^[^^  +  72  +  •  •  •  +  v^] 

yi  +  V2  +  ■  •  ■  +  >/«    2 


-,3/2 


3' 


12.  (a)  Area  =  (    (9  -  x^)  &  =  2  I  (9  -  jc^)  ate 

=  2[27  -  9]  =  36 

(b)  Base  =  6,  height  =  9.  Area  =  \bh  =  |(6)(9)  =  36. 

(c)  Let  the  parabola  be  given  by  y  =  b^  —  a^x^,  a,  b  >  0. 


rb/n 


Area 


rb, 

=  2        it^-  aV)  dx 
Jo 

b^x  -  a^j^^ 


=  2 


=  2 


a        3  a 


4^ 
3  a 


2b 


Base  =  — ,  height  =  b^ 
a 

.    .•      .    ,^        ■      .  2/'2fo\,,„      4fc3 

Archimedes  Formula:  Area  =  -  —  Hb^)  =  —  — 

3\  a  /  i  a 


4      -2-1  12         4   5 


Problem  Solving  for  Chapter  4        491 


14.  (a)  (1  +  /)'  =  1  +  3(  +  3r  +  P  =>  (1  +  i^  -  i^  =  3P  +  3i  +  1 

(b)  3r  +  3;  +  1  =  (;  +  1)^  -  (3 

J;(3/2  +  3,+  l)=  2[('+iP-''] 

1=1  1  =  1 

=  (23  -  V)  +  (33  -  23)  +  ■  •  ■  +  [((n  +  1)3  -  «3)] 

=  («  +  1)3  -  1 
Hence,  (n  +  1)3  =  J^(3r  +  3/  +  1)  +  1 

i=l 

(c)  (n  +  1)3  -  1  =  2(3,-^  +  3/  +  1)  =  23,-2  +  3Mk±i)  +  „ 

1  =  1  1=1  -^ 


£3/2  =  „3  +  3„2  +  3„  _ 


3n(«  +  1) 


2«3  +  6«-  +  6«  -  3n2  -  3/j  -  2n 


2«3  +  3?!-  +  n 


n(/i  +  l)(2n  +  1) 


A.,  ^  w(^;  +  \)(2n  +  1) 
,^/  6 


16.  (a)  C 

(b)  C 


/•20 

=  »'J. 


12  sin 


12  sin 


vit  -  8) 


12 

7T<r-8) 
12 


r   14.4     iT{t- 

dt= cos — 

L  77  12 


-8) 


-14.4 


(-1  -  1)  ^$9.17 


A.       \     14.4        77<f-8)      ^,, 

j\dt  = cos -r 0.6f 

J  L        TT  12  Jio 


14.4/ -V^ 


10. 


H^ 


14.4/ 73 


=  $3.14 


Savings  =  9.17  -  3.14  =  $6.03. 


18.  (a)    Let  A 


Jo/U)  + 


fix) 


f(b  -  x)      ■ 
Let  u  =  b  -  x,  du  =  -  dx. 

,    r  f{b-u)    .  ^- 
^  f  /«^-«)    ■ 

^    f      /(fc-.x)  , 

Jo/(^--^)+/W 


Then, 


2A 


=   f         fix)  ,     .    f      /(fc--v)         ■ 

Jo/W  +  /(i  -  x)  ^^  "^  Jo/(fc  -  .t)  +  fix)  '^ 

Jo 


\dx  =  b. 


Thus,  A  =  -. 


(b) 


Jo  sin(l  —  j:)  +  sm.x  2 


CHAPTER     5 

Logarithmic,  Exponential, 

and  Other  Transcendental  Functions 


Section  5.1      The  Natural  Logarithmic  Function:  Differentiation    ....  493 

Section  5.2      The  Natural  Logarithmic  Function:  Integration     498 

Section  53      hiverse  Functions    503 

Section  5.4      Exponential  Functions:  Differentiation  and  Integration    .  .  509 

Section  5.5      Bases  Other  than  e  and  Applications 516 

Section  5.6      Differential  Equations:  Growth  and  Decay 522 

Section  5.7      Differential  Equations:  Separation  of  Variables     527 

Section  5.8      Inverse  Trigonometric  Functions:  Differentiation     535 

Section  5.9      Inverse  Trigonometric  Functions:  Integration     539 

Section  5.10    Hyperbolic  Functions 543 

Review  Exercises 548 

Problem  Solving     554 


CHAPTER     5 

Logarithmic,  Exponential,  and  Other  Transcendental  Functions 

Section  5.1       The  Natural  Logarithmic  Function:  Differentiation 

Solutions  to  Even-Numbered  Exercises 


2.  (a) 


(b)      3 


The  graphs  are  identical. 


4.  (a)  In  8.3  =  2.1163 
(b)        -A  =  2.1163 


6.  (a)  In  0.6=  -0.5108 
(b)         -df  -0.5108 


8. /(.x)=  -Inx 

Reflection  in  the  .i-axis 
Matches  (d) 


10. /W  =  -\n(-x) 

Reflection  in  the  v-axis  and  the  .v-axis 
Matches  (c) 


12. /(.v)  =  -2\nx 
Domain:  .ir  >  0 


14.  fix)  =  \n\x\ 
Domain:  x  i^  Q 


16.  g(x)  =  2  +  In.T 
Domain:  .r  >  0 


18.  (a)  In  0.25  =  In  5  =  In  1  -  2  In  2  =  -  1.3862 

(b)  In  24  =  3  In  2  +  In  3  =  3.1779 

(c)  In  ^12  =  5(2  In  2  +  In  3)  =  0.8283 

(d)  In^  =  Inl  -  (3In2  +  21n3)  =  -4.2765 

22.  \nxyz  =  In.v  +  In  v  +  In  c 


20.  ln^^=  In  2'/-  =  ?ln2 


24.  Inv  a  -  1  =  ln(a  -  1)"=  =  (;)  ln(a  -  1) 


26.  In  3e=  =  In  3  +  2  In  e  =  2  +  In  3 


28.  In  -  =  In  1  -  In  e  =  -  1 
e 


493 


494        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


30.  3  Inx  +  21ny  -  41nz  =  \i\x^  +  Iny^  -  Inz!* 


=  ln 


x'y^ 


32.  2[\nx  -  ln(jc  +  1)  -  In^  -  1)]  =  2  In 


In 


{x  +  l){x  -  1)  W  -  1 


X      V 


34.  |[ln(;c2  +  1)  -  InU  +  1)  -  \n(x  -  1)]  =  |ln.    /' t  ^    ,. 


In 


V(i^ 


36. 


3 

/ 

38.    lim  ln(6  —  ;c)  =  —  oo 

a:->6" 


40.    lim  In— 7== 

^-►5*       Vx  -  4 


ln5  =  1.6094 


42. 

>>  =  Inx 
,       3 

3/2 

=  -Inx 

At  (1,  0), 

y' 

_  3 
~  2- 

44.    >-  =  lnx'/2  =  iln^: 


•'        2x 
At(l,0),>''  =  i 


46.  /iW  =  ln(2x2  +  1) 

1  \x 


2x2  +  r    ^      2jc2  +  1 


48.     y  =  ;c  In  X 

^  =  4-)  +  Inx  =  1  +  Inx 
dx        \xJ 


50.     >-  =  lnVx2  -  4  =  -  InU^  -  4) 
rfy  _  1/    2r 


a[r      2\jc2  -  4/      x^  -  4 


52.  f(x)  =  In 
/'(x)  = 


2x 

,x  +  3 

1  1 


In  2x  -  ln(x  +  3) 
3 


X      x  +  3      x{x  +  3) 


54.    h(t) 


h'(t) 


\nt 


ti\/t)  -\nt      \  -Int 


56.     y  =  In(lnx) 
dy  _  lA  _      1 


lie       \nx      a:  In  x 


58.    y  =  In    3/^  =  h^i^  "  D  "  ln(^  +  D] 


X  +  1      3'- 


,  ^  ir_! !_ 

'        3U  -  1       x+  \ 


1       2  2 

3  ^2  -  1  "  3(a:2  -  1) 


60.  /W  =  \n{x  +  V4  +  x^) 
1 


/'W  = 


x+  V4  +  x2  V         x/4T 


1  + 


1 


-.--c    ^^5 

-i.^5 

>      ^    - 

^'                '" 

c-Jc-f 

-.;c<ef< 

Section  5. 1        The  Natural  Logarithmic  Function:  Differentiation       495 


62.     >  =  ^ 4ln( )  =  —^^ -\ril  +  JJT^)  +  -\nx 


1 

H 


^  ^  -lx'^{x/Jx-  +  4)  +  4;cV;c^  +  4  _  1/  1 

dx  4x*  4^2  +  Vxn^J\V^^^T4]   '  4x 

Note  that: 


1 


1 


2  -  y;c-  +  4       2  -  Vx-  +  4 


2  +  Va;2  +  4       2  +  7.x:2  +  4     2  -  Va:=  +  4 


-;c2 


Hence,  -i-  = 


-1 


y^M^       1  (2  -  Jx^  +  4) 
dx    "  IxJx^  +  4  x^  4  -.t2 

-1  +  (l/2)(2  -  V?T4)   ^    y/jc^  +  4   ^     1 
Ixjx^  +  4  .t^  4j: 


Vx^  +  4/    '    4x 


-  V.t-  +  4       Vj:'  +  4       J_  ^  Jx^  +  4 
4;c7;c-  +  4  -T^  4j:  .x^ 


64.    >!  =  ln|csc;<:| 

—  CSCJ:  •  cot  AT 


y 


cscj: 


=  -cotx 


66.    3;  =  Inlsecx  +  tan.i;| 

dy  _  sec  .r  tan  .r  +  sec'.r 
dx  sec  .r  +  tan  -T 

sec  .i:(sec  x  +  tan  x) 


sec  a:  +  tan  x 


secx 


68.     y  =  InVl  +  sin^.x:  =  -ln(l  +  sin^x) 
dy      /'1\2  sin.i:cos;c      sin  j:  cos  x 


dx      \ll  1  +  sin-x        1  +  sin-.r 


70.    ^(.r) 


/•Ihj: 


+  3)rff 


g  [x]  =  L(ln.r)-  +  3J— (ln.r)  = 

dx  X 


(Second  Fundamental  Theorem  of  Calculus) 


72.  (a)    y  =  4  -  x2  -  Inl -X  +  1  ),      (0.  4) 


^=-2;, \ i 

dx  (l/2).r  +  1  V2 


=  -2jc- 


1 


x  +  2 


When.x:  =  0,^=  -\. 
dx  2 


Tangent  line:  >•  -  4  =  -  -[x  -  0) 


y  =  --.r  +  4 


74. 

ln(.xT)  +  5.r  =  30 

In.T 

+  In  y  +  5.r  =  30 

1_ 
x 

+  1^  +  5  =  0 
ydx 

\dy  _      1 
y  dx          X 

-  5 

dy_      y 

dx          X  ' 

-  5y  =  - 

-F^ 

(b) 


496       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


76. 


y  =  j:(ln  x)  —  Ax 


y'  =  x\-\  +  \nx  —  A  =  — 3  +  lnj: 
(x  +  y)  —  xy'  =  X  +  x\nx  —  Ax  —  x(—?)  +  \r\x)  =  Q 


1%.  y  =  x  -  \nx 
Domain:  x  >  Q 

V '  =  1 =  0  when  x  =  I. 

X 


/'=->  0 
X- 


Relative  minimum:  (1,  1) 


80.  v  = 


Injc 


Domain:  x  >  Q 

,  _  x{\lx)  -\nx  _  1  —  Inj: 


=  0  when  x  =  e. 


u.-')w.¥^) 


„  ^  ^{-\lx)  -  (1  -  ln;c)(2x)  ^  2(lnx)  -  3 

Relative  maximum:  (e,  e~ ') 
Point  of  inflection:  {e'^l^,\e''^l'^ 


0  when  x  =  e^l'^. 


82.    y  =  x^ln  -.     Domain  j:  >  0 


y  =  j:'I-I  +  2j:ln-  =  jcI  1  +  2in-l  =  0  when 


-1  =  21n  = 


In- 


x  =  4e-i/2 


/'=l+21n^  +  2x(y  =  3  +  21n| 

y"=  0  when;c  =  4€-3/2  '      ' 

Relative  minimum:  (4e"  '^^,  -  8e" ') 
Point  of  inflection:  (Ae'^^^, -lAe'^) 

4(4f-3'2.-24e-^ 


84.     /(x)=xln^    /(I)  =  0 
f'(x)  =  1  +ln;c,    /(1)=  1 

fix)  =  ^.    /"(I)  =  1 

P,W  =/(l)  +/'(1)U  -  1)  =  ;c  -  1,     P,(l)  =  0 

P^ix)  =  /(I)  +  f'{\)(x  -  1)  +  |/"(1)U  -  1)^ 

=  ix-  1)+|U-  1)^    ^2(1)  =  0 

/•,'«  =  1,     P,'(l)  =  l 

Fz'W  =  1  +  U  -  1)  =  ;c,     PjXl)  =  1 

The  values  off,  Pj,  Pj,  and  their  first  derivatives  agree  at 
X  =  1.  The  values  of  the  second  derivatives  of/ and  Pj 
agree  at;c  =  1. 


\P2 

/ 

V 

Section  5.1        The  Natural  Logarithmic  function:  Differentiation       497 


86.  Find  x  such  that  In  x  =  3  -  x. 

fix)  =  X  +  (In  a:)  -3  =  0 


n 

1 

2 

3 

Xn 

2 

2.2046 

2.2079 

fUn) 

-0.3069 

-0.0049 

0.0000 

Approximate  root:  x  =  2.208 
90.       y 


\  X-  + 


-  1^ 
1 


\r 


lny  =  ^lnU2-  I)  -  \n{x^  +  1)] 


}_dy  ^  I 
y  dx      2 


2x  2x    1 

.r=  -  1       .v2  +  ij 

^  =       A^  -  1  r     2x    1 
ate  "  V.)c2+  iLx^-  ij 

U"  -  l)'/-2x 

(.X^  +    l)'/2(;c2  -    1)(.^2  +    1) 


(x^  +  iy'~{x-  -  1) 


1/2 


88.  y  =  yU  -  \){x  -  2)(;c  -  3) 

\ny  =  ^[\n(x  -  1)  +  ln(;c  -  2)  +  ln(jc  -  3j] 

i(^uir_L_  +  _^  +  _L_i 

y\dxl      llx  -  \       X  -  2      x-3] 

^  If      3j:-  -  12x  +  11      1 
2|_U-  l)U-2)(x-3)J 

dy  ^  3x'  -  lit  +  11 
dx  2v 

3x-  -  12x  +  11 
2VU  -  1)U  -  2)U  -  3) 


92.  y 


{x  +\){x  +  2) 


ix  -  l){x  -  2) 
Iny  =  InU  +  D  +  InU  +  2)  -  ln(.t  -  1)  -  Hx  -  2) 


1  1 

+ 


1 


1 


Udy 

y\dxj      X  +  \      X  +  2      x  —  \      X  —  2 

dy 


dx 


XT  —  I        X —  4 


-6x-  +  12     ] 

■^  -  DCr^  -  4) J 


(x- 

-6(x^  -  2) 


(x  +  l)(x  +  2) 

ix  -  \)ix  -  2)     ix+  l)(x  -  l){x  +  2)U  -  2) 

6(x^  -  2) 
U  -  D^Ct  -  2)2 


94.  The  base  of  the  natural  logarithmic  function  is  e. 


96.   gix)  =  ln/(x),/(x)  >  0 
.fix) 


g'(x) 


fix) 


(a)  Yes.  If  the  graph  of  g  is  increasing,  then  ^'(.v)  >  0. 
Since/(x)  >  0,  you  know  that/'U)  =  g'ix)fix)  and 
thus,  fix)  >  0.  Therefore,  the  graph  of/  is  increasing 


(b)  No.  Let/(.r)  =  .r-  +  1  (positive  and  concave  up),  gix) 
Intxr  +  1)  is  not  concave  up. 


98.  t 


5.315 


6.7968  +  In.v' 
(a)        50 


1000  <  x 


(b)  f(1167.41)  =  20  years 

T=  (1167.41)(20)(12)  =  $280,178.40 

(c)  f(1068.45)  ^  30  years 

T  =  (1068.45)(30)(12)  =  $384,642.00 


(d)  ^=  -5.315(-6.7968  + 
dx 

5.315 


.,,.(1) 


.v(- 6.7968  +  ln.v)= 


Whenx  =  1167.41.  dt/dx  «  -0.0645.  When.r  =  1068.45, 
dt/dx=-  -0.1585. 

(e)  There  are  two  obvious  benefits  to  paying  a  higher  monthly 
payment; 

1.  The  term  is  lower 

2.  The  total  amount  paid  is  lower. 


498        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


100.  (a)    350 


_,     ,„   ,      34.96  ,3.955 

(b)     T  (p)  = +  — 7=^ 

P  Jp 

r'(10)  =  4.75  deg/lb/in^ 

r'(70)  =  0.97  deg/lb/in^ 


(C)        30 


lim  r'(p)  =  0 


102.  >>  =  lOlnf^^"^  ^^°° — ^j  -  VlOO  -  x^  =  10[ln(l0  +  VlOO  -  ;c2)  -  Inx]  -  VlOO  -  x^ 
(a)     ?2 (c)    lim  ^  =  0 

j:->10-  dX 


dy 


Vioo  -  xKio  +  Vioo  -  x^) 


-a 


yioo" 


-10 


yioo" 


10  +  Vioo  -  x^. 

-10 


-10  + 


Vioo  -  jc' 


Vioo  -  r 


10+  Vioo  -  x'^ 
Vioo  -  x^ 


+  1 


10  +  Vioo  -  x^ 

10 


X      Vioo  -  x^ 

10 

x 

w 

x 


10  +  Vioo  -  x2       Jc 

;c(lO  -  VTOO^^  -  10  ^      Vioo  -  x^ 


When  x  =  5,  dy/dx  =  -  Vs.  When  x  =  9,  (fy/dc  =  -  Vl9/9. 


104.    y  =  in  X 

y '  =  -  >  0  for  jc  >  0. 

Since  In  x  is  increasing  on  its  entire  domain  (0,  oo),  it  is  a 
strictly  monotonia  function  and  therefore,  is  one-to-one. 


106.  False 

TT  is  a  constant. 
d, 


dx 


[In  tt]  =  0 


Section  5.2       The  Natural  Logarithmic  Function:  Integration 


\  —  dx=  \o\-dx=  lOlnj 


x\  +  C 


4.  u  =  X  —  5,  du  =  dx 
1 


/. 


:&  =  Inx  -  51  +  C 


\z^2''  =  \h 


2''  =  -2kT2^'^'^ 


'x-  5 
S.  u  =  3  -  x^,  du  =  —  3x'^  dx 


=  -In  |3x  +  2|  +  C 


Js^'^^-l/l^^-^x^)^ 


--ln|3  -x^\  +  C 


Section  5.2        The  Natural  Logarithmic  Function:   Integration        499 


10.  M  =  9  -  x\du  =  -2xdx 


J  V  9  -  x^  2J 


r    xU  +  2)  if    3;c-  +  6^: 

J  ^  +  3x2  -  4  3J  ^  +  3^2  _ 


dx     (u=x^  +  3x'  -  4) 


^ln|x3  +  3x2-4|  +  C 


,^     r2;r  +  7A-3^         f 


7a-  -  3  ^         I  /^        , ,          19     ,  _, 
-dx  =       2x  +  1 1  + dx 


x-2) 
=  x^  +  lU  +  191nU  -  2|  +  C 


18. 


fx^  -  3;c2  +  4;c  -  9  ,         f 

J — ^^n — '^  =  J 


-3  +  .1:  + 


a:-  +  3 


a[t 


a;2       1 


=  -3;t  +  y  +  -lnU=  +  3)  +  C 


-1^^^-  =  / 


^-^K-— "-^i- 


3      2 


+  19;c-  n51nU  +  5|  +  C 


JxlnCr^)  3  Jinx     x 


J  ln|ln|x||  +C 


22.  M  =  1  +  x'/3  du 


3x2/3 


a^ 


jx2/3(l    +x'/3)'^         Y 


/3)'^  =  3jY^(^j^ 


31n|l  +x'''3|  +  c 


=  Inlx  -  ll  + 


1 


2(x  -  1) 


-  +  c 


26.  M  =  1  +  V3x,  rfM  =  -A=dx  ^  (&  =  -(«-  1)  rf« 
2v'3x  3 


J  1  +  V3I  J«3 


l)d« 


rfM 


^M  -  ln|M|]  +  C 


=  1^1  +  V3^  -  ln(l  +  v/3l)]  +  C 


=  |v/3x-|ln(l  +  V3^)  +  C, 


500       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


/: 


'x-  1 


28.  u  =  x'/3  -\,du=  T-^  dx  =>  dx  =  Z{M  +  Xfdu 

dx  =     2{u+\)^du 

=  3  f  ^^^(«'  +  2«  +  1)  du 
=  3  ( M^  +  3«  +  3  +  -j  rf« 
=  3rj  +  ^  +  3M  +  lnlM|l  +  C 


3^ 


3         2 

1/3  -    1)3     ,     SU'/J  -    1)2 


+  ■ 


+  3(;c'/3  -  1)  +  ln|x'/3  -  l| 


+  C 


3x2/3 


=  3  ln|;c'/3  -  1 1  +  =^  +  3;c'/3  +  x  +  Q 


9.    \tan5ede  =  - 


30.    |tan5erfe  =  Tl^^rffl 
cos  56 


=  --ln|cos5e|  +  C 


32.    I  sec  -  (fe  =  2  I  sec  -( -  j  <ic 


=  21n 


x    ,  X 

sec  -  +  tan  - 

2  2 


+  C 


34.  M  =  cot  t,  du  =  —  csc^  f  A 

rcsc-^  t 


f- 


cot  f 


-rf;  =  -In  cot  f  +  C 


/' 


36.      (sec  f  +  tan  r)  A  =  Inlsec  r  +  tan  fl  -  Inlcos  t\  +  C 


=  ln 


sec  r  +  tan  f 


cos  t 


+  C 


=  ln|sec  t(sec  f  +  tan  r)|  +  C 


38.  y 


h 


2x 


dx 


=  ln|;c2  _  9|  +  c 

(0,4):  4  =  ln|0-  9|  +  C 
)'  =  ln|;c2_  9|  +4-  in9 


C  =  4  -  ln9 


) 

■^^  (0,  4) 

^ 

7 

V 

40.  ,  =  f-J££il- 

J  tan  f  +  1 


dt 


=  ln|tanf  +  1|  +  C 
(77,4):  4  =  ln|0+  1|  +  C  =»  C  =  4 
r  =  Inltant  +  ll  +  4 


w 

^ 

<T.'4)' 

42.^  =  ^,(1,-2) 


(a)       y 


X  2 


(In  1)2 


+  C  ^  C=  -2 


Hence,  y  =  -  2. 


Section  5.2        The  Natural  Logarithmic  Function:  Integration        501 


^•£7T3'^=K^2|]- 


In  3  -  In  1  =  In  3 


46.  u  =  \n  X,  du  =  —  dx 

X 


J^  x\nx  j^  \lnxjx 


In  InU 


=  ln2 


48.   f^— |-A=  I  1^+  |— TT^ 
Jo  j:  +  1  Jo  Jo  ^  +  1 


[ 


=  U  -  21nl;c  +  ll 


1  -  2  In  2 


J -0.2  ro.2 

(esc  20  -  cot  ley  de  =         (csc^  20-2  esc  20  eot  20  +  cot^  20)  dd 
0.1  Jo.i 

ro.2 

•20-  2ese20cot20  -  I)  dO 


J -0.2 
(2  esc2 
0.1 

=    -cot  20  +  esc  20  -  0       =  0.1 


0024 


52.  ln|sinx|  +  C  =  In 


+  C  =  -ln|eseA:|  +  C 


54.  -Inlesej:  +  cotJ:|  +  C  =  —In 


-In 


(escj:  +  cot  x)(ese  x  -  eot  x) 


(esc  ;c  -  cot  x) 


+  C  =  -In 


csc-.t  -  eot"^.x 


esc  j:  —  eot  X 


+  C 


1 


cscx  -  eotx 


+  C  =  In  [esc  x  -  cotxl  +  C 


56. 


\- ^dx  =  -(l  +  V^f  +  6(l  +  V^)  -  41n(l  +  v^)  +  Ci 

J  1  +  V  x 

=  4v^  -  X  -  4  ln(l  +  v^)  +  C  where  C  =  C,  +  5. 


58.     —  dx  =  -rflnlsec  Zx  +  ian2x\  —  sin  2x]  +  C 


ps 

J-7r/4 


^.     ,        sin"^x  -  eos'j:  , 
60.  dx 


[ini 


secx  +  tanx   -  2  sinx 


ir/4 

-ir/4 


Inl'^^'l  -  2v^  -  -  1.066 


Note:  In  Exercises  62  and  64,  you  can  use  the  Second  Fundamental  Theorem  of  Calculus  or  integrate  the  function. 


62.   F{x) 

F'{x)  =  tanx 


=  I  tantdt 

Jo 


64.   F{.x)  =  j^^ 


dt 


Zx      2 

F\x)  =  4  =  - 

.r-       .V 


502        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


66. 


A  =  3 

Matches  (a) 


68.  A 


r^-i 


X  +  4  In ; 


>.]' 


4  +  4  In  4  -  1 

3  +  4  In  4  »  8.5452 


••I 


70.       {2x  -  tan(0.3x))  dx 


x'-  +  ■ 


10 


ln|cos(0.3x)| 


10, 


16  +  Ylncos(1.2) 


]-hf 


In  cos(0.3) 


«  11.7686 


72.  Substitution:  (m  =  x^  +  4)  and  Power  Rule 


74.  Substitution:  («  =  tan  ;c)  and  Log  Rule 


76.  Answers  will  vary. 


78.  Average  value  = 


1  r4(x- 

4  -  2J2       ^2 

4.,        J 


+  1) 


dx 


+  -z\dx 
X       x-^' 


re 


82.  f 


I 


=  2 


1 


In  4-;^- In  2  +  1 


ln2  +  ^l  =  ln4  +  ^«  1. 


8863 


10 


In  2    ,„  r  -  100 


dT 


80.  Average  value 


10 

In  2 


ln(r  -  100) 


=  i^[.n200-lnl50]  =  i^[ln(|; 


2-oJo 


TTX    , 

sec-—  dx 
6 


l/'6 


In 


TTJC     .  TTX 

sec  -^  +  tan  — - 
6  6 


L2\Tr, 
=  -[ln(2  +  73)  -  ln(l  +  0)] 

=  -ln(2+  73) 


=»  4.1504  units  of  time 


84. 


dS^k 

dt  ~  t 

S{t)  =  \  -dt  =  k\n\t\  +  C  =  klnt  +  C since r  >  1. 

5(2)  =  A:  In  2  +  C  =  200 
S(4)  =  k\n4  +  C  =  300 
Solving  this  system  yields  k  =  100/ln  2  and  C  =  100.  Thus, 


5W  - -!5^  +  100  -  1001 


[^-1 


Section  5.3        Inverse  Functions       503 


86.  k=  I:  /iW  =  X-  \ 

Vx-  1 


k  =  0.5:  /0.5W  = 


A:  =  0.1:/o.,W 


lim  L  (x)  =  \nx 

;t-.0* 


0.5 
0.1 


=  2(v^  -  1) 

=  io('^-  1) 


88.  False 


—  [Inx]  =  - 
ax  or 


90.  False;  the  integrand  has  a  nonremovable  discontinuity  at 
x  =  0. 


Section  5.3       Inverse  Functions 


2.  (a)       f(x)  =  3  -  4a: 


/(.W)=/f^)-3-4i^Ux 


'g(/W)  =  g(3  -  4x)  =  ^      ^l      ^-"^  =  X 


(b) 


/\.. 


4.  (a)       /W  =  1  -  x'       • 

f(g{x))  =  /( yp^)  =  1  -  ( yr^^) 

=  1  -  (1  -  x)  =  JC 
g(/W)  =  gil  -  x') 

=  Vi  -  (1  -  ;c^)  =  l^  =  .t 


6.  (a)       /W  =  \6  -  x\  x  >  0 


g(x)  =  716^^ 
/(gW)  =/(yT6^^)  =  16  -  (VT6^^)2 

=  16  -  (16  -  x)  =  X 
g{f(x))  =  g(16  -  ;c2)  =  Vl6  -  (16  -  x^) 


(b) 


8        12       16      20 


=  vj:    =  JC 


8.  (a)       f(x)  =  — — ,  .X  >  0 
1  +  X 

g(x)  =  ^-^^,  0  <  .X  <  1 


f{g{x))=f 


gifix))  =  gl 


x 

1  -.V 


1  1 


X  X 

1 


1    +  X 


1    +  -Y   _         X  1    +  -V 

1  ~  1  +  .X-  '       1 

1  +.r 


(b) 


504        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


10.  Matches  (b) 

14.  /U)  =  5.r-  3 

One-to-one;  has  an  inverse 


12.  Matches  (d) 


16.  F(x)  = 


x^  +  A 


Not  one-to-one;  does  not  have  an 
inverse 


18.  git) 


1 


Jt^  +  l 
Not  one-to-one;  does  not  have  an 
inverse 


20.  fix)  =  5x^x  -  1 

One-to-one;  has  an  inverse 


22.  hix)  =\x  +  4\  -  \x-4\ 

Not  one-to-one;  does  not  have  an  inverse 


24.  fix)  =  cos- 


3x 


,  .  3    .    3j:  Itt  4tt 

fix)  =  ——  sin—-  =  0  when  x  =  0,  -r-,  ^r-, ... 
•'  22  33 

/is  not  strictly  monotonic  on  (— oo,  oo).  Therefore, /does  not  have  an  inverse. 


26.  fix)  =  j^  -  6^2  -t-  12x 

/'W  =  3;c2  -  12t  -K  12  =  3(;c  -  2)^  >  0  for  all  x. 

/is  increasing  on  (-oo,  oo).  Therefore, /is  strictly 
monotonic  and  has  an  inverse. 


28.  fix)  =  ln(x-  3),;c  >  3 
1 


fix) 


x-3 


>  OfoTx  >  3. 


/is  increasing  on  (3,  oo).  Therefore, /is  strictly  monotonic 
and  has  an  inverse. 


30.      fix)  =  3x  =  y 

"I     . 

X 


/-w  =  f 


32.     fix)  =x^  -  1 


x  =  ^y  +  1 
y  =  ^x  +  1 


r'W  =  ^^TTT 


34.      fix)  =x^  =  y,  0  <  X 

X  =  Vy 

y  =  Vx 

f-'ix)  =  ^ 


Section  5.3        Inverse  Functions       505 


36.      fix)  =  Jx^-  A  =  y,  x>2 
X  =  ^y^  +  4 
y  =  Jx^  +  4 


/-'W  =  V.r^  +  4,  jc  >  0 


38. 

fix)  =  3  V2x  -  1 

y5  +  243 
^          486 

.t^  +  243 
^           486 

j^  +  ''43 

486 


h^ 

C^ 

1 

The  graphs  of/and/~' 
are  reflections  of  each 
other  across  the  line  v  = 


40.      fix)  =  a:V5  =  y 

V  =  ^5/3 

/-'W  =  Ar5/3 


/^ 

^ 

The  graphs  of  f  and/" '  are 
reflections  of  each  other  across 
the  line  v  =  x. 


X  +  2 
42.      fix)  =  ^-^  =  V 
.r 


/-'W  = 


y-  1 

2 
j:  -  1 

2 
;c  -  1 


■ — : — 

^ 

1 

\ 

44. 


X 

0 

2 

4 

/-'W 

6 

2 

0 

The  graphs  of /and/"' are 
reflections  of  each  other  across 
-    ..  •       the  line  y  =  x. 

46.  fix)  =ki2-  X-  X?)  is  one-to-one  for  all  k  ^  0.  Since/-'(3)  =  -2,/(-2)  =  3  =  ^2  -  (-2)  -  (-2)3)  =  12A.-  =>  k  =  \. 


48.  fix)  =  \x  +  2|  on  [-2,00) 

/'W=^^l)  =  l  >0on(-2,oo) 

X  +  2 

/is  increasing  on  [-2,  00).  Therefore, /is  strictly 
monotonic  and  has  an  inverse. 


52.  fix)  =  secjcon 


0.- 


50.  fix)  =  cot  -t  on  (0,  tt) 

fix)  =  -csc-.t  <  Oon  (0,  tt) 

/is  decreasing  on  {0,  tt).  Therefore, /is  strictly  monotonic 
and  has  an  inverse. 


fix)  =  sec  X  tan  x  >  0  on  I  0,  —  I 

/is  increasing  on  [0,  it/2).  Therefore, /is  strictly  monotonic  and  has  an  inverse. 


506       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


54.  /(.r)  =  2-^  =  yon(0,  10) 

2^2     _      3      =     y.Zy 

xK2  -  y)  =  3 


f-'{x) 


56.  (a),  (b) 


=  -V2 

3 

~  y 

=  *V2-. 

2 

K' 

/^. 

12 

The  graphs  of/ and/"'  are 
reflections  of  each  other 
across  the  line  y  =  x. 


58.  (a),  (b) 


(c)  h  is  not  one-to-one  and  does  not  have  an  inverse. 
The  inverse  relation  is  not  an  inverse  function. 


(c)  Yes, /is  one-to-one  and  has  an  inverse.  The  inverse 
relation  is  an  inverse  function. 


60. /(x)  =  -3 

Not  one-to-one;  does  not  have  an  inverse 


64.  f(x)  =  16  —  j:^  is  one-to-one  for  j:  >  0. 
16-;c^  =  y 
16  -y  =  x^ 
4/16^  =  ^: 
Vl6  -  x  =  y 

f-\x)  =  yi6  -  X,  X  <  \6 


62. 

f{x)  = 

ax  +  b 

/is  one-to-one;  has  an  inverse 

ax 

+  b 

=  y 

X 

y-b 

a 

y 

X  -  b 
a 

f- 

-'W 

-'-\a^Q 
a 

66. 

/w  = 

1^- 

3|  is  one-to-one  for  X  >  3. 

x 

-  3  = 

=  y 

X  = 

--y  +  3 

y 

-x  +  3 

f- 

Kx)- 

=  X  -1-  3,  X  >  0 

68.  No,  there  could  be  two  times  t^  i=  t-^^  for  which 


hit,)  =  h{t^. 


70.  Yes,  the  area  function  is  increasing  and  hence  one-to-one. 
The  inverse  function  gives  the  radius  r  corresponding  to 
the  area  A. 


72.  fix)  =  ^ix?  +  2x3);/(-3)  =  ^("243  -  54)  =  - 11  =  a. 
1 


fix)  =  ^5x^  +  6x2) 


(/-')'(- n) 


1 


1 


27 


^ ^ ^\_ 

7'(/-'(-ll))      /'(-3)      5(-3)^  +  6(-3)2"l7 


Section  5.3        Inverse  Functions       507 


74.  f{x)  =  cos  2x,/(0)  =  1  =  a 

f'{x)  =  -2sin2x 

^•^"'^'^'^  =7lrW)  =7W  =  ^i^  =  ^  which  is  undefined. 


76.  /W  =  v^r^^,/(8)  =  2  =  a 

1 


Z'U) 


(/-')'(2) 


2jx-  4 


■/'{/- '(2))      /'(8)       1/(278^^)       1/4 


78.  (a)  Domain/ =  Domain/  '  =  (-00,00) 
(b)  Range/ =  Range/"'  =  (-00,00) 
(c) 


80.  (a)  Domain  /  =  [0,  00),  Domain  /-'  =  (0,  4] 
(b)  Range  /  =  (0,  4],  Range  /"'  =  [0,  00) 
(c) 


(d)              /(.r)  =  3  -  4x,  (1,  - 1) 

fix)  =  -4 

/'(I)  =  -4 

f-\x)=^.  (-1,1) 

(r')w  =  -^ 

(/-')'(-!) =4 

(d)      /w=i',. 

f'(,A             ~<iX            „    ,             ^ 

/(->)       (^  +  „r  /(I)          2 

rw=7^ 

—  9 

1 

2 

1  2         3 


82.     x  =  2  ln{y^  -  3) 


1  =  2- 


1 


.rfy 


^^2^"^ 


dtc  4y    ■A'^"''^^'^^  16  16- 


In  Exercises  84  and  86,  use  the  following. 

fix)  =  ix-3aQdg{x)  =  x-^ 
J^\x)  =  S{x  +  3)  andg-Hx)  =  ^ 


84.  (g-'  o/-')(-3)  =  r'(/-'(-3)  =  g-'(O)  =  0 


86.  (g-'  og-')(-4)  =  g-'(g-H-4))  =  g-il-4) 
=  V^^=  -^4 


508        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 

In  Exercises  88  and  90,  use  the  following. 

fix)  =  X  +  4  and  g(x)  =  2x  -  5 

J^\x)  =x-4  andg-\x)  =  ^^ 


90.  (g  "/)(x)  =  gifix)) 
=  gix  +  4) 
=  2(x  +  4)  -  5 
=  2a:  +  3 


88.  if-' 

'g-')(x)=f-'(g-'ix)) 

■  -rm 

=^- 

x-3 

Hence,  {g  »/)"'« 


x-3 


(Note:(go/)-'=/-'og-') 


92.  The  graphs  of/ and  /  '  are  mirror  images  with  respect 
to  the  line  y  =  x. 


94.  Theorem  5.9:  Let/be  differentiable  on  an  interval  /. 
If/ has  an  inverse  g,  then  g  is  differentiable  at  any  x  for 
which  f'(g{x))  +  0.  Moreover, 


g\x) 


1 


/'(gW) 


.  f\g{x))  +  0 


96.  /is  not  one-to-one  because  different  j:- values  yield  the 
same  y- value. 


Example:  /(3)  =  / 


Not  continuous  at  ±2. 


98.  If/ has  an  inverse,  then /and/  '  are  both  one-to-one. 

Let  (/-')~'W  =  y  then  x  =  r\y)  and/W  =  y. 
Thus,  (/-•)-'  =/ 


100.  If/has  an  inverse  and/(xi)  =  f(x-^,  then/"'(/Ui))  =/~'(/U2))  =^  ^i  ~  ^2-  Therefore,/is  one-to-one.  If/W  is  one-to- 
one,  then  for  every  value  b  in  the  range,  there  corresponds  exactly  one  value  a  in  the  domain.  Define  g{x)  such  that  the 
domain  of  g  equals  the  range  of/ and  g(Z?)  =  a.  By  the  reflexive  property  of  inverses,  g  =  /"'. 


102.  True;  if/has  ay-intercept. 


104.  False 

Let/U)  =  xoxg{x)  =  \/x. 


106.  From  Theorem  5.9,  we  have: 

,.  ,_fUx)m-f"{g{x))g\x) 
ng{x))  ■  [i/r(gU)))] 

\f'ig{x)W 
figix)) 

\fUxm 


If/is  increasing  and  concave  down,  then/'  >  0  and/"  <  0  which  implies  that  g  is  increasing  and  concave  up. 


Section  5.4        Exponential  Functions:  Differentiation  and  Integration       509 


Section  5.4      Exponential  Functions:  Differentiation  and  Integration 


2.  e-2  =  0.1353. 

lnO.1353. ..  =  -2 


8.  4^^  =  83 

83 


e' 


X  =  ln(f 


-  3.033 


12. 

200e- 

-4c  — 

15 

e~ 

-4i  = 

15        3 
200      40 

^ 

4x  = 

■»(i) 

x  = 

i'"(f)' 

0.648 

16. 

ln4x 

=  1 

4a: 

=  e' 

=  e 

a; 

e 

"  4 

-  0.680 

In  0.5  =  -0.6931... 

6. 

gta2x=    12 

0.6931.  .  .  =  i 

2;c  =  12 
X  =  6 

10.  -6  +  3^^  =  8 

ie'  =  14 

-^ 

- 

.  =  ln(^ 

)  = 

=  1.540 

14.  In;c2=10 

^2  =  glO 

=  ±e'  ^±148.4132 


18.  Hx  -  2)2  =  12 

(x  -  IT'  =  e>2 
X  -  2  =  e« 

x  =  2  +  e^  ==  405.429 


20.  V  =  W 


22.  V  =  e"^/2 


24.  (a) 


(b) 


"^ 

V. 

Horizontal  asymptotes:  y  =  0  and  y  =  S 


Horizontal  asymptote:  v  =  4 


510        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


26.  y  =  Ce""" 

Horizontal  asymptote;  y  =  0 
Reflection  in  the  y-axis 
Matches  (d) 


28.  y  = 


1  +e- 


lim 

j^oo  1    +  «-" 

lim -z 

x-*-ca  I   +  e 


=  c 


0 


Horizontal  asymptotes:  y  =  C  and  y  =  0 
Matches  (b) 


30.  fix)  =  e^/3 

g(x}  =  In  x^  =  3  In  jc 


32./W  =  e--' 
g(x)  =  1  +  Inj: 


34.  In  the  same  way. 


lim 


(-3-= 


e^  for  r  >  0. 


,^,,111  1  1  1 

36.   l  +  l+x  +  T  +  :rT  +  ttt  +  ^rr  + 


2.71825396 


2       6      24       120      720      5040 

e  ==  2.718281828 


.>l  +  l+^  +  ^  +  :^  +  4.  +  a.+     1 


2      6      24       120      720      5040 


38.  (a)    y  =  e^ 

y'  =  2e^ 
At(0,  l),y'=  2. 


(h)    y  =  e-^ 
y'=  -2e-^ 
At  (0,1),)''=  -2. 


40.  /W  =  e'-^ 
fix)  =  -e'-- 


42.     >>  =  e 


=  ^-^ 


^=-2x.-^ 


44.    v  =  x^e 


dy 
dx 


—x^e  ^  +  2xe  ^ 


=  xe-'{2  -  x) 


46.    g(/J  =  e-^'^ 

g'it)  =  e-V/^Cer-^) 


S^S/r' 


fe 


48.     >>  =  Ini 


1  +  e' 


1  -  e^, 
ln(l  +  e')  -  ln(l  -  e') 


+  ■ 


dr       1  +  e'   ■    1  -  e' 

2e^ 


1  -  e 


2x 


50.     >  =  Inl 


e^  +  e" 


In(e^  +  g-^  -  In  2 


dy  _  e^  —  e  ■ 
dx      e^  +  e~- 

e^  -  1 


e^  +  1 


52.    y  = 


e'  —  e 


^~        2 


54.     y  =  xe^  —  e'  =  e'ix  —  1) 


dx 


=  e'  +  e'ix  -  \)  =  xe^ 


Section  5.4        Exponential  Functions:  Differentiation  and  Integration       511 


56.  f(x)  =  e^\nx 


fix)  =  - 

X 


58.    y  =  \ne'  =  X 
dx 


60.  e^  +  X?  -  f  =  10 

\x^  +  y\e^  +  2x  -  ly^  =  Q 
\   dx  dx 


di 
dx 


(xe^  -  2y)  =  -ye^'  -  2x 


dy 
dx 


xe^  -  ly 


62.    g{x)  =  -Jx  +  e'Xnx 


1  e' 

— P  +  —  +  e*  In  j: 


,,,  .  1  xe'  —  e'      e' 

1       ,   e^jlx-l)   ,     ,, 
-  H :: h  e'  In  jc 


4xv^ 


;c2 


64.  y  =  ^^(3  cos  2x  -  4  sin  Ix) 

y'  =  e^i-6smlx  -  8  cos  2x)  +  f^(3  cos  2x  -  4  sin  2x) 
=  e^{—\Qsix\lx  -  5  cos  Ix)  =  -  5e'^(2  sin  Ix  +  cos  2x) 

y"  =  -  5e'(4  cos  2x  -  2  sin  2j:)  —  Se'il  sin  2j:  +  cos  Ix)  =  -  5e^(5  cos  2j:)  =  -  25^^  cos  2x 
y"-  ly'  =  -25e'cos2jc  -  2(-5e')(2  sin  2j:  +  cos  2;c)  =  -5e*(3cos2x  -  4  sin  2j:)  =  -5y 
Therefore,  y"  -  ly'  =  - Sy  =>  y "  -  2y '  +  5.v  =  0. 


/■ 


66.  f{x)  = 


e'  —  e  ^ 


/'W  =  ^-^  >  0 


/W 


oX    —    a     X 


=  0  when  x  =  0. 


Point  of  inflection:  (0,0) 


(0.0) 

/ 

A 

68.    g(x)  =  ^e-(--3)V2 

^'W  =  -^(;c-3>-(-3)V2 
^2^ 


5"W 


1 


/27r 
Relative  maximum 


{x  -  l){x  -  4)e-(^-3)V2 


^  ('•*) 


(3,  0.399) 


Points  of  inflection:  I  2,  ^=«-  '/^  |,  (  4,  — L=^- '/: 


-  (2,  0.242),  (4,  0.242) 


70.   fix)  =  xe-'' 

f'(x)  =  -A:e~-'  +  e~'  =  e"^(l  -;«:)  =  0  when.v  =  1. 

f"(x)  =  -e--^  +  (-e-')(l  -  x)  =  e-'ix  -  1)  =  Owhenx  =  2. 

Relative  maximum:  (l.e'') 

Point  of  mflection:  (2,  2e-2) 


(I..--') 

/ 

512        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


72.  fix)  =  -2  +  e3^(4  -  2x) 

fix)  =  eH-2)  +  3e3^(4  -  2x)  =  e'^ClO  -  6x)  =  Owhen;c  =  f. 
fix)  =  e^1-6)  +  Se^HlO  -  6x)  =  £^^(24  -  18;c)  =  Owhen;c  =  f. 
Relative  maximum:  (5,  96.942) 
Point  of  inflection:  (|,  70.798) 


74.  (a)        fie)  =  fie  +  x) 

lOce"'^  =  10(c  +  ;c)e-<''+^) 

C_  _  C  +  X 

ce"^"  =  ic  +  x)e'' 
ce'  =  c  +  X 
ce^  —  c  =  X 

X 

(c)  Aix)  =  -J^^/»-^* 
e^  —  1 


(b)  AW  =  jcf (c)  =  X 


10' 
10x2 


e^-  1 


e^  -  1 


-(V(e'-i)l 


e^/d-c') 


(d)  c  = 


e'-  1 


lim  c  =  1 
lim  c  =  0 


The  maximum  area  is  4.591  for  a:  =  2.118  and 

fix)  =  2.547. 


76.  Let  (j;o>  y^)  be  the  desired  point  any  =  e  ^. 


-e  "      (Slope  of  tangent  line) 


1 


-,  =  e'      (Slope  of  normal  line) 

y  —  e~'^  =  e^'ix  —  x^ 

We  want  (0,  0)  to  satisfy  the  equation; 


f( 0.4263,  ^-<'«") 


1  =  x^e^ 
XqC^  -1=0 
Solving  by  Newton's  Method  or  using  a  computer,  the  solution  is  Xq  =  0.4263. 
(0.4263,  e-o"2«3) 


Section  5.4        Exponential  Functions:  Differentiation  and  Integration       513 


78.  V=  15,0{)Oe-o«286,  0  <  f  <  10 

(a)     20.000 


dV 

(b)  ^  =  -9429e-o«286' 
at 


Whenr  =1,^=  -5028.84. 
dt 

Whenr  =  5,^-  -406.89. 
dt 


(C)      20.000 


80.  1.56e  ''■^cos4.9r  <  0.25  (3  inches  equals  one-fourth  foot.)  Using  a  graphing 
utility  or  Newton's  Method,  we  have  f  >  7.79  seconds. 


'O'V 


82.  (a)  V,  =  -1686.79f  +  23,181.79 


V^  =  109.52f2  -  3220.12t  +  28,110.36 


(b)  The  slope  represents  the  rate  of  decrease  in  value  of 
the  car. 


(c)  V3  =  31,450.77(0.8592)'  =  31,450.77e^'"5i8t 


dV, 


(e)   -r^  =  -4774.2e- 


dt 


dV^ 


For  f  =  5,  — ^  =  -2235  dollars/year. 

dV, 
For  f  =  9,  — ^  =  -  1218  dollars/year. 


(d)  Horizontal  asymptote:   lim  V3(r)  =  0 

As  f  — >  00,  the  value  of  the  car  approaches  0. 


/"l 

-^ 

\^' 

/ 

\ 

84.     fix)  =  e--^/2,/(0)  =  1 
fix)  =  -xe-^'\f'{Q)  =  0 

fix)  =  .t^e-^/2  -  e-^/2  =  e-^/2(;c2  -  l),/t0)  =  - 1 
P.W  =  1  +  0(.t  -  0)  =  1,  Pi(0)  =1 
P,  '(.v)  =  0,  P,  '(0)  =  0 

P^ix)  =  1  +  0(.r  -  0)  -  i(.r  -  0)=  =  1  -  y,  P^lO)  =  1 

P^'ix)^  -x,P2'{0)  =  0 

P.'\x)  =  -UP, 'to)  =  -1 

The  values  of/,  P,,  P2  and  their  first  derivatives  agree  at  ;c  =  0.  The  values  of  the  second  derivati\es  of 
/and  P2  agree  at  jc  =  0. 


514        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


86.  n*  term  is  x"/n\  in  polynomial: 
r=       x^       ;c^ 

X^         JC' 

Conjecture:  e^  =  1  +  x  +  —  +  —  + 


»■/: 


90.    J  e^-'dx 


-e-i  +  1  =  1- 


> 


88.  Let  M  =  -x^,  du  =  -Ax^dx. 
3^ 


e  "\-Ax^)dx  =  e  "'  +  C  /    '    vj 


v..       ^~ 


^ 


c. 


7 


92. 


[:t2^/2^  =  ll 


jt  ->,'    '    J  ^ 


^^^(¥)  '^  "  \^"'  "^  *^ 


J^d.=  -ije 


94.    r^dx=-\\e^'4-^)dx=-\e^'^  +  C 


96.  Let  M  =  1  +  e^JT,  rfw  =  le^dx. 


+  e^A:)  +  c 


98.  Let  u  =  ~z~.  du  =  —x  dx. 


rV2  r. 

xe-'^^-dx  =  - 
Jo  Jo 


xe  -''-dx  =  -  f    %--=/2(-x)  a[x  =  [-^-^2!^-^= 


1  -e-'  = 


e  -  1 


100.  Let  M  =  e^  +  e^^  ^m  =  (e'  -  e-^)a[r. 


/ 


e'  +  e'" 


dx  =  ln(e^  +  g-^)  +  C 


102.  Let  M  =  e^  +  e-",  du  =  {e^  -  e'")  dx 

-  le 


-2 


e^  +  e" 


+  C 


104.       ^ ^  alt  =       (e^  +  2  +  e-'^)dx 


=  e*  +  2a:  -  e"^  +  C 


/' 


106.    le'^^^seclxtanlxdx  =  -e'^^  +  C 
(u  =  sec  2x,du  =  2  sec  2j:  tan  2x) 


ln(e2»-i)a[x=   I  ( 


108.    \\nie^-'^)dx  =      {2x  -  \)dx 
x^  -  X  +  C 


112.  f'{x)  =  I  (sin;c  +  e^  a^  =  -cosx  +  ^e^  +  Q 
/'(O)  =  -1+1+ C,  =1^  C,  =  1 


e-^Pa[r 


(e^  -  2  +  e^2')a[« 


=  |e^  -  2;c  -  ^e~^  +  C 


f'(x)  =  -cosx  +  -e^+  1 


/W 


=  / 


-  cos  x  +  -e^  +  I  ]dx 


=  -  sin  ;c  +  -e^  +  x  +  C, 
4  '^ 


/fO)  =  -  +  Q  =  -^Q  =  0 


/(x)  ==  X  -  sinx  +  -e^ 
4 


Section  5.4        Exponential  Functions:  Differentiation  and  Integration        515 


114.  (a) 


(b) 


di 
dx 


-0.21^ 


y  =    \xe-°^dx  =  —-  \e-°^  {-OAx)dx 


-0.2^ 


0.4 


+  C  =  -2.5e- 


+  C 


0,  -|]:  -|=  -2.5e'>  +  C=  -2.5 +  C  =^  C=l 


y  =  -2.5e-°-''  +  1 


116. 


f 

Jn 


e  '  dx  = 


118. 


f 

Jo 


(e-^  +  2)dj: 


1 

1  _. 


+  4  +  1  =  4.491 


Jo 


120.  (a)        Jxe"  dx,n=  12 


Midpoint  Rule:  92.1898 
Trapezoidal  Rule:  93.8371 
Simpson's  Rule:  92.7385 
Graphing  Utility:  92.7437 


/: 


(b)        2x6-"  dx,n  =  12 
Jo 

Midpoint  Rule:   1.1906 

Trapezoidal  Rule:  1.1827 

Simpson's  Rule:  1.1880 

Graphing  Utility:   1.18799 


122. 


\  0.3-°^' dt  =  \ 
Jo 


+  1  = 


-0.3  J  =  ± 

2 


-0.3a:  =  ln-=  -In  2 


ln2      ,,,      . 
X  =  —I-  ~  2.31  mmutes 


124. 


t 

0 

1 

2 

3 

4 

R 

425 

240 

118 

71 

36 

In/? 

6.052 

5.481 

4.771 

4.263 

3.584 

(a)  InR  =  -0.6155f  +  6.0609 

K  =  g-0.6155;  +  6.0«)9  =  428.78^""°*"^' 

(b) 


(c) 


R(t)dt  = 
Jo  Jo 


428.78€ 


-0.61551  J,  -. 


dt  =  637.2  liters 


516       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


126.  The  graphs  of  f{x)  =  In  j:  and  g{x)  =  e^  are  mirror 
images  across  the  line  y  =  x. 


128.  (a)  Log  Rule:  (m  =  e^  +  1) 
(b)  Substitution:  (m  =  x^) 


130.       \n-r  =  ]xie'  -\ne^  =  a-  b 
Ine""*  =  a  -  b 


Therefore,  In  -r  =  In  e"   *  and  since  y  =  In  x  is  one-to-one,  we  have  -r  =  e" 


Section  5.5       Bases  Other  than  e  and  Applications 


Atro=16,y  =  y       =- 


-=(r 


Atto  =  2,y=(|)'^'-0.7579 


6.  log2,9  =  log2,272/3=| 


8.  log„  -  =  log„  1  -  log„  a  =  - 1 


.  (a)     272/3  = 

--  9 

10g27  9  = 

2 
"  3 

(b)      163/"  = 

=  8 

10gl6  8  = 

I 

A 

12.  (a)  logs  I  =  -2 


3-2  =  1 


(b)     49'/2  =  7 
log49  7  =  5 


14.  y  =  3^ 


16.  y  =  2^ 


j: 

-1 

0 

1 

2 

3 

y 

1 
9 

1 
3 

1 

3 

9 

18.  y  =  3-W 


x 

-2 

-1 

0 

1 

2 

j: 

0 

±1 

±2 

y 

16 

2 

1 

2 

16 

y 

1 

I 

3 

1 
9 

12       3       4 


20. 

(a)  log3 

81  ^ 

=  X 

y-- 

1 

"  81 

X  - 

=  -4 

(b)  logs 

36  = 

=  X 

6^  = 

--  36 

X  - 

=  2 

22.  (a)  log,  27  =  3 
If'  =  11 
b  =  3 
(b)  log,  125  =  3 
fo3  =  125 
b  =  5 


Section  5.5        Bases  Other  than  e  and  Applications       517 


24.  (a)  log3JC  +  log3(A:-2)  =  1 

logjW^c  -  2)]  =  1 

x(x  -  2)  =  3' 

;c2  -  2;t  -  3  =  0 

U  +  l)(x  -  3)  =  0 

x=  -10Rx  =  3 

j:  =  3  is  the  only  solution  since  the  domain  of  the 
logarithmic  function  is  the  set  of  all  positive  real 
numbers. 


(b)  logjoU  +  3)  -  logioj:  =  1 


logi 


x  +  3 
'      X 

x  +  3 


=  10' 


a:  +  3  =  10a: 

3  =  9jt 

1 
^  =  3 


26.        5^  =  8320 

6;cln  5  =  In  8320 

^  hi  8320 
^~    6  In  5 


-  0.935 


28.        3(5^-')  =  86 

5.-1  =  86 
3 

ix  -  l)ln  5  =  ln(y) 

^86 


Ini 


X-  I  = 


In  5 


;c=  1  + 


In  5 


=  3.085 


30. 


(-IT 


365r  ln(  1  +  |^  j  =  In  2 


t  = 


1 


ta2 


365 


'"(-I) 


6.932 


32.  log,o(f  -  3)  =  2.6 


f  -  3  =  1026 

r  =  3  +  102«  =  401.107 


34.  logsVx  -  4  =  3.2 


4  =  53-2 

;C  -   4  =   (53.2)2  =   56.4  ^ 

jc  =  4  +  5*"  =  29,748.593 


36.  /(f)  =  300(1.0075'^)  -  735.41 
Zero:  t  =  10 


(10.0) 

38.  g(x)=  1  -21og,o[xU-3)] 
Zeros:  x  =  -0.826,3.826 


518        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


40.  fix)  =  3^ 

g(x)   =  l0g3  X 


X 

-2 

-1 

0 

1 

2 

fix) 

I 

9 

1 

3 

1 

3 

9 

X 

I 
9 

1 
3 

1 

3 

9 

six) 

-2 

-1 

0 

1 

2 

42.    gix)  =  2-- 

g'ix)  =  -i\n2)2- 


44.    y  =  jcCe-^') 

^  =  4-2(ln6)6-2')  +  6-2^ 
dx 

=  6-^-2;c(ln6)  +  l] 

=  6-2^(1  -  2;c  In  6) 


32/ 
46.  fit)  =  y 


/'(/) 


t(2  In  3)  3^  -  3^ 


3^(2fln3  -  1) 


48.    gia)  =  S""/- sin  2a 

g'(a)  =  5-"/2  2  cos  2a  -  lOn  5)  S-"/^  sin  2a 


50.     y  =  logio  (2j:)  =  logm  2  +  logmX 
dx  ;clnlO      a:  In  10 


52.    /iW  =  log3 


tV^c  -  1 


=  logj  x  +  -  log3  (jt  -  1)  -  logj  2 


h'ix)=^^  +  - 


jc  In  3      2     (jc  -  1)  In  3 


-0 


1 

In  3 


1 
In  3 


1_ 

X  ^  2{;t 

3x-  2 


2xix  -  1) 


] 


54.    y  =  logi 


x^-  1 


=  logloU--  1)  -  lOgioX 


1 


(iy 2x 

dx  ~  ix^  -  l)lnlO      X  In  10 

=    1  r  2x    _  n 

~  In  loL^c-  -  1       x\ 

1    r  ;c^+  1   ] 
In  loUU^  -  1)J 


56.  /(f)  =  r3/2  log,  jm  =  I 


3/2 


1  ln(f  +  1) 

2  In  2 


fit)  = 


1 


21n2 


[^rl 


-  +  |/'/Mn(f  +  1)  I 


58.  )'  =  x'-' 

Iny  =  (jc  -  l)(lnx) 


rJ:-2  C„  _ 


ix  -  1  +  X  In  x) 


60. 


y  =  (1  +  xf'^ 
Iny  =  -In(l  +  ;c) 
1  I     1 


KS=KTi7)-»»-f7 


dx      X 


zM 
xL^c  + 

(1  +  x)^/^ 


InU  +  1)1 


"_J InU  +  1)" 

x+  \  X 


^■\ 


62.      5-^^ 


In  5 


+  C 


64. 


5^)  A  =  I    (27  -  25)  dx 


Section  5.5        Bases  Other  than  e  and  Applications       519 


66. 


J(3-.)7'-^>^^=4j- 


2(3  -  x)!^^'"^'  dx 


2In7 


£7(3 -.P]  +  c 


S.      2 


68.    I  2      cos  jc  dx,  «  =  sin  jc,  du  =  cos  a;  olx 
1 


In  2 


2suijr  +  (;; 


70.  (a)      y 


,'-SWs-—- v////v\\v. 


(b)  "T  =  e^^-^cosx  (-77,2) 

ox 


=/' 


(it,  2):  2  =  e^""'  +  C  =  1  +  C  ^  C  =  1 


72.  \og^x 


\nx  _  logio^t 
In  b      logio  b 


74. /W  =  logioJT 

(a)  Domain:  x  >  0 

(b)  y  =  logioJ: 
10>'  =  a: 

/-•W  =10' 

(c)  log,o  1000  =  log.o  1(P  =  3 
Iog,olO,000  =  log,o  10*  =  4 

If  1000  <  .V  <  10,000,  then  3  <  f{x)  <  4. 


(d)  If/W  <  0,  thenO  <  .t  <  1. 
(e)/U)  +  1  =  log,oJt  +  log,ol0 
=  log,o(10;c) 
X  must  have  been  increased  by  a  factor  of  10. 


(f)    10glo(^-j   =   log,o-^|   -   log,o-t2 

=  in  —  n  =  2n 
Thus,  jtiAj  =  10^  =  100^. 


76.  f(x)  =  a^ 

(a)  fiu  +  v)  =  a"  +  ''  =  a"  a''  =f{u)f(v) 


(b)  f{Zx)  =  a^=  {a^y  =  [f{x)Y 


78.  V{t)  =  20,0001 
(a) 


3V 


V{2)  =  20,0001  |r  =  $11,250 


(b)f=20,00o(ln|)(f 

Whenf  =  1:  ^«  -4315.23 
When  f  =  4:  ^  =  -  1820.49 


(c) 


Horizontal  asymptote:  v '  =  0 

As  the  car  ages,  it  is  worth  less 
each  year  and  depreciates  less 
each  year,  but  the  value  of  the 
car  will  never  reach  $0. 


520        Chapter  5       Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


80.  P  =  $2500,  r  =  6%  =  0.06,  t  =  20 

/        0.06  N^O" 
A  =  2500(l  +^^^j 

A  =  2500e(°'^**^*  =  8300.29 


n 

1 

2 

4 

12 

365 

Continuous 

A 

8017.84 

8155.09 

8226.66 

8275.51 

8299.47 

8300.29 

82.  P  =  $5000,  r  =  7%  =  0.07,  t  =  25 
0.07^25" 


A  =  50001  1  + 1 

A  =  5000eO'"<25) 

84.  100,000  =  Pe° 


P  =  100,OOOe-oo«' 


n 

1 

2 

4 

12 

365 

Continuous 

A 

27,137.16 

27,924.63 

28,340.78 

28,627.09 

28,768.19 

28,773.01 

f 

1 

10 

20 

30 

40 

50 

P 

94,176.45 

54,881.16 

30,119.42 

16,529.89 

9071.80 

4978.71 

0  07\3i 
86.  100,000  =  P\\+  ^1 


P  =  ,00,0001 1  +  H)- 


t 

1 

10 

20 

30 

40 

50 

p 

93,240.01 

49,661.86 

24,663.01 

12,248.11 

6082.64 

3020.75 

88.  LetP  =  $100,  0  <  r  <  20. 

400 

(a)  A  =  lOOfiOo^r 
A(20)  =  182.21 

(b)  A  =  lOOe""^' 
A(20)«  271.83 

(c)  A  =  lOOgOo*' 
A(20)  «  332.01 

92.  (a)  12.000 


(b)  Limiting  size:  10,000  fish 

, ,  10,000 

(c)  p(t)  = 

p\t)  = 

~  (\  +  19e-'/5)2 

p'{\)  =  113.5  fish/month 

p'(10)  »  403.2  fisii/month 


1  +  19e-'/5 

e-'/i        /19 

(1  +  19e'/5)2l  5 

38,000e-"'5 

:  10,000) 


90.  (a)    lim 


0.86 


=  0.86     or 


(b) 


-0.86(-0.25)(e-°-^")       0.2156-"-^" 


(1  +  e-o-zs") 


(1  +  e-o-25") 


P'(3)  -  0.069 
F'(IO)  -  0.016 


,. ,          38,000,      ,,, 
(d)      p'tr)  = -r-{e-''^) 


1  -  19e-'/^ 
(1  +  19e-'/=)3 


h 


19e-'/5  =  1 
t 


In  19 


f  =  5  In  19  =  14.72 


Section  5.5        Bases  Other  than  e  and  Applications       521 


94.  (a)  ^'i  =  6.0536;c  +  97.5571 

y^  =  100.0751  +  17.8148  In  X 
Vj  =  99.4557(1.0506)^ 
y^  =  101.2875xO"'-'i 

(b)        150 


100 

>3  seems  best. 


(c)  The  slope  of  6.0536  is  the  annual  rate  of  change  in 
the  amount  given  to  philanthropy. 

(d)  For  1996, .«  =  6  and  y,'  =  6.0536,  >','  =  2.9691, 
j3'  =  6.6015,^4' -3.2321. 

^3  is  increasing  at  the  greatest  rate  in  1 996. 


96.  A  =      S-'dx  =  [-^1    =  -^  -  23.666 
Jo  Lin  3 Jo      In  3 


98. 


X 

1 

10-' 

10-2 

10-^ 

io-« 

(1  +  x)'"^ 

2 

2.594 

2.705 

2.718 

2.718 

100. 


f 

0 

1 

2 

3 

4 

y 

600 

630 

661.50 

694.58 

729.30 

y  =  ciJd) 

When  f  =  0,  >-  =  600 
y  =  600{kf) 


C  =  600. 


630^^05    66yO  69i58»,io5   ^^^  «=  1  05 

600  '     630  '  661.50  '  694.58 

Let/t  =  1.05. 
y  =  600(1.05)' 


102.  True. 

/(e"  +  ')  -f{e")  =  Ine"*'  -  In  e" 
=  n  +  \  - n 
=  1 


104.  True. 

cPy  _ 
dx"  ' 


Ce' 

yforn  =  1,2,3, 


106.  True. 

f(x)  =  g(x)e'  =  0  ^ 

g(x)  =  0  since  e'  >  0  for  all  .r. 


522        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 
108.  y  =  x^^'' 

y'  l^\ 

—  =  sinx  —    +  cos;c  •  Injc 


y '  =  -t^"-'  — -  +  cos  X  •  In  X 


Tangent  line:  y  —  —  =  IIjc  —  — 


y^x 


Section  5.6       Differential  Equations:  Growth  and  Decay 

1    '^y      A  A  dy  ,      Jx 


2 


dy  _ 
dx 

=  4  - 

-  y 

dy 

A-y 

-dx 

■ 

'^    dv 

=      - 

-dx 

,  4 

-/> 

ln|4- 

-  y\dy  - 

=  —x 

+  c. 

A  -  y  - 

=  «-•> 

■+c,  = 

Ce 

y  = 

=  4- 

-  Ce"^ 

/3yy^  =  |, 


/x  dx 
2       3  ' 


8.                y'- 

=  j:(i  +  y) 

y' 

1   +.V 

=  ;c 

f/'    dx- 

=     X  dx 

Ji+y 

=     xdx 

ln(l  +  y)  = 

=f-. 

l+y- 

=  g(rV2)  +  C, 

y  -- 

=  gC,  ^/2  _    1 

=   C^/2  -    1 

9y2  _  4^/2  =  c 


10.  xy  +  y'  =  100;c 

y'  =  100;c  +  xy  =  ^100  -  y) 

y'     ^ 
100  -  >     "^ 

jTo^'^^^r'^" 

-ln(100-y)=y +  C, 

ln(100  -  y)  =  -|  -  C, 
100  -  >-  =  e-0^/2)-c, 

-y  =  e-c.  e-^/2  -  100 
>-  =  100  -  Ce-^/^ 


Section  5.6        Differential  Equations:   Growth  and  Decay       523 


12.         ^  =  /t(10  -  t) 
dt 


dp  ^ 

—-dt  = 
dt 

- 

=     k(\Q  - 

-  t)dt 

dP-- 

->■ 

-ty-  +  c 

P  = 

^>- 

-tY  +  c 

14. 


dx' 

=  kx{L  -  y) 

1 

L  - 

dy 

ydx 

=  kx 

1 

L-y 

dx 

=     fccdx 

1 

,  L  - 

—  rfv  = 

V 

2    ^^' 

-ln(L 

-y)- 

L  -  y  =  e-(*^/2)-c, 

-y  =    -L  +  g-C,  g-tar'/2 

y  =  L  -  Ce-'=^/2 


16.  (a) 


"^^iiii 


1  !  ;  '  I  s  J  '■  \  I 


:oi 


^  =  xdx 


inbl  =  y  +  c 


y  =  e^/2+c  =  c,^/2 


1      v. 


18. 


dy 
dt 


hi- 


Vt,  (0, 10)       15 


■Jtdt 


y  =  -^^1^  +  C 


10  =  -|(0)3/2  +  C  ^  C  =  10 


^  =  -2^''''  "^  '° 


rfv      3 
20.      ^-  =  4v,  (0,  10) 

dt       4' 

In  V  =  7  r  +  Ci 
4 

10  =  Ce°  =>  C  =  10 
V  =  lOe^'/* 


(o,  10) 

22.  f  =  ^ 

N  =  Ce'^    (Theorem  5.16) 

(0, 250):  C  =  250 

400  S 

(1,400):  400  =  250e*  =^  k  =  In-^  =  In  ^ 

When  t  =  A,N=  250e'"=(8/5'  =  250e'°<«/5>' 
^25o(8V      8192 


24.^  =  ^ 

P  =  Ce*'    (Theorem  5.16) 
(0,  5000):  C  =  5000 

(1.4750):  4750  =  5000£>*  =>  A:  =  Inf^j 

When  f  =  5.  P  =  5000e'"*'9/=o>(5> 

=  500o(^j'  -  3868.905 


524        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


26.   y  =  Ce^,  (0,  4),  [s,  | 

C  =  4 

y  =  4e>' 


,  =  MiM._o.4159 

y  =  4g -0.41591 


28. 


C-    (3,1),  (4. 


5) 


^  =  Ce- 
5  =  Ce"* 

2Ce«  =  |ce'"-- 
10^3*  =  £« 
10  =  e* 
fc  =  In  10  =  2.3026 

y  =   (7^2.3026; 
5   =   (7^2.3026(4) 

C  -  0.0005 

y  =  O.OOOSe^^o^*' 


30.  y' 


dy 
dt 


ky 


-r-  >  0  when  v  >  0.  Quadrants  I  and  II. 
dx 


34.  Since  y  =  Cef'^<'/2)/i62o];_  .^^,e  have  1.5  =  Ce['"<'''2)/i62o](iooo)  =>  c  ==  2.30  which  implies  that  the  initial  quantity  is  2.30  grams. 
When  t  =  10,000,  we  have^'  =  2.30e['"'<'/2)/i62o](io,ooo)  ^  o.03  gram. 

36.  Since  y  =  Ce^\^(Ui)/5no\<^  we  have  2.0  =  Ce['"(i/2)/573o](io,ooo)  =^  c  =  6.70  which  implies  that  the  initial  quantity  is  6.70 
grams.  When  t  =  1000,  we  have  y  =  6.70et'°<i/2)/5730]{iooo)  ^  5  94  ^^^^ 

38.  Since  y  =  Ce^^(U2)/5iio\t^  ^e  have  3.2  =  Cef'-C/^'/^sojiooo  =^  c  =  3.61. 
Initial  quantity:  3.61  grams. 
When  t  =  10,000,  we  have  >-  =  1.08  grams. 

40.  Since  y  =  Ce['"<'/2)/24.360],^  ^e  have  0.4  =  Ce^^imvi^imm.om)  =^  c  =  0.53  which  implies  that  the  initial  quantity  is  0.53 
gram.  When  t  =  1000,  we  have  y  =  o.53ef'°<'/^'/^-3«'l<"»o)  =  0.52  gram. 


dy  fc,  w 

42.  Since  —  -  ky,  y  -  Ce*^  or  >-  =  yQe^. 


po  =  ^0^""* 


k  = 


In  2 


5730 

0.15>'o  =  Joe'-""  2/5730), 
(In  2)r 


In  0.15  = 


t  =  — 


5730 

5730  In  0.15 
In  2 


15,682.8  years. 


44.  Since  A  =  20,0006°"^^',  the  time  to  double  is  given  by 
40,000  =  20,000^0  055r  ^^  ^e  have 

2  =  gO.055, 

In  2  =  0.055r 
In  2 


t  = 


0.055 


12.6  years. 


Amount  after  10  years: 

A  =  20,000e«'055'"0'  =  $34,665.06 


Section  5.6        Differential  Equations:   Growth  and  Decay        525 


46.  Since  A  =  lO.OOOe"  andA  =  20,000  when  ?  =  5,  we 
have  the  following. 


20,000  =  lO.OOOeS-^ 

In  2 

Amount  after  10  years:  A  =  lO.OOOet""^'/']"'"  =  $40,000 


0.1386  =  13.8 


48.  Since  A  =  2000e"  andA  =  5436.56  when  t=  10.  we 
have  the  following. 


5436.56  =  2000e'O' 

ln(5436.56/2000) 

'■  = To 

The  time  to  double  is  given  by 
4000  =  2000e""" 

In  2       ^  „, 

'=aTo'^^-^^y"^'- 


=  0.10  =  10% 


50.  500,000  =  P\l  + 


0.06Y'a(-'o) 
12 


P  =  500,000(1.005)-''8o  «  $45,631.04 


52.  500,000  =  Pll  + 


P  =  500,000  1  + 


==  $53,143.92 


0.09  V '^'<^' 
12 


0.09 
12 


54.  (a)  2000  =  1000(1  +  0.6)' 
2  =  1.06' 
ln2  =  rlnl.06 
In  2 


t  = 


In  1.06 


=  11.90  years 


(b)  2000  =  1000(  1  + 

2  =  I  1  + 


0.06 
12 

0.06^ '2' 


12 


ln2  =  12rln  1  + 


0.06 
12 


t  = 


1 


In  2 


^^nfl.^f) 


1 1 .58  years 


(c)  2000  =  lOOOl 


i'^m 


^  /,  0.06\365' 


In  2  =  365r  In  1  + 


0.06 
365 


In  2 


365 


1  (^  ^  0.06 


=  11.55  years 


(d)  2000  =  lOOOgOo*' 

2  =  g0.06l 

In  2  =  0.06r 
In  2 


'  =  006°="-^^^'^^ 


56.  (a)  2000  =  1000(1  +  0.055) 

2  =  1.055' 

ln2  =  rlnl.055 

In  2 


In  1.055 


=  12.95  years 


(b)  2000  =  1000(  1  +  ^^j 


2=1  + 


ln2  =  12fln  1  + 


0.055  y  2' 
12   J 

0.055 


12 


t  = 


In  2 


'H'^'-W) 


=  12.63  years 


/         0  055\2'''' 
(c)  2000  =  1000(^1  +  ^j 


/,       0.055 


.055  \3«' 


In  2  =  365r  Inl  1  + 


0.055 
365 


t  = 


In  2 


365 


,  /,       0.055 


=  12.60  years 


(d)  2000  =  lOOOeOO"' 


In  2  =  0.055r 


'^-Me^'--^^^'"^ 


526        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


58.    P=  Ce'^  =  Cgoo^i' 

P(-\)  =  11.6  =  CgOo^K-i)  =>  c  =  11.9652 

P=  11.9652e003" 

P(10)==  16.31     or    16,310,000  people  in  2010 


60.   P  =  Ce'^  =  Ce-°-^' 

P{-\)  =  3.6  =  Ce-oo*"-"  =>  C  =  3.5856 

P  =  S.SSSee-ooo^' 

P(10)  ==  3.45    or    3,450,000  people  in  2010 


62.  (a)  Af=  100.1596(1.2455)' 

(b)  N  =  400  when  t  =  6.3  hours  (graphing  utility) 
Analytically, 

400  =  100.1596(1.2455)' 
400 


'■'''''  =  100.1596 
fin  1.2455  =  In  3.9936 
hi  3.9936 


t  = 


In  1.2455 


=  3.9936 


~  6.3  hours. 


66.  (a)        20  =  30(1  -  e"*) 
30e3o*  =  10 


ln(l/3)       -ln3_      ^^,.. 

A?=  30(1    -  e-00366r) 


64.  >>  =  Ce'',  (0,  742,000),  (2,  632,000) 

C  =  742,000 
632,000  =  742,000e2* 

.  =  iB(63|m2)_oo,o2 

y  -  742,OOOe-o"802' 

Whenf  =  4,  >>  =  $538,372. 


(b)  25  =  30(1  -  e-o-0366,) 


-ln6         ,„^ 
^  =  ^00366  ^'^'^^y^ 


(a)  4  =  25(1  -  e«")  ==>  1  - 

(b)  25,000  units  (lim  S  =  25) 


25 


2i 

25 


(c)  When  r  =  5,  5  =  14.545  which  is  14,545  units. 


k  =  Inl 


-0.1744 


(d)      = 


70.  (a)  R  =  979.3993(1.0694)'  =  979.3993eOo«^" 

/  =  -0.1385r*  +  2.1770f3  -  9.9755f2  +  23.8513f  +  266.4923 

(b)     2<X» 


Rate  of  growth  =  R'(t)  =  65.7eOo«^" 


(C)       500 


(d)  Pit)  =  ^ 


Section  5.7        Differential  Equations:  Separation  of  Variables       527 


72.       93  =  lOlog.o^^  =  lOdog.o/  +  16)  74.        Since ^  =  %  -  80) 


6.7  =  log.o/  =>  /=  10 


-6.7 


kdt 

I    A<     VI  I        '  I 

10~i6       -v'-^io-    •    "/  ln(y-80)  =  fa  +  C. 


80=  101og,o77^ni=10(log,o/+  16) 


/7^*  =  l 


=  log,o  1^1=  IQ-*  When  f  =  0,  >>  =  1500.  Thus,  C  =  In  1420. 

;nf  =  \,y  =  1120.  Thus, 
k(\)  +  In  1420  =  ln(1120-  80) 


Percentage  decrease:  ( '»';;:J°")(100)  ==95%  When  r  =  1, ,  =  1 120.  Thus 


104 

k  =  In  1040-  In  1420  =  In  7^. 
142 


Thus,  .V  =  i420e['"<'*'/"»2)]'  +  80. 
When  t  =  5,y-=  379.2°. 

76.  True  78.  True 

Section  5.7      Differential  Equations:  Separation  of  Variables 

Ixy 
2.  Differential  equation:  y   =  ^-^ — ^ 

X        y 

Solution:  x^  +  y^  =  Cy 
Check:   2x  +  lyy'  =  Cy'       •      ' 
-2x 


y 


(2y  -  C) 


,  _      -~2xy     _  —Ixy  _    —2xy Ixy 

^   "  2>'2  -  Cy  ~  2y2  -  U^  +  y^)  "  y^  -  ^2  -  ^2  J  ^2 

4.  Differential  equation:  y"  +  2y '  +  2y  =  0 
Solution:  y  =  C[e~'cosx  +  C-,e~^sinjc 

Check:  y'  =  -(Cj  +  Cj)e-^sinA:  +  (-C,  +  C2)e"^cosx 

y"  =  2  Cif"^  sin  x  —  IC-^e'^  cos  .x 
y"+  2y'  +  2y  =  2C,<'--"^  sin  a-  -  2C2e--' cos .«  + 

2(-(Ci  +  C.)e-^^mx+  (-Ci  +  C^-'^cosx)  +  2(C,e-"^cos.x  +  Qe""^  sin  .r) 
=  (2C,  -  2Ci  -  2C2  +  2C2)e--'sin.»:  +  (-2C2  -  2Ci  +  2C2  +  2Ci)f "'^cos.v  =  0 

6.   y  =  |(e^2A-  _,_  ^) 
y'  =  f(-2e-^  +  e") 
y"=f(4e-^  +  e') 
Substituting,  y"  +  2y'  =  f(4e--t  +  ^t)  +  2(5)(-2e"^  +  e')  =  2e■^ 


528        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


In  Exercises  8-12,  the  differential  equation  is  ^'''*  —  16y  =  0. 

8.  y  =  3  COS  Zx 

;y(4)  =  48  COS  2x 
■y(4)  _  i6y  =  48  cos  It  -  48  cos  2x  =  0,        Yes. 


10. 


«(4) 


>>  =  5  In  X 
30 


v('')  =  -: 


30 

I6y  =  — T-  801n;c^  0,        No. 


12.  y  =  3e^  —  4  sin  2jc 

yW  =  48e^  -  Msinlx 
yW  -  i6>.  =  (24e^  -  64  sin  2x)  -  16(3e2»  -  4  sin  2r)  =  0,       Yes 

In  14-18,  the  differentia]  equation  isxy'  —  2y  =  x^e^. 


14.  V  =  ;cV,  y'  =  xV  +  Ixe'  =  e^(;c2  +  2x) 

xy' -  2y  =  x{e^{x^  +  2x))  -  2{x^e^)  =  x^e^,        Yes. 


16.  >>  =  sin  X,  y '  =  cos  j: 

xy '  —  2^  =  x(cos  x)  —  2{sin  jc)  ¥"  x'e^.        No. 


18.  y  =  xV  -  ix-,y'  =  ;cV  +  2xe^  -  10a: 

xy'  -ly  =  ;c[a:V  +  Ixe  -  lOx]  -  2[.tV  -  S.t^]  =  jt^e^,         Yes. 


20.    v  =  A  siB  (Jit 

d^  ,    ,   . 

-TT  =  —Aar  sin  oi/ 

Since  (d^/dt^)  +  16>'  =  O,  we  have 

—Aui^  sin  cot  +  16A  sin  a)t  =  0. 
Thus,  or  =  16  and  oj  =  ±4. 


22.  2x^  -  y^  =  C  passes  through  (3,  4) 
2(9)  -16  =  C=^C  =  2 
Particular  solution:  2x'  —  y^  =  2 


24.  Differential  equation:  yy'  +  x  =  0 
General  solution:  x^  +  y~  =  C 
Particular  solutions;  C  =  0,  Point 

C=  1,C  =  4,  Circles 


26.  Differential  equation:  3a:  +  2yy '  =  0 

General  solution:  3x^  +  2y^  =  C 

6x  +  4yy'  =  0 

2(3x  +  2yy')  =  0 

3x  +  2yy'  =  0 

Initial  condition: 

yd)  -=  3:  3fl)2  +  2(3)^  =  3  +  18  =  21  =  C 

Particular  solution:  3x^  +  2y-  =  21 


Section  5.7        Differential  Equations:  Separation  of  Variables       529 


28.  Differential  equation:  xy"  +  y'  =  0 
General  solution:  >>  =  C,  +  Cj  In  j: 


y'=C,ny"=-Cn 


xy"+y'  =  x[-C,^]  +  C^  =  0 


Initial  conditions:  y(2)  =  0,  >>  '(2)  =  - 


0  =  C,  +  C2  In  2 


2    2 


C,  =  1,  C,  =  -In  2 


30.  Differential  equation:  9y"  -  12y'  +  4>'  =  0 
General  solution:  y  =  e-^/^(Ci  +  C,j:) 


Particular  solution:  y  =  —  In  2  +  In  jc  =  In  - 


y"=  l^^/^ff  C,  +  Q  +  Iq.t)  +  ^^4C2  =  \eM\c,  +  2C,  +  \c.x 


3        V3 


3        V3 


<^" 


9y"-  12y'  +  4y  =  9(^e^/3  j/|q  +  IC.  +  1^.^]  -  12(e^''3)(|Ci  +  Q  +  jQa:)  +  4{e^/3)(C|  +  Qj)  =  0 


Initial  conditions:  y(0)  =  4,  y(3)  =  0 
0  =  e\C^  +  3C2) 
4  =  (1)(C,  +  0)  ^  C,  =  4 


0  =  e-(4  +  3C2)  =>  C2  =  -J 


Particular  solution:  y  =  e^l\  4  —  — x 


32.  ^  =  .x3  -  4;c 
dx 


V 


y  =   I  (.x3  -  4.t)  dr  =  —  -  2x2  +  C 


34. 


dx:  ~  1  +  e' 


Jt^ 


e" 


dx  =  ln(l  +  e^)  +  C 


1/:    "^ 

36.  -—  =  xcosx- 

dx 


y  =   \x  cos(.r-)  dx  =  —  sin(.r-)  +  C 


(u  =  x~,  du  =  2xdx) 


38.  -7-  =  tan-  x  =  sec-  .r  —  1 
dx 


I  (sec- X  — 


1)  (ix  =  tan  .r  —  .r  -1-  C 


dv 


40.  -j-  =  xV5  -  X.  Let  «  =  V5  -  x,  «=  =  5  -  x.  dx  =  -  2u  dw 
dx 


y  =     X 


=     xVS^^dr  =      (5  -  u-)u(-2u 


(-10«=  +  2«'')du 


3  5 


-j(5  -  x)V2  +  |{5  -  x)^/-  +  C 


530       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


42. 

dx 

y  =    '■ 

5e-V2Qrj  =  5(- 

'2)je- 

-i 

=  -  lOe-^/2 

+  c 

46, 

dr 
'      ds 

dr  = 

r  = 

0.055 

0.055  ds 
0.0255^  +  C 

48.    xy'^y 


If-f 


dx 

X 


44. 


dy  _x^  +  2 
dx         2>y^ 


|3y2rfy  =  J 


{x^  +  2)dx 


f  =  ^  +  2x  +  C 


\ny  =  \a  X  +  \n  C  =  \n  Cx 
y  =  Cx 


dy 
50.      y-r-  =  6  cos  vx 
dx 


h^\ 


6  cos  TTX  dx 


/      6    . 

-r  =  —  sin  TTX  +  C, 

2  77  ' 

>^  =  —  smTix  +  C 

TT 


,dy 


52.  V^?^^^  =  5jc 
dx 


/-/ 


5;c 


■  dx 


Jx^-  9 


54.      4y^  =  3e^ 

Wydy  =  pe^dx 
2y2  =  3e^  +  C 


56.  Jx+  Jyy'  =  0 

Ll/2^y  =    -   Ll/2^ 
|y3/2  =    _|^/2  +   c, 
y/2  +  ^/2  =   c 

Initial  condition:  ^(1)  =  4, 

(4)3/2  +   (1)3/2  =  8  +    1   =  9  =   C 

Particular  solution:  y'l'^  +  x'l'^  =  9 


58.  Ixy'  -  \nx^  =  0 


l< 


60.  yVl  -a:^T-  =  -^v1  -y^ 

ox 

(1    _y2)-l/2y^y  =     \{l-X^)-'^^xdx 
-(1    -/)l/2=    _(1    -;c2)l/2+   c 

y(0)  =  1:  0=-l  +  C=>C=l 


yr^=  yn^ 


1 


dx 

=  21nx 

dy 

■ln;c 

X 

^ 

y  '■ 

(lnx)2 

2 

+  c 

yd) 

=  1:1-- 

=  C 

y  = 

)^\^xY- 

4-  2 

62. 

ds 

-2s 

H^l 


=     e-2^rf5 


-g-''  =  --e"^  +  C 

^(0)  =  0:   -1  =  -|  +  C^C=-| 

1,1 

2  2 

g-r  =  i    -2r  +  i 

2  2 


-r=ln|.-  +  i|  =  lnl 


r  =  lnl 


1  +  e-^\ 

2    ; 


1  +e- 


Section  5.7        Differential  Equations:   Separation  of  Variables        531 


64.  dT  +  k(T  -  70)  dt  =  0 
dT 


ln(r-  70)  =  -kt  +  Ci 

r  -  70  =  Ce-*' 

Initial  condition:  T(0)  =  140; 

140  -  70  =  70  =  Ce"  =  C 

Particular  solution:  T-  70  =  70e-*',  T=  70(1  +  e~*') 


66. 


ir      3jt 

In  y  =  in  x^  +  In  C 
Initial  condition:  y{S)  =  2,  2'  =  CCS^),  C  = 


Particular  solution:  Sv^  =  x^,  y 


±rV3 


68.       m  -  — -  - 

dx      X  —  0      X 


n-\ 


dx 

X 


In  >>  =  In  JT  +  C,  =  Tn  jr  +  In  C  =  In  Cc 
y  =  Cx 


70.    /U,  y)  =  .r3  +  BxV  -  2y2 
/(rx,  ty)  =  t^x^  +  Ifx^  -  Ifr 
Not  homogeneous 


72.     /U,y)  = 


xy 


r;if  fy 
r-xy 


xy 


tjx-  +  y2         7.^2  +  y2 
Homogeneous  of  degree  1 


74.     /U,  y)  =  tanU  +  y) 

f(tx,  fy)  =  tan(fx  +  ty)  =  tan[f(.x  +  y)] 
Not  homogeneous 


76.     /(.r,y)  =  tan^      ■ 

ty  V 

f(tx,  rv)  =  tan  —  =  tan  - 

tx  X 

Homogeneous  of  degree  0 


78.  y 


.ty 


xy2  dy  =  {:c'  -\-  y")  dx 

y  =  vx,     dy  =  X  d\)  -\-  V  dx 
x{vxY{x  dv  +  V  dx)  =  {x^  +  (vxY)  dx 
X*  v^  dv  +  x^  v^  dx  =  x^  dx  +  v^  x^  dx 
xv^  dv  =  dx 
"l 


Jv2.v  =  /i 


dx 


-  =  ln|x|  +  C 
(^y  =  3  ln|.t|  +  C 


80. 


X-  +  y- 
2xy 


,  y  =  vx 


dv      X'  +  v-x- 


V  +  X  —  = 


dx           2x-  V 
2v  dx  +  2x  dv  = dx 


1:3^-  -/f 


ln(v2-  1)  =  -Inx  +  lnC=  In- 


v2-  1  = 


4-1  =  ^ 

X-  X 


y-  —  -ir  =  Cx 


532       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


,      2y  +  3y 
82.  y' = -,y  =  vx 

dv      2x  +  3vx 

V  +  x-r  = =  2  +  3v 

dx  x 


dx 


/if. -If 


ln|l  +  v|  =  \nx^  +  \nC  =  \nx'^C 
l+v=x^C 


X 


X 

y  =  Cy?  —  X 


84.  — y^  etc  +  j:U  +  y)  rfy  =  0,  >>  =  vx 

-x'^v^dx  +  {x'^  +  x^v){vdx  +  xdv)  =  0 


/^— If 


V  +  In  V  =  -  In  ;c  +  In  Ci  =  In 


Ci 


1    ^1 
V  =  In  — 

XV 
VX 

y 

y  =  Ce-y^'' 
Initial  condition:  ^(l)  =1,1  =  Ce~'  =^  C  =  e 
Particular  solution:  y  =  e'~^/^ 


86.  (2jc2  +  y2)  dx  +  xydy  =  0 
Let  y  =  v;c,  ofy  =  j:  dv  +  V  tic. 
(2x'  +  vV)  dx  +  x(vx){x  dv  +  V  dx)  =  Q 
(2^2  +  2^2 V 2)  dx  +  x^v  dv  =  Q 
(2  +  lv^)dx  =  -j:vrfv 


;c  1  +  v' 

1 


rfv 


-21nx  =  -ln(l  +  v2)  +  C; 

ln;c-2  =  ln(l  +  v^y^  +  In  C 
x-2  =  C(l  +  v2)'/2 

-  =   C(x2  +  /)l/2 
X 

y{\)  =  0:  1  =  C(l  +  0)  =>  C  =  1 

-=  y?T7 


88- T 

ax 


+  Q 


3/2  +  ^2 


1  =  xjx^  +  f 


Section  5.7        Dijferential  Equations:  Separation  of  Variables       533 


90.  ^  =  0.25x(4  -  y) 

ax 


dy 

A-y 


025x  dx 


\^>-h 


25xdx 
1 


\jxdx 


1 


In  b  -  4|  =  --x^  +  C, 

;y  =  4  +  Ce-^um 


92.  £  =  2-j.,>.(0)  =  4 


I  I  I  I 

\  \  \  \V\ 

\  \  \  \ 

\  \  \  \ 


(111 

\    \    \    \    \ 

\    \    \    \    \ 

\    \    \    \    \ 

N  S  N  V 


/./,/./  /././././. 


I    I    I    I    l\l    I    I    I    I 


94.  ^  =  0.2jc(2  -  y),  y(0)  =  9 


96.  ^  =  Ay,  :y  =  Ce*' 
dt 

Initial  conditions:  ^(O)  =  20,  y(l)  =  16 
20  ^  Ce°  =  C 
16  =  20e* 

A:  =  ln| 

Particular  solution;  y  =  20e"°<''/5' 

When  75%  has  been  changed: 

5  =  20e"°(^/5' 

1  =  grln(4/5) 


ln(l/4) 
ln(4/5) 


98.  ^  =  /t(x  -  4) 
dx 

The  direction  field  satisfies  {dy/dx)  =  0  along  x  =  4: 
Matches  (b). 


6.2  hr 


100.  ^  =  ky"" 
dx 

The  direction  field  satisfies  (dy/dx)  =  0  along  y  =  0,  and 
grows  more  positive  as  y  increases.  Matches  (d). 


102.  From  Exercise  101, 

w  =  1200  -  Ce-^  k  =   1 

w  =   1200  -  Ce-' 

w{0)  =  H'o  =  1200  -  C  ^  C=   1200  -  Ho 

w  =  1200  -  (1200  -  Wo)e-' 


534        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


104.  Let  the  radio  receiver  be  located  at  {xq,  0). 
The  tangent  line  toy  =  x  -  j:^  joins  (-  1,  1) 
and  (xq,  0). 


(a)  If  [x,  y)  is  the  point  of  tangency  on  the  >>  =  x  -  x^, 
then 


1  -  2;c  = 


y—  l_x-x^—  1 


X  +  I  X  +  1 

X  —  2x^  +1— 2jc  =  .r  —  j:-—  1 
a:2  +  It  -  2  =  0 


-2  ±  74  +  8 


=  -1  +  73 


Then 


y  =  x-x"-  =  373  -  5 
1-0  1  -  373  +  5       6  -  373 


l--to       -1  +  1-73  -73 

73  =  (1  +  Xo){6  -  373) 

=  6  -  373  +  xg(6  -  373) 
473  -  6 


°      6-373 


=  1.155 


(c)       10 


(b)  Now  let  the  transmitter  be  located  at  (- 1,  h). 

1       o        y-  h  _  X-  x^  -  h 
'-^  =  rri-      x+1 

x-2x^+\-2x  =  x-x^-h 

x^  +  2x-h-l=0 

(-2  +  74  +  Mh  +  1)) 


1  +  72  +  ;z 


y  =  j:  —  x^ 


Then, 


=  372  +  h-  h-  4 
0         /;  -  (372  +  h~  h-  A) 


■1--X0        -1  -  (-1  +  72  +  /;) 


2/!  +  4  -  372  +  /i 


-72  +  /i 


Xo+  1 


72  +  /! 


2/!  +  4  -  372  +  h 


hjl  +  h 


2h+  A-  372  +  h 


-  1 


There  is  a  vertical  asymptote  at  /i  =5,  which  is  the 
height  of  the  mountain. 


106.  Given  family  (hyperbolas):    x^  —  2)r  =  C 

Ix  -  Ayy'  =  0 

X 


y  = 


2y 


Orthogonal  trajectory:      y' = 


-ly 


n-\i 


dx 


\ny  =  -21nA:  +  \nk 
y  =  foc-2  = 


108.  Given  family  (parabolas):  y^  =  2Cx 

2yy'=2C 

'  =  £  =  yl(l\=y. 

^        y       2x\yj      2x 


Orthogonal  trajectory  (ellipse): 


2x 


Jyrfy=-J: 


2xdx 


=  -x^  +  Ki 


2x'^  +  y^  =  K 


J^ 

^ 

Section  5.8        Inverse  Trigonometric  Functions:   Differentiation        535 


110.  Given  family  (exponential  functions):  y  =  Ce^ 

y'  =  Ce'  =  y 

Orthogonal  trajectory  (parabolas):       y' =  — 


\ydy=  -\dx 


y-  =  -2x  +  K 


112.  The  number  of  initial  conditions  matches  the  number  of 
constants  in  the  general  solution. 


114.  TWo  families  of  curves  are  mutually  orthogonal  if  each 
curve  in  the  first  family  intersects  each  curve  in  the 
second  family  at  right  angles. 


116.  Tnie 

dy 


^=U-2)Cv+l) 


118.  True 

X'  +  y^  =  2Cy 


dy          X 

dx      C  -  y 

X         K  -  X       Kx 

-x^ 

x2  +  y2  =  2Kx 


dy  ^K-  X 
dx  V 


2Kx  -  Ix-  _  X-  +y^-  2x^  _  y^ 


C  —  y         y  Cy  —  y^       2Cy  —  ly'^       x''-  +  y    —  2y        x-  —  _v' 


=  -1 


Section  5.8       Inverse  Trigonometric  Functions:  Differentiation 


2.  y  =  arccos  x 
(a) 


x 

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

y 

3.142 

2.499 

2.214 

1.982 

1.772 

1.571 

1.369 

1.159 

0.927 

0.634 

0 

(c) 


(d)  Intercepts:  I  0,  — )  and  (1,  0) 
No  symmetry 


^-f 


3  ' 


-f) 


(-^._).      -v^.-f 


6.  arcsin  0  =  0 


536        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


8.  arccos  0  =  — 

2 


10.  arc  cot(-  J3)  =  -^ 
6 


12.  arccos(^-— j  =  - 


14.  arcsin(-0.39)  =  -0.40 


16.  arctan(-3)  =  -1.25 


18.  (a)  tanl  arccos  ^r- j  =  tanl  — 1  =  1 


(b)  cos  arcsin 


5\       12 


13/       13 


20.  (a)  sec  arctani  -7)    = 


5 


vS 


-3 


(b)  tan 


syiT 


arcsinl--      =         ^^ 


22.   y  =  sec(arc  tan  4x) 
8  =  arctan  4x 


■y  =  sec  e  =  Vl  +  I6x^ 


24.  y  =  cos(arccotx) 
6  -  arccot  x 

y  =  cos  6  = 


vO^+T 


26.  y  =  sec[arcsin(;c  ~  1)] 
9  =  arcsin(.r  —  1) 
1 


>>  =  sec  6  = 


Jlx  -  x^ 


(        .    X-  h\ 
28.  y  =  cosi  arcsin I 


6  =  arcsin 


X-  h 


y  =  cos  0  = 


Vr^  -  U  -  /z)- 


Vr^-U-Zl)^ 


30. 


v^ 

^, 

32.  arctan(2x  -  5)  =  - 1 

2x  -  5  =  tan(-l) 
1, 


X  =  -(tan(-l)  +  5)  =  1.721 


Asymptote:  x  =  0 


arccos  r  =  0 


cos  6  = 


tan  e  = 


74^-^ 


Section  5.8        Inverse  Trigonometric  Functions:  Differentiation        537 


.  arccosx 

— 

arcsecj: 

X 

= 

cos(arcsec  x) 

X 

= 

x 

x^ 

= 

1 

X 

^ 

±1 

V?^\ 


36.  (a)  arcsm(— x)  =  —  arcsin^,  \x\  <  1. 

Let>'  =  arcsin(— j:).  Then, 

— ^=sin3'  =>  x  =  —  siny  =>  x  =  sin(— y). 

Thus,  —y  =  sicsmx  =^  y  =  —  arcsin  j:.  Therefore, 
arcsin(-j:)  =  -arcsinx. 


(b)  arccos(-.r)  =  tt  -  arccos  x,  |j:|  <  1. 

Lety  =  arccos(-.r).  Then, 

—X  =  cosy  =^  X  =  —  cosv  =>  ;c  =  cos(7r  —  y). 

Thus,  TT  —  y  =  arccos  x  =^  y  =  tt  -  arccos  x. 
Therefore,  arccos(-.i:)  =  tt  —  arccos  x. 


38.  f(x)  =  arctan  x  + 


X  =  tanly  — 

Domain:  (— oo,  oo) 

Range:  (0,  tt) 

f(x)  is  the  graph  of  arctan  x  shifted  ir/l  units  upward. 

42.  f(t)  —  arcsin  t- 
2t 


f\t) 


40.  fix)  =  arccosl  — 


—  =  cos  y 
4 

X  =  A  cos  y 

Domain:  [-4,4] 

Range:  [0,  tt] 

44.  f(x)  =  arcsec  2x 
2 


VT^ 


fix)  = 


\2x\  V4x-  -  1        \x\j4x~-  1 


c^^-_ 

o* 

^^r /,..-] 

<y:f 

d 

/i-t^+<«i^''7 

A/'  ' 


-V, 


46.  /W  =  arctan  Vx 


fix) 


1  +  xj\2j'xl      2v/x(l  +  ;c) 


50.  f(x)  =  arcsin  a:  +  arccos  x  = 

/'W  =  0 


48.    h{x)  =  x^  arctan  x 


h  \x)  =  2x  arctan  x  + 


1  +x' 


52.    y  =  ]n{t-  +  4)  -  -  arctan  - 


It  1 


f  +  A      2 


'*   5 


TV© 


2t 


1  2f-  1 


ri  +  4      r^  +  4      r  +  4 


i-C.rc..^7. 


54.   y  =  - 


.rV'4  -  .IT  +  4  i 


56.     V  =  .V  arctan  Iv  — r  ln(l  +  \yr) 
4 


,_(4-^)-./.(-^),VT^,2-;,==== 


rfv 


iv       1  +  4.T- 


+  arctan(lr) 


1/      8.V 


4V 1  +  4.V- 


arctan(lv) 


JiT^x 


+  Ja^^-  + 


vT 


74" 


538        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


.    X 


58.    y  =  25  arcsin  -  -  a:V25  -  x^ 


60.   y  =  arctan 


1 


j>'=5 


-^=i_-  721-1^ -.-(25 -.r'/^(-2.) 


25 


(25  -  x^)    ^  x^ 


V25  -  x-       725  -  X-       725  -  x^ 

2x2 
725  -  x^- 


2       2(^2  +  4) 


1  1 


2  1  +  (x/2)2      2 
2  x 


+  -(.2  +  4)-2(2x) 


jc^  +  4       (;c2  +  4)2 

2x^  +  S  +  X 
(x^  +  4)2 


62.  f(x)  =  arctan  .r,  a  =  1 
1 


fXx)  = 


1   +.2 


,  ,  _      —2x 

^^'''   "    (1    +  .2)2 

P,{x)=f{\)+f'{\){x-\)  =  ^  +  \{x-\) 


AW 


P,(X)   =/(l)   +/'(1)(X  -    1)   +  |/"(1)(X  -    1)2  =  J  +  \{X  -    1)  -  ^(X  -    1)2 


64.  /(;c)  =  arcsin  X  —  2x 
1 


/'(;c)  = 


7r 


-2  =  0  when  7l  -  x^  = 


1 


x  =  ± 


fix) 


75 
2  ■ 

X 


(1    -  .2)3/2 


/"I'^'l  >  0 


73 


Relative  minimum:  I  ^r— ,  -  0.68 

r(-f)<o 


Relative  maximum:  ( — r-,  0.68 


73 


66.  f(x)  =  arcsin  x  —  2  arctan  x 
1  2 


fix) 


71^ 


1   +.2 


=  0 


1    +  2.2  +  ;c4  =  4(J    _  ^2) 

;d  +  6.2  -  3  =  0 

.  =  ±0.681 

By  the  First  Derivative  Test,  (-0.681,  0.447)  is  a  relative 
maximum  and  (0.681,  —0.447)  is  a  relative  minimum. 


68.  arctan  0  =  0.  tt  is  not  in  the  range  of  >>  =  arctan  .. 


70.  The  derivatives  are  algebraic.  See  Theorem  5.18. 


72.  (a)  cot  e  = 


(b)^  = 


=  arccotl- 
-3    dx 


dt      .2  +  9  dt 

If.=  10,^-  11.001  rad/hr. 
dt 


74.  cos  d  = 


750 


6  =  arccos  

V  s 


de^Mds^^  -1  (~'^^^\  ^ 

dt       ds     dt       71  -  (750A)2V    s^    I  dt 

750         ds 


sjs^  -  7502  dt 


If.  =  3,— =66.667  rad/hr. 
dt 


A  lower  altitude  results  in  a  greater  rate  of  change  of  6. 


Section  5.9        Inverse  Trigonometric  Functions:   Integration        539 


76.  (a)  Let  y  =  arcsin  u.  Then 
smy  =  u 
cos y  •  y '  =  u' 
dy  _     u' 


dr      cos  y       J\  -  u^' 

(c)  Let  y  =  arcsec  «.  Then    ' 

secy  =  u 

dy 
sec  >■  tan  y  —  =  « 
ax 


dy  _        u'        _  u' 

dx      secy  tan  y       \u\Ju-  -  V 

Note:  The  absolute  value  sign  in  the  fomiula  for 
the  derivative  of  arcsec  u  is  necessary  because  the 
inverse  secant  function  has  a  positive  slope  at  every 
value  in  its  domain. 


(e)  Let  y  =  arccot  u.  Then 
cot  y  =  M 


2    dy 
—  esc'  y  -—  =  M 
dx 


di 
dx 


-  esc- y 


1  +  m2 


(b)  Lety  =  arctan  u.  Then 
tany  =  tt 


2    dy 
sec'y— -  =  u 
dx 


dy  _      u' 


dx      sec^y       i  +  u} 

(d)  Let  y  =  arccos  u.  Then 

cosy  =  u 

.      dy 
—  sin  y  -—  =  u 
dx 

dy  _      m'  _ 

dx  sin  y 


vr 


(f )  Let  y  =  arccsc  m.  Then 

cscy  =  u 

dv 
—  esc  V  cot  V  -p  =  u 
'  dx 

dy-_ 

dx 


-cscycoty  |«|Vm-  -  1 

Note:  The  absolute  value  sign  in  the  formula  for  the 
derivative  of  arccsc  u  is  necessary  because  the  inverse 
cosecant  function  has  a  negative  slope  at  every  value  in 
its  domain. 


78.  f(x)  =  sin  X 

g{x)  =  arcsin(sinx) 

(a)  The  range  of  y  =  arcsin  x  is  -  it/2  S  y  ^  tt/I. 

(b)  Maximum:  v/l 
Minimum:  -  n/l 


80.  False 


The  range  of  y  =  arcsin  x 


[IT    tt] 


82.  False 


arcsin^  0  +  arccos-  0  =  0  +  |  y )    ^1 


Section  5.9       Inverse  Trigonometric  Functions:  Integration 


r    3         3  r    2         3  r' 

,  dx  =  -\     ,  dx  =  -  arcsin(2jc)  +  C  4. 

J  VI  -  4x2  2}  VI  -  4x-  2  I 


V4 


-,dx  = 


arcsm  - 


TT 

6 


r  4       4  r  3        4  r    I       r  i      t^ 

^-  JtT^'^  =  sJlTa?^'^  =  3  arc.an{3..)  +  C  8.  J^^^J-^^t  =  [l^<^tan-J  _  = 


^"•/4  +  (.v-l)=''"^  =  I^^V") 


+  C 


TT 

36 


^•/FTT'^^  =  /^--')'^^  =  i- 


1-3  -  X  +  C 


540        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


14.  Let  M  =  r^  du  =  2t  dt. 


16.  Let  u  —  x^,du  =  2x  dx. 


lAre"'  =  lJ(ipTW^''^*  ^arctanf  +  C  l^^J^,^  =  \\ 


V^^^^^  2j  xVM^  -  22 


(2j:)dc 


1  ^^       ^ 

=  —  arcsec  y  +  C 


18.  Let  M  =  arccos  x,  du  = 


yn^ 


dx. 


n/V2 
Jo 


arccos  x 


dx 


ri/72_ 
Jo 


yr^ 


-dx 


—- arccos^  j: 


1/72      3, 


32 


«  0.925 


20.  Let  M  =  1  +  j:^,  Jm  =  2x  die. 
J-/3l+^'  2j_^l+. 


-J2x)dx 


=  |-ln(l+;c2) 


->/3 


-In  2 


^r 


;dx 


1(73)2 


3  +  U  -  2)2  Ji  (V3)2  +  U  -  2)2 


-d:x: 


1  x-2 

— ;=  arctan  — 1=- 

73        V  73 


7377 

18 


J-V2 
g     1  +  Sin-; 


dx  =  arctan(sin  x) 


7r/2 
0 


2L 
4 


26. 


—  dx.  u  =  ^Jx,  du  =  — -1= 
x)  2vJc 


J  27^(1  + 

3  f    2m  du      _     (_du__  _ 
2J  m(1  +  tt2)  -  -^J  1  +  j<2  - 


ate,  dx  =  ludu 


=  3  arctan  m  +  C 
3  arctanTc  +  C 


r  4x  +  3  ,    ,  ^x  f  -2x    ,    ,r 


28.    \-^=J=dx^  {-2)\-j=^=dx  +  ■i\-j^==dx  =  -471  -x2  +  3arcsinA:+  C 


^"•Ju+l)2  +  4'^  =  2j(.+  l)2  +  4^-J(;c+l)2  +  4^ 


=  -  ln(;c2  +  2x  +  5)  -  -  arctan! —r— I  +  C 


32. 


34. 


{^  dx  r-  dx  ri  /x  +  2\12  1  (4 

L.2  +  4.+  13  =  L(x  +  2)2  +  9   =  [3  =^''H~5-JJ_2  =  3  ^'^^ll 

/.2?2x  +  2^  =  l^T^l'^  -  ^/l+U+l)2'^  =  ln|.2  +  2.  +  2|  -  7  arctan(x  +  1)  +  C 


36.        ,      ^  ^r  = 

J  V-;c2  +  4;c  J 


V4  -  (x2  -  4j:  +  4) 
2 


a!x 


74  -  (;c  -  2): 


A 


.        ■  /^  -  2\ 
=  2  arcsin  — r —    + 


38.  Let  tt  =  j:2  -  2x,  dw  =  (2a;  -  2)  dx. 
=  7.x2  -  2x  +  C 


40. 


f ^*  =  f ,L=^-  „sec|.  -  ,|  .  C 

J  U  -  l)7;c2  -  2x  Jix-  1)7U  -1)2-1 


Section  5.9        Inverse  Trigonometric  Functions:  Integration        541 


42.  ha  u  =  x^  -  A,  du  =  2x  dx. 


\ 


79  +  8p^r? 


-.dx 


^w 


2x  ,  1  /;c2  _  4\ 


') 


44.  Let  u  =  Jx--1,  u^  +  2  =  X,  2u  du  =  dx 

I :~  dx  =   I  -r ^M  =   I ; —  du  =  l\du  —  6]  —:. 

J;c+1  Jm2  +  3J„2  +  3  J  J„2  + 


c/m 


=  2m ;=  arctan     ^ 

V3  ^ 


^  +  C  =  2Vj:  -  2  -  2V3  arctan  .^'^  +  C 


/3\2      9  9      9       /        3\^      9 

46.  The  term  is  ( ^  1    =  ^:  x^  +  3a:  =  ;c2  +  3;c  +  ^  -  ;^  =  ( x  +  1 1    -  ^ 


48.  (a)   J  e^  die  cannot  be  evaluated  using  the  basic  integration  rules. 

(b)   \xerdx  =  \e^  +  C,u  =  ,?  ^       fl 

J  2  (c)Jp 

^*'  ^^^  J  dx  cannot  be  evaluated  using  the  basic  integration  rules. 

J  yf^  dx  =  Ij  :p^  &  =  i  arctan(x^)  +  C,  «  =  x^ 


(c)      -re'/^dx  =  -ei/^+ Cm  = 


1 


(b) 
(c) 


4^3      .        1 


1  +  X 


^dx  =  - ln(l  +  x")  +  C,  M  =  1  +  x"* 


52.  (a) 


dy 


(b)  ^  =  xyi6^,  (0,  -2) 


dj 


=  xdx 


arcsinl  jl  =  —  +  C 


(0,  -2):  arcsini --1  =  C  =^  C 
.  (y\      x'       ir 


2L 
6 


V         .   /at       7r\ 

4  =  nT~?J 


V  =  4  sin 


2       6 


-f  =  7>fe-<°"^ 


7   1   /■  /  / 
/  /  /  /  / 
^  /  /  yjf 

//III 

y  /  /  /  / 
y  y  y  y  y 

^^  y  y  y 

N  N  -^  ^  ^ 

^   ^   ^   X   X 

542        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


56. 


A  =  .  dx  =    arcsin  —     =  — 

Jo  74^^  L  2jo       6 


58. 


arcsin  xdtc  ~  0.571 
Jo 


1  P*^ 
60.FW=-|      ^ 


+  1 


dt 


(a)  F(a:)  represents  the  average  value  off{x)  over  the  interval  [x,  x  +  2].  Maximum  at  ;c  =  —  1,  since  the  graph  is 
greatest  on  [—  1,  1]. 


-[= 


(b)    F(x)  =  I  arctan  f 
1 


F'{x)  = 


=  arctan(x  +  2)  —  arctan  x 

1  (1  +  x^)  -  (;c^  +  4x  +  5)  _  -4(x+  1) 


1  +  (x  +  2)2       1  +  x^         (x2  +  l)(x2  +  4x  +  5)         (x^  +  l)(x2  +  4x  +  5) 


=  0  whenx  =  —  1. 


^'  J  V6x  -  x^  ' 


62.        ^ ,dx 

J  Vox  -  X- 

(a)  6x  -  x2  =  9  -  (x2  -  6x  +  9)  =  9  -  (x  -  3)^ 

dx  .  /x  —  3 

1 


J  V6x  —  x^  J  . 


X-  J  79  -  (x  -  3)2 

(b)  u  =  Vx,  M~  =  X,  2u  du  =  dx 

2 


—  arcsin  — - —    +  C 


/ti^^'"''"^^/ 


. du  =  2  arcsin  —p=  ]  +  C  =  2  arcsini 

76^^  V76, 


(i) 


+  c 


(c) 


The  antiderivatives  differ  by 
a  constant,  7r/2. 

Domain:  [0,  6] 


64.  Let/(x)  =  arctan  X 


1  +x2 


,rY  N  1  1  -x2  2x2 

1  +  x"'     (1  +  x^r     (1  +  X*-) 

Since/(0)  =  0  and/is  increasing  for  x  >  0,  arctan  x  -  ^  >  0  for  x  >  0.  Thus, 

X 

arctan  X  > 


1  +x2' 
Let  g{x)  =  x  —  arctan  x 

Since  g{0)  =  0  and  g  is  increasing  for  x  >  0,  x  —  arctan  x  >  0  for  x  >  0.  Thus,  x  >  arctan  x. 
Therefore, 

X 


2        4        6        8        10 


1    +X2 


-  <  arctan  X  <  x. 


Section  5.10        Hyperbolic  Functions       543 


Section  5.10      Hyperbolic  Functions 


pO  +  pO 

2.  (a)  cosh(0)  =       ^       =  1 


4.  (a)  siiih-'(O)  =  0 
(b)  tanh-'(O)  =  0 


(b)  sech(l) 


e  +  e 


=  0.648 


6.  (a)  csch-'(2)  =  Inl  ^  "^„       |  -  0.481 


(b)  coth->(3)=^ln(|j  =  0.347 


„    1  +  cosh  2x       1  +  (e=^  +  e"2x)/2       g2x  +  2  +  e'^      fe'  +  C'^Y 

8. = = =    — T—     =cosh^^ 


fe'  —  e~^\le'  +  e~-^\       e"  —  e^ 
10.  2  sinh  x  cosh  jc  =  2 = =  sinh  2x 


12.  2  coshi  — :H- 1  cosh(  — -^  1  =  2 


=  2[^^±^ 


e-y  +  e- 


gU-y)h  +  g-(j:-y)/2"| 


e""  +  e~''      e^  +  e~y 


cosh  X  +  cosh  y 


14.  tanh  x  =  — 

2 


-     +  sech^jc  =  1  ^  sech^j:  =  -  =>  sech^:  =  -r— 
2/  4  2 


cosh  X  = 


1  273 


/3/2 


coth;c  =  :f^  =  2 


sinh  X  =  tanh  x  cosh  j: 


1V2V3\       v^ 


2/V    3 


Putting  these  in  order: 

73 


sinh  X  =  ——  csch  x  =  Jl> 

cosh  jt  =  -^i; —  sech  x  =  — ;- 

3  2 


tanhj: 


1 


coth  X  =  2 


csch  ;c 


73/3 


73 


16.    y  =  coth(3x) 
y'  =  -3csch2(3jc) 


18.    g(x)  =  In(coshjc) 
1 


gW 


cosh  X 


(sinh.v)  =  tanh.v 


20.  y  =  X  cosh  X  —  sinh  x 

y'  =  X  sinh  x  +  cosh  x  —  cosh  .r  =  x  sinh  .v 


22.    /i(r)  =  r  -  coth  r 

/( '(0  =  1  +  csch- 1  =  coth-  f 


544       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


24.    g{x)  =  sech-  3j: 

g'{x)  =  -2  s&Mix)  sech(3j:)  tanh(3x)(3) 
=  -  6  sech^  3x  tanh  3x 


26.  fix)  =  6"^" 

fix)  =  (cosh;c)(e=''=^^) 


28.   >-  =  sechU  +  1) 

>> '  =  —  sechU  +  1)  tanh(jc  +  1) 


30.  fix)  =  X  sinhCr  -  1)  -  coshU  -  1) 

fix)  =  j:cosh(x  -  1)  +  sinhU  -  1)  -  sinh(jr  -  1)  =  xcosh(x  -  1) 

fix)  =  0  for  X  =  0.  By  the  First  Derivative 

Test,(0,  -cosh(-  1))  =  (0,  -  1.543)  is  a  relative  minimum. 


32.  hix)  =  2  tanh  x  -  x 

2 


\ 

(0.88.  0.53) 

(-0.88,-0.531 

\ 

34.  y  =  a  cosh  j: 
y'  =  a  sinh .t 
>>"=  a  cosh.x 
Therefore,  y"  —  y  =  0. 


Relative  maximum:  (0.88,  0.53) 
Relative  minimum:  (—0.88,  —0.53) 

36.  fix)  =  cosh  a;  /(I)  =  cosh(O)  =  1 

fix)  =  sinhx  /'(I)  =  sinh(O)  ==  0 

fix)  =  coshx  /"(I)  =  cosh(O)  «  1 

/'i(^)=/(0)+/'(0)(x-0)=  1 
P2(;c)  =  1+5^2 


V 

/ 

/>, 

38.  (a)  >-  =  18  +  25  cosh—,  -25  <  x  <  25 


(b)  At  X  =  ±25,  y  =  18  +  25  cosh(l)  =  56.577. 
At.t  =  0,y  =  18  +  25  =  43. 

X 

(c)  y'  ~  sinh— .At  .c  =  25,  y'  =  sinh(l)  =  1.175 


40.  Let  M  =  VJ,  d« 


Let  u  =  Vj:,  d«  =  — 7=  ^.  42.  Let  u  =  cosh  x,  du  =  sinh  j;  < 

ijx 

^= —  dx  =  l\  cosh  V^l  — ^  j  (it  =  2  sinh  VA  +  C  J  '  +  sinh^  a:  J  cosh-^  j: 


(ic  = 


1 


1  +  sinh-^  X  J  cosh-^  x  cosh  .x 

=  —  sechx  +  C 


+  C 


44.  Let  u  =  2x  -  I,  du  =  2  dx. 

\  sech^ilx  -  l)dx  =  \\  sech^dx  -  1)(2)  dx 


/sech2(2.-l)<i.  =  i/s 


^tanh(2x-  1)  +  C 


46.  Let  u  =  sech  x,  du  = 
sech'  X  tanh  .r  dlr  = 


/' 


sech  X  tanh  jr  tic. 
sech^  xi  -  sech  j:  tanh  x)  dx 


■/ 


--sech^  JT  +  C 


Section  5.10        Hyperbolic  Functions       545 


„     f      ,,      ,         fl  +  coshZx 
5.    I  cosh''  xdx  =   \ c 

ir        sinhlr] 


50. 


r 

Jo 


V25~ 


:dx  = 


3  Jo 


.    4 
arcsin  — 


-jc  +  -  sinh  2x  +  C 
2        4 


52. 


— ,  ^         dx  =  2   /  (2)  aLc  =  -W- 

J  xVl  +  4jt2  J  (2x)Vl  +  (2;c)2  ^    \ 


+  Vl  +  4x- 
|2x| 


+  C 


54.  Let  u  =  sinh  x,  du  =  cosh  jt  (ic. 


I 


cosh  a:         ,  .  /sinhjc\       „ 

,  ^=  ate  =  arcsin  — - —    +  C 

V9  -  sinh-jc  V     3     ' 


56.    y  =  tanh-'l- 
^    1 


© 


1  -  (;c/2)2V2/      4  -  X 


arcsinl I  +  C 


58.  y  =  sech^Hcos  2j:),  0  <  .r  <  — 


y  = 


-1 


cos  2xVl  -  cos-  2a: 
since  sin  2x:  >  0  for  0  <  x  <  17/4. 


( —  2  sin  2r)  = 


2sin2x 


cos2r|sin2x|      cos  2x 


=  2  sec  2x, 


60.    >-  =  (csch-'A:P 
y'  =  2  csch" '  j:| 


-  2  csch   '  .V 


x\jr+7-/       \x\^l  +  x^ 


62.    y  =  ;c  tanh"'  x  +  InVl  -  x^  =  x  tanh"'  .r  +  x  ln(l  -  x^)         64.  See  page  401,  Theorem  5.22. 


y  =  x\ 


1  -x^ 


=) 


1         \  _  -X 

+  tanh  '  JC  + r  =  tanh  '  x 


1  -x2 


66.  Equation  of  tangent  line  through  P  =  {xg,  yg) 

y 


-  a  sech-'  ^  +  Va-  -  Xg^  = 


HX    -    Xg) 


When  x  =  0, 

y  =  a  sech" ' '- Va-  -  jCn"  +  Va^  -  JTn^  =  a  sech~ '  — . 

a  a 

Hence,  Q  is  the  point  [0,  a  sech~'(.*o/'')]- 


68. 


istance  from  P  lo  Q:  d  =  y/x 

o^  +  (-Va^-.o^r  = 

■'      J.          'f     "'^ 

-  =  4©'" 

3-.r 

9-X*             2}9-(x^r- 

3  +.t2 

=  -±,„ 

3-.r 

+  c 

3+:r 

+  c 


546        Chapter  5       Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


70.  Let  tt  =  x^'\  du  =  -Jxdx. 


72. 


f ^ =f. 

]{x+  2)V.t2  +  4;c  +  8      J 


ate 


U  +  2)V(^  +  2)-  +  4 


=  4-P4?l^'- 


74.    f— 


l)V2?  +  4r+8 


otc 


=   f L 

J  (x  +  \)j2{x  +1)2  +  6 

^J  U  +  \)J(x  +  \Y  + 


(;c  +  1)V(^  +  IP  +  (V3)' 


.^=_J_,„fVI+7U+i)i+i^^^ 

j:  +  1 


V6 


76.  Let  tt  =  2(a:  -  1),  du  =  2dx. 


f ^^f 

J  (x  -  1)7-4x2  +  8x  -  1  J 


1"  J  2(x  -  1)V(^^-[2(x-1)? 


(&=  - 


^In 

73 


73  +  7-4^2  +  8x  -  1 


2(x  -  1) 


+  C 


78.  y  =  1:1 ^dt  =   \^ —,dx  +  3  It -'r:^ -dx 

^      }Ax-x?  J  4x  -  x^  J  (jc  -  2)2  -  4 


=  In  4x  -  x^  +=T  In 


(x  -  2)  -  2 


(;c  -  2)  +  2 


+  C  =  lnl4x  -  x2|  +  -  In 


X  -4 


+  C 


80.  A  =       tanh  2x  dx 


2g2x  _  g-Zx 
g2i  +  g-2i 


ip    1 

2J0  £2^  +  e-2^' 
=  [|ln{e2'  +  e-2-)| 


=  |ln(e^  +  e-*)-|ln2 


(it 


(2)(e2^  -  e-^)  dx 


=  ln,/        7      °=  1.654 


84.  (a)  v(;)  =  -32r 


82.  A 


I 


^(fe 


3  v4^^^' 
U  ln(x  +  7x2  _  4) 


=  6  ln(5  +  721)  -  6  ln(3  +  Js) 


(b)  5(r) 


Jv(f)rff=| 


(-32f)dr=  -16f  +  C 


siO)  =  - 16(0)2  +  C  =  400  =>  C  =  400 
i(r)  =  -  16r2  +  400 


—CONTINUED— 


Section  5.  JO        Hyperbolic  Functions       547 


84.  —CONTINUED— 


(c) 


dv 
dt 


-32  +  kv^ 


J  32  -  fcv2  J  ' 


Let  «  =  V^  V,  then  du  =  Vfc  dv. 


1 


1 


:ln 


Vfc    2732 
Since  v(0)  =  0,  C  =  0. 

V32  +  yitv 


V32  -  V^v 


=  -f  +  C 


In 


-2V32/tf 


-   ^-2^32*; 


732-  Jkv 
732  +  Jkv 

732  +  7fcv  =  6-2^^2* '(732  -  7tv) 


i'(7t  +  7ite-2v^')  =  732(e-2v^' -  1) 

■       .  ^(e-2v^>_  i)     e>/?af 

7t(e-2>'^'+  l)    '  e-^' 


732 


v^ 


zif 


-Jm. 


'ilkt  J.   „-v^2itf 


gVJ2A,  +  g 


=  -^tanh(732fcf) 
7fc 


86.  Lety  =  arcsin(tanh  j:).  Then, 

e"  —  e""^ 

sin  y  =  tanh  x  = :-  and 

e'  +  e 


e^  —  e  ' 
tan  y  = =  sinh  x. 


Thus,  y  =  arctan(sinh  jc).  Therefore, 
arctan(sinh  ;c)  =  arcsin(tanh  ;c). 


(d)    lim 


732 
7^ 


tanh(732fcr) 


J22 

Jk' 


The  velocity  is  bounded  by  -  732/7^- 

(e)  Since  /tanh(cf)  dt  =  (1/c)  In  cosh(cf)  (which  can  be 
verified  by  differentiation),  then 

/32 


s(t) 


/ 


7fc 

732      1 


tanh(732ytr)<if 

ln[cosh(732itr)]  +  C 


7fc  732fc 
=  — iln[cosh(732/:r)]  +  C. 
When  r  =  0, 

5(0)  =  C 

=  400  =>  400  -  (l/k)  ln[cosh(732fcf)]. 
When  A:  =  0.01, 

izW  =  400  -  100  In(cosh7o32  t) 

Si(f)  =  -  16t2  +  400. 

s^it)  =  0  when  ;  =  5  seconds. 

Sjit)  =  0  when  r  ~  8.3  seconds 

When  air  resistance  is  not  neglected,  it  takes 
approximately  3.3  more  seconds  to  reach  the  ground. 


88.  y  =  sech~' j: 

sech  y  =  X 

—  (sechy)(tanhy)y' =  1 

-1 
y  = 

90.  y  =  sinh^'x 

sinh  y  =  JC 
(cosh  y)y'  =  1 

1 


(sechy)(tanhy)      (sechy)7l  -  sech-y      xVT 


coshy      7sinh-y  +  1       Vx-  +  1 


548       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


Review  Exercises  for  Chapter  5 


2.  /(jc)  =  ]n(x  -  3) 

Horizontal  shift  3  units  to 

the  right 

Vertical  asymptote:  x  =  3 


4.  \n[{x^  +  l){x  -  1)]  =  lnU2  +  1)  +  \n(x  -  1) 


r     25xr'     ~\ 
6.  3[ln;t  -  2  InU^  +  1)]  +  2  In  5  =  3In;c  -  6Mx'^  +  1)  +  In  5^  =  Inx^  -  \n{x^  +  1)«  +  In  25  =  In   ,  ^  ^  ^.^ 


8.  In  X  +  ln(x  -  3)  =  0 

\nx{x  -  3)  =  0 

xix  -2)  =  e° 

x2  -  3.T  -  I  =  0 

3  ±  Vn 


10.    h{x)  =  In^^^^  =  Inx  +  ]n{x  -  1)  -  ln(x  -  2) 

X  -  2 

.,,,11  1  x2-4x  +  2 

h{x)  =  -  + 


X      X—  1       X  —  2      x'  —  3x^  +  2x 


3  +  713      ,      .       3-713       „ 
X  = only  since <  0. 


12.  /(x)  =  ln[x(x2  -  2)2/3]  =  Inx  +  |ln(x2  -  2) 


„,  ,       1       2/    2x 
f'(x)  =  -  +    ' 


X      3\x2  —  2/      3x3  —  fix 


7x2-6 


14.    y  =  -jfa  +  te  -  fl  ln(a  +  bx)] 


dy  _   U ab 


dx      b^\        a  +  bx)      a  +  bx 


16.     y  = 1 — :;  In 

ax      a'  X 

1  h 

= +  -?[ln(a  +  bx)  -  Inx] 

ax       a^ 


(fa 


aV    x2/      a\a  +  bx      xj 
ax2      a2Lx(a  +  bx)\ 


1 


ax2      ax{a  +  bx) 


(g  +  bx)  -  bx 1 


ax\a  +  bx)        x\a  +  bx) 


20.  M  =  In  X,  <iM  =  -  <fa 

X 


/¥*4/<'""©-=>'>'-^ 


18.  M  =  x2  —  \,du  =  Ixdx 


S^^dx  =  ^(^^dx  =  |lnlx2  -  11  +  C 
J  x2  -  1  2j  x2  -  1  2      '  ' 


2..f^^  =  f„„.,.(l)^.[i<,n,p];  =  l 


-/Xf 


X   dx 


In 


77 
COS|  "T  "■  JC 


)ir 


=  0-,.|J=)4..2 


Review  Exercises  for  Chapter  5       549 


26. 

(a) 

fix) 

=  5x- 

1 

y 

=  5x- 

1 

y  +  l 
5 

=  X 

x  +  1 
5 

=  y 

f-Uy\ 

x  +  1 

(b) 


(c)  /-'(/W)  ^f-\5x  -  7)  =  ^^"^     l^^''  =  X 


/</-«) =/m-m—' 


28.  (a)        fix)  =  x3  +  2 
y  =  x^  +  2 


Vy  -  2  =  ;c 


V:c  -  2  =  y 


(b) 


A 

^'r^ 

-fl 

^ 

(c)  /-'(/W)  =r '(x^  +  2)  =  y(;c3  +  2)  -  2  =  x 
/(/-'W)  =/{4/^r^^)  =  {V:^^^f  +  2=x 


30.  (a)        fix)  =x'^-  5,x>0 
y  =  x^-5 
Vy  +  5  =  x 
Vx  +  5  =  y 
/-'W  =  Vx  +  5 


(b) 


^ 

/ 

(c)  /"'(/W)  =/-'(x^  -  5)  =  VCr^  -  5)  +  5  =  .r  forx  >  0. 
/{/-'W)  =/(Vx  +  5)  =  {Jx  +  Sf  -5=x 


32.  fix)  =  xVx-  3 

/(4)  =  4 


/'W  =  VT^^  +  ^xix  -  3)-'/^ 
/'(4)  =1  +  2  =  3 
(/-')'(4)=^-;^  =  | 


34.  /(.r)  =  lnx 

f-'ix)  =  e^ 

(/-')'W  =  ^ 

(/-')'(0)  =  e°=  1 


36.  (a)     fix)  =  e'- 


y  =  e'"-' 
In  y  =  1  -  X 
X  =  1  —  In  y 
y  =  1  -  Inx 
/-'(x)  =  1  -  Inx 


(b) 


\ 

\^/ 

/-' 

(c)/-'(/(x))  =/-'(«'-')  =  1  -  He'-') 
=  1  -  (1  -  x)  =  X 
/(/"'W)  =/(l  -  Inx)  =  fi-ii-'^-'*  =  ftox  =  J. 


550       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


38.  y  =  4e- 


-5-4-3-2-1  ..12345 


-3-- 

-4 
-5 


40.    g{x)  =  Inl 


gXx)  =  1 


1  +  e'j 

In  e*  -  ln(l  +  e^)  =  x  -  ln(l  +  e-') 
e^  1 


\  +  e"      \  +  e' 


42.    h{z)  =  e-^'^ 
h\z)  =  -ze-^'^ 


44.    y  =  3e^3/r 

Qp-3/r 

y'  =  3e-V'(3r2)  =  ^ 


46.  f(e)  =|e=ta2e 

/'(e)  =005  266^*"  29 


48.  cos  n?-  =  xe^' 

-2xsmx^  =  xey^  +  «>■ 
dx 

di  _      2x  sin  jc^  +  e^ 
dx  ~  xey 


50.  Let  u  =  -,  du  =  — j-  dx. 


dx  =  -e'/-^  +  C 


52.  Let  «  =  e^  +  e'^',  J«  =  (2e^  -  e'^^)  d^r. 


fe^  -  e-^       ^  1  r2g^  -  2g- 
Je^  +  e-^  2J    e^  +  e-2 


■dx 


54.  Let  M  =  jc'  +  L  -i"  =  Sx^  alx. 


Lv+'aLr  =  1   e 


1^(2^+1^=  gx=+l(3^2)^  =  ^^  +  l   +  c 


=  -  \n{e^  +  e-^)  +  C 


56.j^^dx='-j^2e^dx 


=  -  ln(e^  +  1)  +  C 


58.  (a),  (c)    'oooo 


(b)        V  =  SOOOe-ofi',  0  <  r  <  5 
V'(t)  =  -4800e-o«' 
V'(l)  =  -2634.3  dollars/year 
V'(4)  =  -435.4  dollars/year 


60.  Area  =       2e^'  dx 


Jo 


-2e- 


Jo 


62.  g{x)  =  6(2--^) 


64.  y  =  log4j:2 


Review  Exercises  for  Chapter  5        551 


66.  fix)  =  A'e^ 

fix)  =  4^e^  +  (In  4)4^?^  =  4V(1  +  In  4) 

X 

70.    /i(jc)  =  logs  ~rj  ^  '°g5  ^  ~  logsC^  ~  1) 


'''«=i;^ 


1        1 


x      j:  —  1 


1 
In  5 


xix  -  1). 


68.    >>  =  ;c(4-^) 

y'  =  4"-'  —  X  •  4~'  In  4 


72. 


f2-iA 
j  —  dt- 


1 
In  2 


2-1 A  +  c 


74.  ?  =  50  log,o! 


18,000 


,18,000  -  h) 
(a)  Domain:  0  <  h  <  18,000 
(b) 

100- • 


Vertical  asymptote:  h  =  18,000 


76.    2P  =  Pe'O'- 

2  =  e'O' 
ln2  =  lOr 
In  2 


/■  =  —  -  6.93% 


(c)  f  =  50  log 


18,000 
Hl8,000-/! 

8,000 


18,000  -  h 
18,000 -/!  =  18,0O0(10-'/5O) 

h  =  18,000(1  -  lO-'/^o) 
As  ;!->l  8,000,  t-^oo. 
(d)    r  =  50  logio  18,000  -  50  log,(,(18,000  -  h) 


dt 


50 


78. 


dh      (In 

10)(  18,000  - 

-h) 

d-'t 

50 

dh''      (In 

10)(  18.000  - 

-h)- 

No  critical  numbers 

As  r  increases,  the  rate 

of  chan^ 

eof  tlie 

altitude  is 

increasing. 

>-  = 

^2J 

^ 

' 

^-(600)  = 

^2J 

=  3.868 

grams 

80.  (a) 


^=  -0.012y,5  >  50 
ds 


^/M- 


aoTl'""^'^^' 

When  s  =  50,  v  =  28  =  Ce-'^onm 
y  =  28e''*-'''»^,  5  >  50 


C  =  2%e°^ 


(b) 


Speed(s) 

50 

55 

60 

65 

70 

Miles  per  Gallon  iy) 

28 

26.4 

24.8 

23.4 

22.0 

82. 


dx 


e' 

-2r 

1 

+ 

e" 

-2i 

f 

e" 

Zr 

rfx 


1  r  -2e--'^ 
"2J  1  +«-- 


otc 


y  =  --  ln(l  +  e---^)  +  C 


552       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


84.  V '  —  e^'  sin  j:  =  0 


dy        ,   . 
—-  =  e'  sin  X 
dx 


e-y  dy  =     si 


sin  j:  (it 


86. 


-e  >■=  - 

cos  x  +  Ci 

1 

(C=  -Q) 

cos  j:  +  C 

y  =  \r 

1 

=  -ln|cosx  +  C 

cosjc  +  C 

-j-  = '—    (homogeneous  differential  equa 

3{x  +  y)dx  -  xdy  =  0 

Let  y  =  vx,  dy  =  X  dv  +  V  dx. 

3ix  +  vx)dx  -  x(xdv  +  vdx)  =  0 

{3x  +  2vx)dx-  x^dv  =  0 

(3  +  2v)dx  =  xdv 

fi .    r  1 

3  +  2v 


dv 


\n\x\  =  -  ln|3  +  2v|  +  C,  =  ln(3  +  2v)>/2  +  In  Cj 


;c  =  C2(3  +  2v)'/2 
;c2  =  C(3  +  2v)  =  c(  3  +  2(^j 

jr'  =  C{3x  +  2y)  =  3C;c  +  2Cy 

_^x^  -3Cx 
^  IC 


88.  ^  =  /tv  -  9.8 
dt 


(a) 


1^7^  =f^ 


-ln|/tv  -  9.8|  =  r  +  Ci 

ln|fcv  -  9.8|  =  fa  +  Cj 
Jtv  -  9.8  =  e*'+c,  =  (2^gh 


1 


9.8  +  Cjg*' 


At  ?  =  0, 


Vo  =  -(9.8  +  C3)  =>  C3  =  fcvo  -  9.1 


V  =  -{9.8  +  (/b'o  -  9.8)6'='] 
Note  that  k  <  Q  since  the  object  is  moving  downward. 


(b)    limvW=^ 


(c)   i(f)  =  J|[9.8  +  (A:vo  -  9.8)e*']rff 

9.8?  +  |(/fcvo  -  9.8)e^  I  +  C 


=  ^  +  -^(H  -  9.8)e*'  +  C 

5(0)  =  ^(fcvo  -  9.8)  +  C  ^  C  =  So  -  ^(fcvo  -  9.8) 

^(')  =  ^  +  ;^K  -  9.8)e*'  +  5o  -  -^^vo  -  9.8) 
Q  Kr        1 


Review  Exercises  for  Chapter  5       553 


90.  hix)  =  -3arcsin(2x) 


92.  (a)  Let  e  =  arccot  2 
cot  0  =  2 

tan(arccot  2)  =  tan  6 

(b)  Let  d  =  arcsec  V5 
sec  6  =  v/5 


slarcsec  Vs  )  =  cos  8  =  — ;= . 


94.    y  =  arctanlx'  -  1) 

2x 


2x 


1  +  U-  -  1)2       ;c^  -  2jc2  +  2 


96.    y  =  X  arctan  e^ 


^        2U  +  e-'V  1  +  e' 


98.    y  =  V;c2  -  4  -  2  arcsec  -,  2  <  j:  <  4 


y   = 


X--  4  V^2T74 


V?^^      (|x|/2)V(a:/2)2-  1       Vx^'^       \x\J^^^^       \x\V^^^^  X 


100.  Let  M  =  5;c,  du  =  5  dx. 


Jr^'^  =  i/(v^)2V(5./^^^ 


1  5x 

r  arctan  — ^  +  C 


5^3  V3 


102.  J. 


1.1  ■«   ,   ^ 

— r  cit  =  —  arctan  —  +  C 

16  +  a:^  4  4 


104.    I    ^      -^    (it  =  4  I -7=L=  0^  +  :1^  I ' 


ix:  +  -    (4  -  x^)-^'-(-2x)dx  =  4arcsin^+  J4  -  x-  +  C 


106.  Let  u  =  arcsin  x,  du 


jr=i^- 


dx. 


\ 


arcsin  j:    ,        1,       .      ^^       ^ 
,  dx  =  -(arcsin  x)-  +  C 


108. 


(n 


Since  the  area  of  region  A  is  11  I      sin.vrf>). 


the  shaded  area  is  I  arcsin.riv  =  —  —  1  ==  0.571. 
Jo 


110.    y  =  xtanh-'2jc 

y  =  x\ 


2r 

,  , ,  +  tanh"'  It  = -^  +  tanh-'  2jt 

1  -  4x^/  1  -  4x- 


112.  Let  tt  =  .r3.  du  =  ?,x^  dx. 


I ;r(sech x^)- dx  =  ^\  (sech .■^)^3jr) dr  =  | tanh .t^  +  C 


554        Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 


Problem  Solving  for  Chapter  5 


2.  (a) 


smx  dx  =  —  \     smxdx 


I 


arccos  xdx  =  2\  —  ]  =  tt 


Jo 


smxdx  =  Q 


(b) 


-I 1 1 \—*^x 

It         It        'in       In 


(sin  j: 
Jo 


+  2)dx  =  2(2  tt)  =  An 


(d) 


1 


^       1  +  (tanx)-^ 


is  symmetric  with  respect  to  the 


_J ^    nl\\   ^77 

(tanx)v^  2\2/       4 


4.  y  =  O.S-'  and  y  =  1.2-'  intersect  >>  =  j:. 
>'  =  2'  does  not  intersect  y  =  x. 

Suppose  y  =  x\s  tangent  to  >>  =  o^  at  (x,  y). 

c^  =  X  =^  a=  x^l'. 
y'=a'lna=l   =s>j:ln  x^l- 


\z=^\'!\x=\=>x  =  e,a  =  e^l" 


For  0  <  (3  <  e^^'  ~  1.445,  the  curve  y  =  of  intersects  y  =  x. 


6.  (a)  y  =  /(x)  =  arcsin  x 
sin  >>  =  X 


J-nl 


Area  A  =   |      sin  >>  •  rfy  =  —  cos  y 

tt/6 


V2   ,    V3       V3  -  72 


]""  =  _  V2  ^  V3  ^ 

Jir/fi  2  2 


=  0.1589 


^--^^  i)(fh§-»'^"« 


I 


72/2 


(bj    I         arcsin  jccic  =  Area(C)  =  ("TJ 


7r\/7^ 


A  -  B 

8  2  12 

72        1  \   ,    72  -  73 


^'X-T2J+         2 


=  0.1346 


—CONTINUED— 


Problem  Solving  for  Chapter  5        555 


6.  —CONTINUED— 


(c)  Area  A 


e^dy 

3 


3-1=2 


AreaB=   |   ln;ca[r  =  3(ln  3)  -  A  =  3  In  3  -  2  =  ln27  -  2  =  1.2958 
(d)      isny  =  X 


Area  A 


riT/3 

Jit/ 4 


izny  dy 


=  —In  cos  vl 


7r/3 


7r/4 


=  -In^  +  ln^  =  ln72  =  |ln2 
Area  C  =   I      arctan  x  dx  =  (|^j(  VI)  -  -  In  2  -  (j 
=  ^(4V3-3)-iin2»0.6818 


(1) 


8.  y  =  e' 

y'  =  e^ 
y  —  b  =  e"{x  —  a) 

y  =  e"x  —  ae"  +  b    Tangent  line 
Ify  =  0, 

e"x  =  ae"  —  b 
bx  =  ab  -  b     (b  =  e") 
X  =  a  —  I 
c  =  a  —  I 
Thus,  a  -  c  =  a  —  (a  -  I)  =  I. 


10.  Let  u  =  tan  X.  du  =  sec-  x  dx 

r-r/A 


Area 


r'r/4 

Jo     sin- 


1 


x  +  4  cos-  X 


J"ir/4  1 

sec-jc 
0     tan2.r-^4 

Jo  «=  +  4 
=  [^arctang 

=  farctan(|) 


(it 


12.  (a)  f  =  >'(1  ->').v(0)=| 


ln|y|  -  ln|l  -  y\  =  t  +  C 

y 


In 


\-y 

V 


=  t+  C 


e'+c=  c,e' 


1  -V 

V  =  C,e'  -  yC^e' 

C,e'  1 


Hence,  v  = 


1  1 


4       \  +  C. 
1 


1  -(-  C.e'       1  +  C^e" 


C,  =  3 


1  +  3e- 
— CONTINUED— 


(b) 


=  y(l  -  y)  =  y  -  .-v-^ 


dy 

dt 

cT-y       „       ,     ^    ,  „     .,-  1 

-pr  =  V   =  y    —  2\T    =>  V    =  0  lor  v  =  — 
dt'      '  ...  -2 

-^>  OifO<  V  <  ^and-^  <  Oif^  <  V  <  1. 
dt-  ■       2         dt-  2      ■ 

Thus,  the  rate  of  growth  is  maximum  at  y  =  -.  the 
point  of  inflection. 


556       Chapter  5        Logarithmic,  Exponential,  and  Other  Transcendental  Functions 

12.  —CONTINUED— 

(c)   y'  =  y(l  -y),ym-2 
1 


As  before,  y 


1  +  Ce- 


^(0)  =  2  =  :p^=>Q=4 


Thus,  y  = 


1 


The  graph  is  different: 


14.  (a)  u  =  985.93  -    985.93 


(120,000)(0.095) 
12 


(-^r 


(b)  The  larger  part  goes  for  interest.  The  curves  intersect  when  t  =  27.7  years. 

(c)  The  slopes  are  negatives  of  each  other.  Analytically, 

du  dv 

»  =  985.93 -V     =>^=-^ 

m'(15)  =  -v'(15)  =  -14.06. 

(d)  t  =  12.7  years 

Again,  the  larger  part  goes  for  interest. 


3-3:^S7-^